A Residual Service Curve of Rate-Latency Server Used by Sporadic Flows Computable in Quadratic Time for Network Calculus (Artifact)

Marc Boyer ⊠ [[]

ONERA / DTIS – Université de Toulouse, F-31055 Toulouse, France

Pierre Roux ⊠© ONERA / DTIS – Université de Toulouse, F-31055 Toulouse, France

Hugo Daigmorte 🖂 🗈 RealTime-at-Work, F-54600 Villers-lès-Nancy, France

David Puechmaille

RealTime-at-Work, F-54600 Villers-lès-Nancy, France

— Abstract -

Computing response times for resources shared by periodic workloads (tasks or data flows) can be very time consuming as it depends on the least common multiple of the periods. In a previous study, a quadratic algorithm was provided to upper bound the response time of a set of periodic tasks with a fixedpriority scheduling. The related paper generalises this result by considering a rate-latency server and sporadic workloads and gives a response time and residual curve that can be used in other contexts. It also provides a formal proof in the Coq language. This artifact enables to reproduce this proof.

2012 ACM Subject Classification Networks \rightarrow Formal specifications; Networks \rightarrow Network performance evaluation; Networks \rightarrow Network reliability; Software and its engineering \rightarrow Formal methods; General and reference \rightarrow Verification

Keywords and phrases Network Calculus, response time, residual curve, rate-latency server, sporadic workload, formal proof, Coq

Digital Object Identifier 10.4230/DARTS.7.1.2

Related Article Marc Boyer, Pierre Roux, Hugo Daigmorte, and David Puechmaille, "A Residual Service Curve of Rate-Latency Server Used by Sporadic Flows Computable in Quadratic Time for Network Calculus", in 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021), LIPIcs, Vol. 196, pp. 14:1-14:21, 2021. https://doi.org/10.4230/LIPIcs.ECRTS.2021.14

Related Conference 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021), July 5–9, 2021, Virtual Conference

1 Scope

This artifact enables to reproduce the formal proof of the related paper.

2 Content

The artifact package includes:

- a README.md;
- a theories/ folder containing the source code of the Coq formal proof (files with the .v extension);
- a Makefile relying on a _CoqProject file to help build the proof.

© Marc Boyer, Pierre Roux, Hugo Daigmorte, and David Puechmaille: licensed under Creative Commons License CC-BY 4.0 Dagstuhl Artifacts Series, Vol. 7, Issue 1, Artifact No. 2, pp. 2:1–2:3

Dagstuhl Artifacts Series

DAGSTUHL Dagstuhl Artifacts Series ARTIFACTS SERIES Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

2:2 A Quadratic Residual Service Curve of Rate-Latency Server with Sporadic Flows (Artifact)

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

The artifact requires a system able to run the Coq software.

5 License

The artifact is available under license GPL-2.0.

6 MD5 sum of the artifact

c532 fe1a3 cd11a828 d7891 b07 b707363

7 Size of the artifact

15 kiB

A Artifact evaluation

The provided artifact enables to reproduce the formal proof of Section 4.2 of the related paper¹.

A.1 Virtual Machine

A virtual machine with all required softwares already installed is provided at https://zenodo. org/record/4734308 with instructions in its file /home/ecrts21/Coq/README.md. If need be, the login/password of the virtual machine are ecrts21/ecrts21. The remaining alternatively details installation and compilation on a fresh system.

A.2 Installation and compilation on a fresh system

A.2.1 Prerequisites

This needs:

- \blacksquare Coq (tested with version 8.13.0)
- the MathComp library (components ssreflect and algebra, tested with version 1.12.0)
- the Mathcomp analysis library (tested with version 0.3.5)
- the Coquelicot library (tested with version 3.2.0)
- \blacksquare the Flocq library (tested with version 3.4.0)

¹ The scripts for reproducing the evaluation of Section 5 can unfortunately not be shared as they rely on some proprietary software.

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille

To install all those dependencies, the easisest solution is to use the package manager OPAM https://opam.ocaml.org/:

This should take a few dozen minutes. Note that you'll need OPAM 2 (old OPAM 1 won't work). This may require a few system dependencies, for instance the development files of the GMP library which can be installed by apt-get install libgmp-dev on Debian based systems, before re-running opam install

A.2.2 Compilation

Once above prerequisites are installed, just type make:

% make

The proof succeeds when there is no errors and a file.vo file is produced for each file.v in theories/. One can also check for the absence of additional axioms in the code (presence of the keywords Axiom, Parameter or Admitted).

A.2.3 Documentation

To generate the documentation:

```
% make doc
```

You can then open html/toc.html with your favorite browser or more precisely html/qbound.quadratic_bound.html for the proof of the main theorem.