
Preface

Partial evaluation has reached a point where theory and techniques are mature,
substantial systems have been developed, and it appears feasible to use partial eval-
uation in realistic applications. This development is documented in a series of ACM
SIGPLAN-sponsored conferences and workshops, Partial Evaluation and Semantics-
Based Program Manipulation, held both in the United States and in Europe.

In 1987, the first meeting of researchers in partial evaluation took place in Gam-
mel Avernæs, Denmark. Almost ten years later, the time was due to evaluate the
progress that has been achieved during the last decade and to discuss open prob-
lems, novel approaches, and research directions. A seminar at the International
Conference and Research Center for Computer Science at Schloß Dagstuhl, located
in a beautiful scenic region in the southwest of Germany, seemed ideally suited for
that purpose.

The meeting brought together specialists on partial evaluation, partial deduc-
tion, metacomputation, program analysis, automatic program transformation, and
semantics-based program manipulation. The attendants were invited to explore
the dimensions of program specialization, program analysis, treatment of programs
as data objects, and their applications. Besides discussing major achievements or
failures and their reasons, the main topics were:

• Advances in Theory: Program specialization has undergone a rapid devel-
opment during the last decade. Despite its widespread use, a number of theo-
retical issues still need to be resolved, including efficient treatment of programs
as data objects; metalevel techniques including reflection, self-application, and
metasystem transition; issues in generating and/or hand-writing program gen-
erators; termination and generalization issues in different languages; related
topics in program analysis including abstract interpretation, flow analysis, and
type inference; the relationships between different transformation paradigms,
such as automated deduction, theorem proving, and program synthesis.

• Towards Computational Practice: Academic research has thrived in many
locations. Broad practical experience has been gained, and stronger and larger
program specializers have been built for a variety of languages, including
Scheme, ML, Prolog, and C. Work is being initiated to bring the achieve-
ments of theory into practical use but a number of pragmatic issues still need
to be resolved: progress towards medium- and large-scale applications; en-
vironments and user interfaces (e.g., binding-time debuggers); integration of
partial evaluation into the software development process; automated software
reuse.

3



• Larger Perspectives: We also wanted to critically assess state-of-the-art
techniques, summarize new approaches and insights, and survey challenging
problems.

The Proceedings

All participants were invited to submit a full paper of their contribution for a pro-
ceedings volume [7]. The submitted papers have been reviewed with outside assis-
tance and each paper read by at least three referees. Technical quality, significance,
and originality were the primary criteria for selection. The selected papers cover a
wide and representative spectrum of topics and document state-of-the-art research
activities in the area of partial evaluation. Three surveys were invited to complete
the volume:

• In What not to do when writing an interpreter for specialization, Neil Jones
carefully reviews the (sometimes non-obvious) pitfalls that must be avoided
by the partial-evaluation apprentice in order to successfully generate compilers
by partial evaluation,

• In A comparative revisitation of some program transformation techniques, Al-
berto Pettorossi and Maurizio Proietti survey the use of well-known transfor-
mation techniques in recent work, and

• In Metacomputation: Metasystem transition plus supercompilation, Valentin
Turchin provides us with a personal account of the history and the present state
of supercompilation and metasystem transitions. Professor Turchin presented
his invited lecture on his 65th birthday, during the seminar.

Here is a brief topical summary of the contributions in the proceedings:

Partial evaluation:

• Thomas Reps and Todd Turnidge. Program specialization via program slic-
ing. Demonstrates that specialization can be achieved by program slicing. A
bridge-building paper between two research areas.

• Torben Mogensen. Evolution of partial evaluators: Removing inherited limits.
Provides a rationalized, unified, and insightful view of recent developments in
partial evaluation.

4



• Michael Sperber. Self-applicable online partial evaluation. Reports the suc-
cessful self-application of a realistic online partial evaluator. Solves a long-
standing problem.

• Alain Miniussi and David Sherman. Squeezing intermediate construction in
equational programs. Applies specialization of stack-machine code to optimize
equational programs.

Imperative programming:

• Mikhail A. Bulyonkov and Dmitry V. Kochetov. Practical aspects of special-
ization of Algol-like programs. Presents a new technique for decreasing the
memory usage in the specialization of imperative programs.

• Alexander Sakharov. Specialization of imperative programs through analysis of
relational expressions. Presents a powerful optimizer applying techniques from
supercompilation and generalized partial computation to improve imperative
code, using a dependence graph.

Functional programming:

• John Hughes. Type specialisation for the lambda calculus. An elegant step
towards solving the (in)famous tagging problem in specializing higher-order
interpreters for typed programs.

• Olivier Danvy. Pragmatics of type-directed partial evaluation. Extends the
author’s approach to specialize compiled programs by avoiding computation
duplication and making residual programs readable, using type annotations.

• Peter Sestoft. ML pattern match compilation and partial evaluation. Applies
information-propagation techniques to the compilation of pattern matching.
An excellent application of partial evaluation in a compiler.

Logic programming:

• Alberto Pettorossi and Maurizio Proietti. Automatic techniques for logic pro-
gram specialization. Describes a general method to specialize logic programs
with respect to sets of partially known data given as a conjunction of atoms.
The correctness of the technique is shown by a proof based on unfolding/folding
transformations.

5



• Michael Leuschel and Bern Martens. Global control for partial deduction
through characteristic atoms and global trees. Describes a global control of
partial deduction that ensures effective specialization and fine-grained poly-
variance, and whose termination only depends on the termination of the local
control component—a significant progress.

Metacomputation by supercompilation:

• Andrei P. Nemytykh, Victoria A. Pinchuk, and Valentin F. Turchin. A self-
applicable supercompiler. Shows the feasibility of self-application of supercom-
pilers by demonstrating its use with examples. The solution of a long-standing
open problem.

• Robert Glück and Morten Heine Sørensen. A roadmap to metacomputation by
supercompilation. A survey paper with a careful explanation of supercompila-
tion and its application in metacomputation, reporting state-of-the-art tech-
niques and including a comprehensive list of references on the topic.

Generating extensions:

• Jesper Jørgensen and Michael Leuschel. Efficiently generating efficient gener-
ating extensions in Prolog. Reports the first successful hand-written program-
generator generator (cogen) for a logic programming language. Exhibits sig-
nificant speedups with respect to generic specializers and cogens generated by
self-application.

• Scott Draves. Compiler generation for interactive graphics using intermediate
code. Reports on a hand-written cogen for an intermediate language and its
successful application to graphics programming. Includes the possibility of
runtime code generation for specialized procedures.

Multi-level systems:

• Flemming Nielson and Hanne Riis Nielson. Multi-level lambda-calculi: an
algebraic description. Considering the recent surge of interest in multi-level
calculi, the authors revisit the “B-level-languages” of their book on two-level
functional languages. In this paper, they provide us with a unifying treatment
of various different calculi by exhibiting a general algebraic framework which
can be instantiated to all other known calculi.

6



• John Hatcliff and Robert Glück. Reasoning about hierarchies of online program
specialization systems. Successful self-application and metasystem transition is
harder to achieve in online specializers than in offline ones. The paper develops
a framework which facilitates metasystem transitions involving multiple levels
for online specializers.

Program analyses:

• John Gallagher and Laura Lafave. Regular approximation of computation
paths in logic and functional languages. Introduces computation paths as
a novel means to control the polyvariance and termination of specialization
techniques for logic and functional languages.

• Wei-Ngan Chin, Siau-Cheng Khoo, and Peter Thiemann. Synchronization
analyses for multiple recursion parameters. Extends the tupling transforma-
tion to functions with multiple recursion parameters. Develops an original
framework to identify synchronous handling of recursion parameters and gives
terminating algorithms to perform the tupling transformation.

Applications:

• Sandrine Blazy and Philippe Facon. An approach for the understanding of sci-
entific application programs based on program specialization. Applies special-
ization to understanding and maintaining “dusty deck” FORTRAN programs.
The paper extends previous work with an interprocedural analysis.

• Charles Consel, Luke Hornof, François Noël, Jacques Noyé, and Nicolae
Volanschi. A uniform approach for compile-time and run-time specialization.
Presents a language-independent partial-evaluation framework which is suited
for standard partial-evaluation techniques, as well as for run-time specializa-
tion. The major application is run-time specialization of one of the most
widely used programming languages: C.

Further Partial-Evaluation Resources

Good starting points for the study of partial evaluation are the textbook by Jones,
Gomard, and Sestoft [13], the tutorial notes by Consel and Danvy [5], and the
tutorial notes on partial deduction by Gallagher [9]. Further material can be found

7



in the proceedings of the Gammel Avernæs meeting [2, 8], in the proceedings of
the ACM conferences and workshops on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM) [4, 10, 16, 17, 19], and in special issues of various
journals [11,12,14]. An online bibliography is being maintained by Peter Sestoft [18].

Acknowledgements

We wish to thank the staff at Schloß Dagstuhl for their efficient assistance and for
making the meeting possible. Thanks are also due to Elisabeth Meinhardt and
Gebhard Engelhart for the help with organizational matters. And finally, thanks to
all participants for a lively and inspiring meeting.

8



1 Seminar Program

Monday, February 12

Session 1: Specialization of Imperative Programs I
Chair: Sandrine Blazy

A Uniform Approach for Compile-Time and Run-Time Specialization
Charles Consel, Luke Hornof, François Noël, Jacques Noyé, Nicolae Volanschi

Session 2: Specialization of Imperative Programs II
Chair: Julia L. Lawall

Data Specialization
Erik Ruf, Todd Knoblock

Toward Partial Evaluation of Side-Effecting Scheme
Kenichi Asai

Session 3: Specialization of Imperative Programs III
Chair: Peter Sestoft

Practical Aspects of Specialization of Algol-like Programs
Mikhail A. Bulyonkov, Dmitry V. Kochetov

Specialization of Imperative Programs through Analysis of Relational Expressions
Alexander Sakharov

Session 4: Specialization of Imperative Programs IV
Chair: Alexander Letichevsky

An Automatic Interprocedural Analysis for the Understanding of Scientific Appli-
cation Programs Based on Program Specialization
Sandrine Blazy, Philippe Facon

Squeezing Intermediate Construction Equational Programs
Alain Miniussi, David Sherman

Session 5: Demonstrations
Chair: Michael Sperber

9



The M2Mix System
Mikhail A. Bulyonkov, Dmitry V. Kochetov

Tempo: A Partial Evaluation System for the C Programming Language
Charles Consel, Luke Hornof, François Noël, Jacques Noyé, Nicolae Volanschi

Meta-ML
Tim Sheard

Tuesday, February 13

Session 6: Theory I
Chair: Helmut Schwichtenberg

Multi-Level Lambda-Calculi: an Algebraic Description
Flemming Nielson, Hanne Riis Nielson

Regular Approximations of Computation Paths in Logic and Functional Languages

John P. Gallagher, Laura Lafave

The Functional Approach to Analyses and Transformations of Imperative Programs

Barbara Moura, Charles Consel

Session 7: Invited Lecture
Chair: Mikhail Bulyonkov

What Not to Do When Writing an Interpreter for Specialisation
Neil D. Jones

Session 8: Theory II
Chair: Torben Mogensen

Program Development by Proof Transformation
Helmut Schwichtenberg

Deriving and Applying Program Transformers
David Basin

Session 9: Logic Programming I
Chair: John Gallagher

10



A Theory of Logic Program Specialization and Generalization for Dealing with In-
put Data Properties
Alberto Pettorossi, Maurizio Proietti

Global Control for Partial Deduction through Characteristic Atoms and Global Trees

Michael Leuschel, Bern Martens

Session 10: Logic Programming II
Chair: Manuel Hermenegildo

Efficiently Generating Efficient Generating Extensions in Prolog
Jesper Jørgensen, Michael Leuschel

Semantics-Directed Generation of Abstract Machines
Stephan Diehl

Session 11: Demonstrations
Chair: Kyung-Goo Doh

Regular Approximations of Computation Paths in Logic and Functional Languages

John P. Gallagher, Laura Lafave

Data Specialization of Graphics Shading Code
Todd Knoblock, Erik Ruf

Psychedelic Graphics
Scott Draves

Experiments on Partial Evaluation in APS
Alexander Letichevsky

Wednesday, February 14

Session 12: Supercompilation I
Chair: John Hatcliff

A Self-Applicable Supercompiler
Andrei P. Nemytykh, Victoria A. Pinchuk, Valentin F. Turchin

11



Specification of a Class of Supercompilers
Andrei Klimov

A Roadmap to Metacomputation by Supercompilation
Robert Glück, Morten Heine Sørensen

Session 13: Supercompilation II
Chair: Neil D. Jones

Nonstandard Semantics of Programming Languages
Sergei Abramov

Invited Lecture: Metacomputation: MST plus SCP
Valentin F. Turchin

Thursday, February 15

Session 14: Functional Programming I
Chair: Charles Consel

Type Specialisation for the Lambda Calculus
John Hughes

Some Relationships between Partial Evaluation and Meta-Programming
Tim Sheard

Compiler Generation for Interactive Graphics using Intermediate Code
Scott Draves

Session 15: Functional Programming II
Chair: Yoshihiko Futamura

Self-Applicable Online Partial Evaluation
Michael Sperber

Program Specialization via Program Slicing
Thomas Reps, Todd Turnidge

A Comparative Revisitation of Some Program Transformation Techniques
Alberto Pettorossi, Maurizio Proietti

12



Session 16: Functional Programming III
Chair: Erik Ruf

Evolution of Partial Evaluators: Removing Inherited Limits
Torben Æ. Mogensen

ML Pattern Match Compilation and Partial Evaluation
Peter Sestoft

Session 17: Functional Programming IV
Chair: Thomas Reps

Lockstep Transformations
Kristian Nielsen

Unravelling Computations
S. Doaitse Swierstra

Session 18: Demonstrations
Chair: Wei-Ngan Chin

A Binding-Time Analysis Ensuring Termination of Partial Evaluation
Neil D. Jones

C-Mix Demonstration
Peter H. Andersen

Session 19: Demonstrations
Chair: Todd Knoblock

Program Slicing, Differencing, and Merging
Thomas Reps

Applying Multiple Specialization to Program Parallelization
Manuel Hermenegildo, German Puebla

13



Friday, February 16

Session 20: Functional Programming V
Chair: Dirk Dussart

Hylomorphism in Triplet Form, an Ideal Internal Form for Functional Program Op-
timization
Akihiko Takano

Partial Evaluation and Separate Compilation
Rogardt Heldal, John Hughes

Session 21: Functional Programming VI
Chair: David Schmidt

Synchronization Analyses for Multiple Recursion Parameters
Wei-Ngan Chin, Siau-Cheng Khoo, Peter Thiemann

Reasoning about Hierarchies of Online Program Specialization Systems
John Hatcliff, Robert Glück

Pragmatics of Type-Directed Partial Evaluation
Olivier Danvy

14



2 Abstracts of Presentations (alphabetical)

Nonstandard Semantics of Programming Languages

Sergei Abramov

This paper introduces notions of semantics modifier and on-standard semantics of
programming languages. The universal resolving algorithm and neighborhood ana-
lyzer are considered as examples of semantics modifiers. The precise definition of se-
mantics modifier and non-standard semantics is given and illustrated with additional
examples. Finally it is shown that programming tools for effective implementation
of non-standard semantics – non-standard interpreters, non-standard compilers –
can be obtained using a powerful specializer (e.g. a supercompiler) as a result of
several metasystem transitions.

The paper is available by anonymous FTP from
ftp://ftp.botik.ru/pub/local/Sergei.Abramov/nons-sem.dvi.zip

C-Mix Demonstration

Peter Holst Andersen

C-Mix is a partial evaluator for the ANSI C programming language. It was originally
developed by Lars Ole Andersen, and is currently developed and maintained by the
author. The theory is developed to cover almost all of ANSI C [1], and most of it is
implemented.

The implementation supports programs that are strictly conforming to the ANSI C
standard. A strictly conforming program shall only use features described in the
standard, and may not produce any result that depends on undefined, unspecified or
implementation-defined behavior. In general, C-Mix will not optimize non-strictly
conforming parts of the program, but rather suspend the offending operations to
run-time.

The C-Mix prototype implementation is available for non-commercial use for re-
search and teaching. The distribution includes source code and a user manual.
More information and links to C-Mix papers can be found on the C-Mix home page:
http://www.diku.dk/research-groups/topps/activities/cmix.html

15



Towards Partial Evaluation of Side-Effecting Scheme

Kenichi Asai

I will present my attempts to make a partial evaluator for Scheme programs which
contain side-effects using the online approach. After presenting my motivation in
terms of reflection, I will show the preaction mechanism, which are used to residualize
I/O-type side-effects. It also gives us a convenient way to avoid a code elimination
problem and to keep the order of side-effects. Then, I will consider how I can cope
with assignments to variables and data structures. The concept of destroy lists
and scopes are introduced here to find executable assignments. Despite the various
attempts, it is still insufficient to use in reflective languages, and some kind of offline
analyses seem to be inevitable for the better partial evaluation.

Deriving and Applying Program Transformers

David Basin

Not available.

An Approach for the Understanding of Scientific Application Programs
Based on Program Specialization

Sandrine Blazy and Philippe Facon

This paper reports on an approach for improving the understanding of old programs
which have become very complex due to numerous extensions. We have adapted
partial evaluation techniques for program understanding. These techniques mainly
use propagation through statements and simplifications of statements. We focus
here on the automatic interprocedural analysis and we specify both tasks for call-
statements, in terms of inference rules with notations taken from the specification
languages B and VDM. We describe how we have implemented in a tool and used
that interprocedural analysis to improve program understanding. The difficulty of
that analysis comes from the lack of well defined interprocedural mechanisms and
the complexity of visibility rules in Fortran.

Practical Aspects of Specialization of Algol-like Programs

Mikhail A. Bulyonkov and Dmitry V. Kochetov

A “linearized” scheme of polyvariant specialization for imperative languages is de-
scribed in the paper. The scheme is intended for increasing efficiency of specializa-
tion. Main properties of the scheme are linear generation of residual code and single

16



memory shared by different variants of specialization process. The scheme was used
in partial evaluator for the Modula-2 language. Some benchmarks of the evaluator
are discussed to demonstrate efficiency of the processor.

The M2Mix Partial Evaluator

Mikhail A. Bulyonkov and Dmitry V. Kochetov

The M2Mix is a partial evaluator for the complete Modula-2 language. It is imple-
mented as a compiler generator, so it accepts an annotated Modula-2 program and
static data and produces another Modula-2 program, called generating extension,
which in turn is (compiled and) executed to generate residual code in a slightly
extended Modula-2 language. Special postprocessing phase optimizes the residual
code and brings it back to Modula-2.

The static/dynamic annotations are provided by a user in a form of pseudo-
comments. Typically some input files which store unknown data are annotated
as dynamic. However, a user may annotate any global or local variable or a proce-
dure parameter in order to control partial evaluator. Special simple annotations are
required for external procedures.

Upon a user’s request the M2Mix can generate a listing containing information
from various program analysis, such as binding time analysis, pointers analysis,
configuration analysis, etc. Since in the M2Mix system static/dynamic division
depends not only on def/use chains, the special binding-time debugger explaining
why something became dynamic turned out to be especially helpful.

The M2Mix system is implemented in C and runs on IBM PC under MS DOS or
OS/2. Obviously a Modula-2 compiler is needed to compile source programs and
generating extensions. The system shows very modest memory requirements and
high speed at the same time. For example, specialization of Lex kernel interpreter
(translated into Modula-2 and slightly modified for better specializability) with re-
spect to tables, produced by Lex for Modula-2, performed on a machine with Intel
486 processor and 4MB of RAM took 2.52 seconds and 189KB of extra memory.

Synchronization Analyses for Multiple Recursion Parameters

Wei-Ngan Chin, Siau-Cheng Khoo, and Peter Thiemann

Tupling is a transformation tactic to obtain new functions, without redundant calls
and/or multiple traversals of common inputs. In [3], we presented an automatic
method for tupling functions with a single recursion parameter each. In this paper,
we propose a new family of parameter analyses, called synchronization analyses, to

17



help extend the tupling method to functions with multiple recursion parameters.
To achieve better optimization, we formulate three different forms of tupling op-
timizations for the elimination of intra-call traversals, the elimination of inter-call
traversals and the elimination of redundant calls. We also guarantee the safety of
the extended method by ensuring that its transformation always terminates.

A Uniform Approach for Compile-Time and Run-Time Specialization

Charles Consel, Luke Hornof, François Noël, Jacques Noyé, and Nicolae Volanschi

As partial evaluation gets more mature, it is now possible to use this program
transformation technique to tackle realistic languages and real-size application pro-
grams. However, this evolution raises a number of critical issues that need to be
addressed before the approach becomes truly practical. First of all, most existing
partial evaluators have been developed based on the assumption that they could
process any kind of application program. This attempt to develop universal partial
evaluators does not address some critical needs of real-size application programs.
Furthermore, as partial evaluators treat richer and richer languages , their size and
complexity increase drastically. This increasing complexity revealed the need to en-
hance design principles. Finally, exclusively specializing programs at compile time
seriously limits the applicability of partial evaluation since a large class of invariants
in real-size programs are not known until run time and therefore cannot be taken
into account. In this paper, we propose design principles and techniques to deal
with each of these issues. By defining an architecture for a partial evaluator and
its essential components, we are able to to tackle a rich language like C without
compromising the design and the structure of the resulting implementation. By
designing a partial evaluator targeted towards a specific application area, namely
system software, we have developed a system capable of treating realistic programs.
Because our approach to designing a partial evaluator clearly separates preprocess-
ing and processing aspects, we are able to introduce run-time specialization in our
partial evaluation system as a new way of exploiting information produced by the
preprocessing phase.

Tempo: A Partial Evaluation System for the C Programming Language

Charles Consel, Luke Hornof, François Noël, Jacques Noyé, and Nicolae Volanschi

Tempo is a partial evaluation system for the the C programming language. It
incorporates an off-line partial evaluation strategy, consisting of an analysis phase
and a specialization phase. Tempo is designed so that the specialization phase can be
performed either at compile time or at run time. To avoid the problems associated

18



with universal partial evaluators, Tempo was created to specialize a well defined set
of of applications, namely “system” programs. This choice allows realistic programs
to be treated.

We will demonstrate the principles, functionality, and unique characteristics (flow-
sensitive binding-time analysis, accurate treatment of complex data structures and
pointers, run-time specialization, etc.) of Tempo by running it on a number of
example programs.

Type-Directed Partial Evaluation

Olivier Danvy

Type-directed partial evaluation stems from the residualization of arbitrary static
values in dynamic contexts, given their type. Its algorithm coincides with the one
for coercing a subtype value into a supertype value, which itself coincides with the
one of normalization in the lambda-calculus. Type-directed partial evaluation is
thus used to specialize compiled, closed programs, given their type.

Since Similix, let-insertion is a cornerstone of partial evaluators for call-by-value
procedural programs with computational effects. It prevents the duplication of
residual computations, and more generally maintains the order of dynamic side
effects in residual programs.

This article describes the extension of type-directed partial evaluation to insert resid-
ual let expressions. This extension requires the user to annotate arrow types with
effect information. It is achieved by delimiting and abstracting control, comparably
to continuation-based specialization in direct style. It enables type-directed partial
evaluation of effectful programs (eg, a definitional lambda-interpreter for an imper-
ative language) that are in direct style. The residual programs are in A-normal
form.

Semantics-Directed Generation of Abstract Machines

Stephan Diehl

Abstract machines are virtual target architectures which support the concepts of the
source language. We present a generator which automatically produces a compiler
and abstract machine from a natural semantics specification. Whereas all existing
semantics-directed compiler generators use partial evaluation or a direct translation
into a fixed target language, we chose pass separation as the key transformation of
our system. The execution times of the abstract machine programs produced by
our generated compiler compare to those of target programs produced by compilers

19



generated by other semantics-directed generators. The generated specifications of
compilers and abstract machines are suitable as a starting point for handwriting
compilers and abstract machines. Our generator is fully automated and its core
transformations are proved correct.

Compiler Generation for Interactive Graphics using Intermediate Code

Scott Draves

This paper describes a compiler generator (cogen) designed for interactive graph-
ics, and presents preliminary results of its application to pixel-level code. The
cogen accepts and produces a reflective intermediate code in continuation-passing,
closure-passing style. This allows low overhead run-time code generation as well
as multi-stage compiler generation. We extend partial evaluation techniques by
allowing unrestricted lifting and partially static integers. In addition to some stan-
dard examples, we examine graphics kernels such as bcopy, one-dimensional finite
filtering, and packed pixel access.

Psychedelic Graphics

Scott Draves

Not available.

Regular Approximation of Computation Paths in Logic and Functional
Languages

John P. Gallagher and Laura Lafave

The aim of this work is to compute descriptions of successful computation paths
in logic or functional program executions. Computations paths are represented as
terms, built from special constructor symbols, each constructor and symbol corre-
sponding to a specific clause or equation in a program. Such terms, called trace-
terms, are abstractions of computation trees, which capture information about the
control flow of the program. A method of approximating trace-terms is described,
based on well-established methods for computing regular approximations of terms.
The special function symbols are first introduced into programs as extra arguments
in predicates or functions. Then a regular approximation (with respect to a given
class of program executions) is computed, giving a regular description of the terms
appearing in every argument in the program. The approximation of the extra argu-
ments (the trace-terms) can then be examined to see what computation paths were
followed during the computation. This information can then be used to control an

20



off-line specialisation system. A key aspect of the analysis is the use of suitable
widening operations during the regular approximation, in order to preserve infor-
mation on determinacy and branching structure of the computation. This method is
applicable to both logic and functional languages, and appears to offer appropriate
control information in both formalisms.

A Roadmap to Metacomputation by Supercompilation

Robert Glück and Morten Heine Sørensen

This paper gives a gentle introduction to Turchin’s supercompilation and its ap-
plications in metacomputation with an emphasis on recent developments. First,
a complete supercompiler, including positive driving and generalization, is defined
for a functional language and illustrated with examples. Then a taxonomy of re-
lated transformers is given and compared to the supercompiler. Finally, we put
supercompilation into the larger perspective of metacomputation and consider three
metacomputation tasks: specialization, composition, and inversion.

Reasoning about Hierarchies of Online Program Specialization Systems

John Hatcliff and Robert Glück

The conventional wisdom is that online techniques are not well-suited for obtaining
useful results from metasystem hierarchies. However, this conclusion ignores both
practical and theoretical progress. Our goal is to identify and clarify the founda-
tional issues involved in hierarchies of online specialization systems. To achieve this,
we develop a very simple online specialization system which focuses tightly on the
following problematic points of online specialization: (1) semantics of specializa-
tion, (2) properties of program encodings and identifying position of entities in a
hierarchy, (3) tracking unknown values across levels in metasystem hierarchies.

Partial Evaluation and Separate Compilation

Rogardt Heldal and John Hughes

Hitherto all partial evaluators have processed a complete program to produce a
complete residual program. We are interested in treating programs as collections of
modules which can be processed independently: ‘separate partial evaluation’, so to
speak. In this paper we still assume that the original program is processed in its
entirety, but we show how to specialise it to the static data bit-by-bit, generating a
different module for each bit. When the program to be specialised is an interpreter,

21



this corresponds to specialising it to one module of its object language at a time:
each module of the object language gives rise to one module of the residual program.

We have been forced to distinguish three different binding-times, which we call static,
late static, and dynamic. Static data is present when a module is compiled. Late
static data is present when compiling a module which imports such a module. Dy-
namic data is of course present only at run-time. As an example, we have constructed
an interpreter for a simple language with jumps, in which each module can import
other modules and jump to labels in them. The main function in the interpreter has
three parameters: the module, a label to interpret from, and the register contents.
The first is of course static, and the last is dynamic. But the second parameter is late
static: this function is invoked from other modules, and at the time of invocation
the label to jump to will be known.

When we specialise the interpreter to a ‘module’, only the static data is known.
Late static values are therefore treated as dynamic. But the residual code is divided
into two parts: ‘purely dynamic’ functions with only dynamic parameters, and the
rest. Functions with late static parameters are placed in an interface file; they
may be invoked when other modules are compiled, and are then specialised further
with the late static parameters treated as static. Purely dynamic functions on
the other hand need no further specialisation, and are placed in a code module for
immediate compilation. These functions need not be processed further during later
specialisations, but they may of course be called from the interface file, which will
result in residual calls to the code module from other compiled modules.

Applying Abstract Multiple Specialization to Program Parallelization

Manuel Hermenegildo and Germán Puebla

We present and demonstrate an application of automatic multiple specialization in
logic program parallelization, in the context of the CIAO system. CIAO is a multi-
paradigm compiler and run-time system aimed at providing efficient implementa-
tions of a range of LP, CLP, and CC programming languages. The CIAO compiler
performs automatic parallelization of (constraint) logic programs using global anal-
ysis information based on abstract interpretation. During parallelization, analysis
information is used to detect calls that should be run in parallel using as few run-
time tests as possible. Sometimes, especially when the user provides no information
to the analyzer, it is not possible to parallelize a program without introducing run-
time tests. In this case, multiple specialization is used to optimize the automatically
parallelized programs. First, multi-variant re-analysis of the program is efficiently
performed using incremental analysis algorithms. Then, the optimizations allowed
in each version of a procedure generated during multi-variant (re-)analysis are deter-
mined and a minimizing algorithm is applied which obtains minimal programs while

22



retaining all possible optimizations. Finally, this minimal program is materialized
and optimized. The program specialization used is abstract in the sense that it is
performed with respect to abstract values rather than concrete ones, as is the case
in more traditional partial evaluation systems. This is, to best of our knowledge,
the first logic program compiler to automatically make use of abstract (multiple)
specialization.

Type Specialisation for the Lambda Calculus

John Hughes

Partial evaluation of typed languages has long suffered from the problem that the
types appearing in residual programs are constrained too strongly by those appearing
in the unspecialised original program. In the simplest case, the only types that can
appear in residual programs are those from the original source. When for example
programs are compiled by specialising an interpreter, then the only types that can
appear in the compiled code are those used in the interpreter. In particular, since
the interpreter must represent values of different types by injecting them into a
universal type, then in the compiled code values are also tagged members of this
type, and tags must be checked whenever a value is used. If the language being
compiled is itself typed, then these tags and checks are unnecessary. When the
interpreter is a self-interpreter, the ‘optimality’ criterion is not met: mix sint p
= p because the left hand side tags its data and the right hand side does not.
In this paper we present what we believe is the first partial evaluator that can
remove these tags. The object language is the simply typed lambda calculus with
a two-level type system: static tags are removed, while dynamic tags remain. A
novel feature of our partial evaluator is that we can derive static information about
expressions which others treat as purely dynamic, such as a dynamic conditional.
But just as compilers reject programs whose types do not match, so our partial
evaluator rejects programs whose static information does not match. For example,
the two arms of a dynamic conditional must carry the same static information. We
are forced to relax the functional nature of the mapping from source expressions to
static information; rather a relation holds between them, which means that the same
source expression may be related to many different static values. Static information
can’t be computed by a bottom-up evaluation, therefore, and indeed our specialiser
is expressed not as an interpreter, but as a system of inference rules specifying how
static information can be inferred. Unsurprisingly, the inference of static information
(which includes type information) is very similar to type inference. The static value
inferred for an expression is then used to derive a suitable residual type for the
specialised expression. Since the same expression in the source can be related to
many different static values, its specialisations can have many different residual

23



types. An interesting aspect is that our specialiser need not use unfolding: we can
‘evaluate’ static expressions without unfolding function calls by inferring their static
value. To demonstrate this we have implemented a specialised which doesn’t unfold
at all. But for this reason our specialiser is not ‘optimal’: when we compute mix sint
p we eliminate type tags, but the residual program must be unfolded somewhat in
order to recover p. The present specialised is just a toy, but we believe the techniques
will scale up to make possible improved specialisation of real typed languages.

What Not to Do When Writing an Interpreter for Specialisation

Neil D. Jones

A partial evaluator, given a program and a known “static” part of its input data,
outputs a residual program in which computations depending only on the static
data have been performed. Ideally the partial evaluator would be a “black box”
able to extract nontrivial static computations whenever possible; which never fails
to terminate; and which always produces residual programs of reasonable size and
maximal efficiency, so all possible static computations have been done. Practically
speaking, partial evaluators fall short of this goal; they may loop, sometimes pes-
simise, and/or explode code size. A partial evaluator is analogous to a spirited
horse: while impressive results can be obtained when used well, the user must know
what he/she is doing. Our thesis is that this knowledge can be communicated to
new users of these tools. This paper presents a series of examples, concentrating on
a quite broad and on the whole successful application area: using specialisation to
remove interpretative overhead. It presents a series of examples, both positive and
negative, to illustrate the effects of program style on the efficiency and size of the
of target programs obtained by specialising an interpreter with respect to a known
source program.

BTA Algorithms to Ensure Termination of Off-line Partial Evaluation

Neil D. Jones and Arne J. Glenstrup

A partial evaluator, given a program and a known “static” part of its input data,
outputs a residual program in which computations depending only on the static
data have been precomputed. Ideally the partial evaluator is a “black box” which
both extracts nontrivial static computations whenever possible, and never fails to
terminate. Practically speaking, partial evaluators fall short of this goal: they
sometimes loop (typical of functional programming systems), or never loop but
often give excessively conservative results (typical in logic programming).

This paper presents efficient algorithms (currently being implemented) for binding-
time analysis as used by off-line specialisers. These algorithms ensure that the

24



specialiser performs nontrivial static computations if possible, and is at the same
time guaranteed to terminate.

Further, the developed techniques have more general applications, including termi-
nation of term rewriting systems.

Efficiently Generating Efficient Generating Extensions in Prolog

Jesper Jørgensen and Michael Leuschel

The so called “cogen approach”, writing a compiler generator instead of a special-
izer, to program specialization has been used with considerably success in partial
evaluation of both functional and imperative languages. This paper demonstrates
that this approach is also applicable to partial evaluation of logic programming lan-
guages, also called partial deduction. Self-application has not been as much in focus
in partial deduction as in partial evaluation of functional and imperative languages,
and the attempts to self-apply partial deduction system have, of yet, not been all to-
gether that successful. So especially for partial deduction the cogen approach could
prove to have a considerable importance when it come to practical applications. It
is demonstrated that using the cogen approach one gets very efficient compiler gen-
erators which generate very efficient generating extensions which in turn yield very
good and non-trivial specialisation.

Specification of a Class of Supercompilers

Andrei Klimov

The specification of a class of supercompilers for a small functional language in form
of Natural Semantics is presented. It defines a relation between source and resid-
ual programs with respect to an initial configuration, and the notions of driving,
generalization, configuration splitting. The specification states what is to be a su-
percompiled program, and says nothing about how a supercompiler takes decisions
to fold, to generalize, to split a configuration.

The purpose of the specification is to divide the task of proving properties of super-
compilers into two parts: proving the property of the specification and proving that a
particular supercompiler agrees with the specification. For example, the correctness
theorem is proven once for the specification. Certain termination properties can be
formulated and proven as well, such as the termination of the Turchin’s algorithm
of configuration splitting (1987).

25



Global Control for Partial Deduction through Characteristic Atoms and
Global Trees

Michael Leuschel and Bern Martens

Recently, considerable advances have been made in the (online) control of logic pro-
gram specialisation. A clear conceptual distinction has been established between
local and global control and on both levels concrete strategies as well as general
frameworks have been proposed. For global control in particular, recent work has
developed concrete techniques based on the preservation of characteristic trees (lim-
ited, however, by a given, arbitrary depth bound) to obtain a very precise control of
polyvariance. On the other hand, the concept of an m-tree has been introduced as a
refined way to trace “relationships” of partially deduced atoms, thus serving as the
basis for a general framework within which global termination of partial deduction
can be ensured in a non ad hoc way. Blending both, formerly separate, contribu-
tions, in this paper, we present an elegant and sophisticated technique to globally
control partial deduction of normal logic programs. Leaving unspecified the specific
local control one may wish to plug in, we develop a concrete global control strat-
egy combining the use of characteristic atoms and trees with global (m-)trees. We
thus obtain partial deduction that always terminates in an elegant, non ad hoc way,
while providing excellent specialisation as well as fine-grained (but reasonable) poly-
variance. We conjecture that a similar approach may contribute to improve upon
current (online) control strategies for functional program transformation methods
such as (positive) supercompilation.

The Experiments on Partial Evaluation in APS

Alexander A. Letichevsky

Algebraic programming system APS [15] has been used for the development of a
partial evaluator for extended higher order untyped lambda calculus. Partial evalu-
ator is considered as a generic program which defines an operational semantics of a
programming language based on ˘-calculus. To obtain satisfactory results on self-
application, three consistent levels of extension for ˘-calculus are considered: pure
˘-calculus, semantic extension compatible with its classical denotational semantics,
and metalevel extension, which allows to manipulate with ˘-terms as syntactic ob-
jects. The partial evaluators for pure ˘-calculus and its semantic extension are
proved to possess main properties: correctness, completeness, termination and opti-
mality with respect to generic parameters. There are no restrictions on specialized
program and partial evaluator diverges only when specialized program diverges for
all values of dynamic variables. Evaluators use online binding time analysis and are

26



expressed as systems of rewriting rules implemented in algebraic programming sys-
tem APS. All partial evaluators may be expressed in metalevel extension of ˘-calculi
and used for self-application and specialization.

Current Developments in Partial Evaluation for Equational Programs

Alain Miniussi and David Sherman

Equational programs, which use term-rewriting as their basic implementation
method, can be greatly improved by partial evaluation of intermediate code pro-
grams written in EM code. Such transformation removes various kinds of overhead
associated with rewriting, such as intermediate rewriting steps, boxing and unboxing
of arithmetic values, and intermediate constructions resulting from recursive defini-
tions. Unfolding strategies for equational programs must be both terminating, and
good enough with respect to pragmatic criteria. In this paper we give a general intro-
duction to the particular problems associated with partial evaluation of equational
programs, and propose some criteria for deciding whether an unfolding strategy is
good enough from a practical standpoint. We then present a new algorithm for
driving unfolding of EM code programs, and show that, in addition to terminating,
it produces a good result. As we have already implemented the new strategy, this
final point is demonstrated with a number of concrete examples.

Evolution of Partial Evaluators: Removing Inherited Limits

Torben Æ. Mogensen

We show the evolution of partial evaluators over the past ten years from a particular
perspective: the attempt to remove limits on the structure of residual programs that
are inherited by structural bounds in the original programs. It will often be the
case that a language allows an unbounded number or size of a particular features,
but each program (being finite) will only have a finite number or size of these
features. If the residual programs cannot overcome the bounds given in the original
program, that can be seen as a weakness in the partial evaluator, as it potentially
limits the effectiveness of residual programs. The inherited limits are best observed
through specializing a self-interpreter and examining the object programs produced
by specialisation of this. We show how historical developments in partial evaluators
gradually remove inherited limits, and suggest how this principle can be used as a
guideline for further development.

27



The Functional Approach to Analyses and Transformations of
Imperative Programs

Barbara Moura and Charles Consel

Since the late eighties, the imperative programming language community has been
studying intermediate program representations, where imperative features are repre-
sented functionally [6,22]. These intermediate representations, such as Static Single
Assignment [6], are widely used in advanced optimizing compilation. However, al-
though imperative features are dealt with in a functional fashion, they are still based
upon an imperative framework. We propose to go a step further by transforming
an imperative program into a fully executable functional form.
We present a set of transformations on the functional representation to put it into
a suitable form for accurate program analyses and transformation — as accurate as
the result of analyzing the imperative program directly. The main contributions of
this work are:

• to propose a set of transformations that makes imperative programs amenable
to functional programming technology,

• to show that new program analyses and transformations can be developed in
a functional framework and applied to imperative languages.

We apply our transformation scheme to programs written in higher-order, imperative
language and show its practicality and accuracy in context of a partial evaluator for
higher- order, pure, functional programs.

A Self-Applicable Supercompiler

Andrei P. Nemytykh, Victoria A. Pinchuk, and Valentin F. Turchin

A supercompiler is a program which can perform a deep transformation of programs
using a principle which is similar to partial evaluation, and can be referred to as
metacomputation. Supercompilers that have been in existence up to now (see [21],
[20]) were not self-applicable: this is a more difficult problem than self-application
of a partial evaluator, because of the more intricate logic of supercompilation. In
the present paper we describe the first self-applicable model of a supercompiler and
present some tests. Three features distinguish it from the previous models and make
self-application possible: (1) The input language is a subset of Refal which we refer
to as flat Refal. (2) The process of driving is performed as a transformation of
pattern-matching graphs. (3) Metasystem jumps are implemented, which allows the
supercompiler to avoid interpretation whenever direct computation is possible.

28



Lockstep Transformations

Kristian Nielsen

We view program transformation as consisting of three distinct parts: external in-
terface, choice of internal specialization technique, and control of transformation.
The aim of this work is to achieve a better understanding of the relation between
the internal specialization techniques used in existing partial evaluation and related
transformation techniques.

A class of simple functional languages is proposed for which a class of lockstep trans-
formations is defined and proven correct w.r.t. the operational semantics. A simple
functional language represents a “typical” language in the field of partial evaluation,
and lockstep transformation captures some common elements of partial evaluation-
like transformations. The framework is general enough to describe faithfully a wide
range of transformations including for example the partial evaluator Similix and
Wadler’s deforestation.

By recasting different techniques as instances of a single, more general framework
their similarities are exposed thus facilitating the exchange of techniques and ideas
among different parts of the field. As a concrete example of this we give an efficient
implementation of Wadler’s deforestation based on the implementation techniques
used in Similix.

Multi-Level Lambda-Calculi: an Algebraic Description

Flemming Nielson and Hanne Riis Nielson

Two-level lambda-calculi have been heavily utilised for applications such as partial
evaluation, abstract interpretation and code generation. Each of these applications
pose different demands on the exact details of the two-level structure and the cor-
responding inference rules. We therefore formulate a number of existing systems in
a common framework. This is done in such a way as to conceal those differences
between the systems that are not essential for the multi-level ideas (like whether or
not one restricts the domain of the type environment to the free identifiers of the
expression) and thereby to reveal the deeper similarities and differences. In their
most general guise the multi-level lambda-calculi allow multi-level structures that
are not restricted to (possibly finite) linear orders and thereby generalise previous
treatments in the literature.

29



A Comparative Revisitation of Some Program Transformation
Techniques

Alberto Pettorossi and Maurizio Proietti

We revisit the main techniques of program transformation which are used in partial
evaluation, mixed computation, supercompilation, generalized partial computation,
rule-based program derivation, program specialization, compiling control, and the
like. We present a methodology which underlines these techniques as a common
pattern of reasoning, and it explains the various correspondences which can be
established among them. This methodology consists of three steps: i) symbolic
computation, ii) search for regularities, and iii) program extraction. We also discuss
some control issues which occur in performing these steps.

A Theory of Logic Program Specialization and Generalization for
Dealing with Input Data Properties

Alberto Pettorossi and Maurizio Proietti

We address the problem of specializing logic programs w.r.t. the contexts where
they are used. We assume that these contexts are specified by means of computable
properties of the input data. We describe a general method by which, given a pro-
gram P, we can derive a specialized program P’ such that P and P’ are equivalent
w.r.t. every input data satisfying a given property. Our method extends the tech-
niques for partial evaluation of logic programs based on Lloyd and Shepherdson’s
approach, where a context can only be specified by means of a finite set of bindings
for the variables of the input goal. In contrast to most program specialization tech-
niques based on partial evaluation, our method may achieve superlinear speedups,
and it does so by using a novel generalization technique.

Program Slicing, Differencing, and Merging

Thomas Reps

Not available.

Program Specialization via Program Slicing

Thomas Reps and Todd Turnidge

I will describe the use of program slicing to perform a certain kind of program-
specialization operation. The specialization operation that slicing performs is dif-
ferent from the specialization operations performed by algorithms for partial evalu-
ation, supercompilation, bifurcation, and deforestation. In particular, I present an

30



example in which the specialized program that is created via slicing could not be
created as the result of applying partial evaluation, supercompilation, bifurcation,
or deforestation to the original unspecialized program. Specialization via slicing also
possesses an interesting property that partial evaluation, supercompilation, and bi-
furcation do not possess: The latter operations are somewhat limited in the sense
that they support tailoring of existing software only according to the ways in which
parameters of functions and procedures are used in a program. Because parameters
to functions and procedures represent the range of usage patterns that the designer
of a piece of software has anticipated, partial evaluation, supercompilation, and bi-
furcation support specialization only in ways that have already been ”foreseen” by
the software’s author. In contrast, the specialization operation that slicing supports
permits programs to be specialized in ways that do not have to be anticipated by
the author of the original program.

Data Specialization

Erik Ruf and Todd Knoblock

Program staging improves the performance of a program whose inputs vary at differ-
ent rates by separating it into two phases: an early phase which performs computa-
tions dependent only on slowly-changing inputs, and a late phase which performs the
remainder of the work given the remaining inputs and the results of the early compu-
tations.Staging techniques based on partial evaluation achieve power and generality
by reifying these results as code in the form of a dynamically generated residual
program. In this talk, we introduce an alternative approach in which the results of
early computations are reified as a data structure,allowing both the early and late
phases to be generated statically.By avoiding dynamic code manipulation, we trade
some power and generality in return for simplicity of implementation and rapid pay-
back. We describe an implementation based on memoization and its use in staging
computations in an interactive graphics rendering system .

Data Specialization of Graphics Shading Code

Erik Ruf and Todd Knoblock

Demonstration: Data Specialization for Interactive Graphics We will demonstrate
our system for interactive manipulation of shading parameters for three-dimensional
rendering. The system takes as input user-defined shading procedures, written in
a subset of C, which are then automatically restaged for interactive use. Users of
the system typically experiment with multiple values for a single shader parameter
while leaving the others constant. Thus, we benefit by generating a late stage

31



that performs only those computations depending on the parameter being varied;
all other values needed by the shader are precomputed and cached by the early
stage. The resulting improvement in speed makes it possible to interactively view
parameter changes for relatively complex shading models such as procedural solid
texturing.

Specialization of Imperative Programs through Analysis of Relational
Expressions

Alexander Sakharov

An original analysis method for specialization of imperative programs is described
in this paper. This analysis is an inter-procedural data flow method operating on
control flow graphs and collecting information about program expressions. It applies
to various procedural languages. The set of analyzed formulas includes equivalences
between program expressions and constants, linear-ordering inequalities between
program expressions and constants, equalities originating from some program as-
signments, and atomic constituents of controlling expressions of program branches.
Analysis is executed by a worklist-based fixpoint algorithm which interprets con-
ditional branches and ignores some impossible paths. This analysis algorithm in-
corporates a simple inference procedure that utilizes both positive and negative
information. The analysis algorithm is shown to be conservative; its asymptotic
time complexity is cubic. A polyvariant specialization of imperative programs, that
is based on the information collected by the analysis, is also defined at the level of
nodes and edges of control flow graphs. The specialization incorporates a further
refinement of analysis information through local propagation. Multiple variants are
produced by replicating subgraphs whose in-links are limited to one node.

Program Development by Proof Transformation

Helmut Schwichtenberg

Goad’s technique of program development by ‘pruning’ proof trees is explained.
As an example we discuss the maximal segment problem of Bates/Constable. The
existence proof corresponding to the obvious quadratic algorithm is transformed into
a proof yielding a linear algorithm, using additional knowledge about the data (in
this case monotonicity of the measure function).

32



ML Pattern Match Compilation and Partial Evaluation

Peter Sestoft

We derive a compiler for ML-style pattern matches. It is conceptually simple and
produces reasonably good compiled matches. The derivation is inspired by the in-
strumentation and partial evaluation of naive string matchers (Consel and Danvy
1989; Futamura and Nogi 1988). Following that paradigm, we first present a general
and naive ML pattern matcher, instrument it to collect and exploit extra informa-
tion, and show that partial evaluation of the instrumented general matcher with
respect to a given match produces an efficient specialized matcher.

We then discard the partial evaluator and show that a match compiler can be ob-
tained just by slightly modifying the instrumented general matcher. The resulting
match compiler is interesting in its own right, and naturally detects inexhaustive
matches and redundant match rules.

Some Relationships between Partial Evaluation and Meta-Programming

Tim Sheard

Meta-programs are programs that manipulate object-programs. Language tools
usually consist of an object-language in which the programs being manipulated are
expressed, and a meta-language that is used to describe the manipulation. One use
of meta-programming technology is to generate object-programs.

We describe a system of phased computation where meta-programming abilities are
built into a language rather than added on as extra-language pre- or post-processors.
We describe how such a system can be statically typed, and how it can provide many
of the benefits usually associated with macro systems, partial evaluators, and high
level specification languages.

Meta-ML

Tim Sheard

Not available.

Self-Applicable Online Partial Evaluation

Michael Sperber

We propose a hybrid approach to partial evaluation to achieve self-application of re-
alistic online partial evaluators. Whereas the offline approach to partial evaluation

33



leads to efficient specializers and self-application, online partial evaluators perform
better specialization at the price of efficiency. Moreover, no online partial evaluator
for a realistic language has been successfully self-applied. We propose a binding-time
analysis for an online partial evaluator. The analysis distinguishes between static,
dynamic, and unknown binding times. Thus, it makes some reduce/residualize deci-
sions offline while leaving others to the specializer. The analysis does not introduce
unnecessary generalizations. After some standard binding-time improvements, our
partial evaluator successfully self-applies.

Partial Evaluation through Partial Parametrisation

S. Doaitse Swierstra

We have presented a way of defining combinator parsers in such a way that they
achieve deterministic parsing and error recovery for LL(1) grammars. Only the basic
combinators have to be redefined, whereas all higher level combinators, which have
been defined using the low level ones, can be used without having to be adapted.

The program, which makes use of partial parametrisation, implicitly performs a
grammar analysis, and optimises itself—provided the implementation of the func-
tional language is fully lazy—into the efficient—more conventional—form, which is
normally generated by parser generators.

We further have shown how this method cannot be easily extended to parsers which
have been formulated in the so-called monadic form. We indicated however, how
by making use of techniques borrowed from the attribute grammar area, program
transformations can be performed which enable the aforementioned optimising form
of execution.

Hylomorphism in Triplet Form: An Ideal Internal Form for Functional
Program Optimization

Akihiko Takano (joint work with Erik Meijer)

Hylomorphism is originally defined as a composition of a catamorphism (a gener-
alized fold) and an anamorphism (a generalized unfold). In our previous work, we
introduced a triplet form representation of hylos and showed how the essence of the
shortcut deforestation could be captured in more general setting. In this talk, we
provide a brief and intuitive view for the three components of hylo, and demonstrate
how it facilitates automatic program optimization.

34



Metacomputation: Metasystem Transitions plus Supercompilation

Valentin F. Turchin

Metacomputation is a computation which involves metasystem transitions(MST for
short) from a computing machine M to a metamachine M’ which controls, ana-
lyzes and imitates the work of M. Semantics-based program transformation, such as
partial evaluation and supercompilation (SCP), is metacomputation. Metasystem
transitions may be repeated, as when a program transformer gets transformed itself.
In this manner MST hierarchies of any height can be formed.
The paper reviews one strain of research which was started in Russia in the late
1960s - early 1970s and became known for the development of supercompilation as a
distinct method of program transformation. After a brief description of the history
of this research line, the paper concentrates on those results and problems where
supercompilation is combined with repeated metasystem transitions.

References

[1] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, Dept. of Computer
Science, University of Copenhagen, Universitetsparken 1, DK-2100 København
Ø, May 1994.

[2] D. Bjørner, A. P. Ershov, and N. D. Jones, editors. Partial Evaluation and
Mixed Computation, Amsterdam, 1988. North-Holland.

[3] W.-N. Chin. Towards an automated tupling strategy. In Schmidt [17], pages
119–132.

[4] C. Consel, editor. Proceedings of the ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation PEPM ’92, San Fran-
cisco, CA, June 1992. Yale University. Report YALEU/DCS/RR-909.

[5] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Proc. 20th
Annual ACM Symposium on Principles of Programming Languages, pages 493–
501, Charleston, South Carolina, Jan. 1993. ACM Press.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Ef-
ficiently computing static single assignment form and the control flow graph.
ACM Trans. Prog. Lang. Syst., 13(4):451–490, Oct. 1991.

35



[7] O. Danvy, R. Glück, and P. Thiemann, editors. Partial Evaluation, volume
1110 of Lecture Notes in Computer Science, Dagstuhl, Germany, Feb. 1996.
Springer Verlag, Heidelberg.

[8] A. P. Ershov, D. Bjørner, Y. Futamura, K. Furukawa, A. Haraldsson, and
W. Scherlis, editors. Special Issue: Selected Papers from the Workshop on
Partial Evaluation and Mixed Computation, 1987 (New Generation Computing,
vol. 6, nos. 2,3). Ohmsha Ltd. and Springer-Verlag, 1988.

[9] J. Gallagher. Specialization of logic programs. In Schmidt [17], pages 88–98.

[10] P. Hudak and N. D. Jones, editors. Proceedings of the ACM SIGPLAN Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation PEPM
’91, New Haven, CT, June 1991. ACM. SIGPLAN Notices 26(9).

[11] Journal of Functional Programming 3(3), special issue on partial evaluation,
July 1993. Neil D. Jones, editor.

[12] Journal of Logic Programming 16 (1,2), special issue on partial deduction, 1993.
Jan Komorowski, editor.

[13] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

[14] Lisp and Symbolic Computation 8 (3), special issue on partial evaluation, 1995.
Peter Sestoft and Harald Søndergaard, editors.

[15] A. A. Letichevsky, J. V. Kapitonova, and S. V. Konozenko. Computations in
APS. Theoretical Comput. Sci., 119:145–171, 1993.

[16] W. Scherlis, editor. Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation PEPM ’95, La Jolla,
CA, June 1995. ACM Press.

[17] D. Schmidt, editor. Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation PEPM ’93, Copen-
hagen, Denmark, June 1993. ACM Press.

[18] P. Sestoft. Bibliography on partial evaluation. Available through URL
ftp://ftp.diku.dk/pub/diku/dists/jones-book/partial-eval.bib.Z.

[19] P. Sestoft and H. Søndergaard, editors. Proceedings of the ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manipulation
PEPM ’94, Orlando, Fla., June 1994. ACM.

36



[20] V. F. Turchin. The concept of a supercompiler. ACM Trans. Prog. Lang. Syst.,
8(3):292–325, July 1986.

[21] V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with a su-
percompiler. In 1982 ACM Symposium on Lisp and Functional Programming,
Pittsburgh, Pennsylvania, pages 47–55. ACM, 1982.

[22] D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard. Value dependence graphs:
Representation without taxation. In Proc. 21st Annual ACM Symposium on
Principles of Programming Languages, pages 297–310, Portland, OG, Jan. 1994.
ACM Press.

37


