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Preface

This volume collects the papers presented at the 16th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Architectures, and the 14th Workshop
on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-
DITAM 2025). The workshop is co-located with the 2025 edition of the HIPEAC conference
and was held on the 22nd of January, 2025, that took place in Barcelona, Spain.

The current trend towards many-core and the emerging accelerator-based architecture
requires a global rethinking of software and hardware design, which turn out to be more
than ever before strongly entangled.

The PARMA-DITAM workshop focuses on many-core architectures, parallel programming
models, design space exploration, tools and run-time management techniques to exploit the
features and boost the performance of such (possibly heterogeneous, (re-)programmable
and/or (re-)configurable) many-core processor architectures from embedded to high perform-
ance computing platforms and cyber physical systems.

The scope of the PARMA-DITAM workshop includes the following topics:

T1: Parallel programming models, languages, and applications for many-core platforms
T2: Compiler and virtualization techniques for novel computing architectures

T3: Run-time modeling, monitoring, adaptivity, power and memory management

T4: Design of heterogeneous and reconfigurable many-core architectures

T5: Methodologies, design tools, and high-level synthesis for heterogeneous architectures
T6: Hardware/software co-design and design space exploration

T7: Case studies, success stories and applications applying T1-T6

16th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and
14th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2025).
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Analysis of GPU Memory Allocation Characteristics
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—— Abstract

The number of applications subject to safety-critical regulations is on the rise, and consequently,
the computing requirements for such applications are increasing as well. This trend has led to the
integration of General-Purpose Graphics Processing Units (GPGPUs) into these systems. However,
the inherent characteristics of GPGPUs, including their black-box nature, dynamic allocation
mechanisms, and frequent use of pointers, present challenges in certifying these applications for
safety-critical systems.

This paper aims to shed light on the unique characteristics of GPU programs and how they impact
the certification process. To achieve this goal, several allocation methods are rigorously evaluated to
determine which one is best suited to an application, regarding the program characteristics within
the safety-critical domain.

By conducting this evaluation, we seek to provide insights into the complexities of GPU memory
accesses and its compatibility with safety-critical requirements. The ultimate objective is to offer
recommendations on the most appropriate allocation method based on the unique needs of each
application, thus contributing to the safe and reliable integration of GPGPUs into safety-critical
systems.

2012 ACM Subject Classification Computer systems organization — Parallel architectures; Software
and its engineering — Real-time schedulability; Software and its engineering — Parallel programming
languages

Keywords and phrases CUDA, Memory allocation, Rodinia, Embedded
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Analysis of GPU Memory Allocation Characteristics

1 Introduction

Safety-critical systems have long been integral to various sectors, including aviation, nuclear
power generation, healthcare, and more. In today’s world, these systems are even more
prevalent in our daily lives with the development of autonomous systems. Therefore, it
is crucial to ensure that the development and deployment prioritise safety and adhere to
rigorous standards to protect occupants, pedestrians, and workers on industrial environments.

High Performance Computing (HPC) platforms are those which are designed to accelerate
data processing to solve complex and computationally intensive problems, some architectures
include the use of Graphics Processing Units (GPUs), Field-Programmable Gate Arrays
(FPGAs) or Tensor Processing Units (TPUs). These accelerators are increasingly establishing
their presence on these sectors by delivering accelerated computations within real-time
constraints. However, these heterogeneous systems have inherent limitations, with GPU
schedulers exhibiting a black-box behaviour. Additionally, a well-known issue is the bottleneck
that arises in the data transfer process between the host system (CPU side) and the device
(accelerator side), leading to unpredictable data access times. Over the years, independent
authors and companies have dedicated their efforts to develop memory allocation algorithms
and architectures specifically aimed at achieving faster data accessing and deterministic
behaviour of GPUs.

To ensure the reliability and uniformity of outcomes, this paper conducts an evaluation of
various allocation methods using the Rodinia benchmark suite [10, 11, 18, 1]. The assessment
encompasses both static and dynamic attributes extracted from the benchmarks, employing
tools offered by NVIDIA and other contributors. Static metrics, such as data size, the
number of allocations, copies, kernel launches, cache hit rate, and memory coalescence, are
taken into account. Moreover, the dynamic aspects inherent in any code, such as allocation,
data copying, kernel launching API usage, and overall execution time, are meticulously
documented to discern potential connections with the static ones.

A significant enhancement to the benchmark analysis includes a desirable feature for
safety-critical systems, the ability to control the timing of memory allocations. Leveraging
the XeroZerox a tool introduced by [8], that allows that the entire memory allocation
is executed only once and exclusively at the beginning of the execution for the NVIDIA
allocation methods, we were able to achieve that behaviour. That tool has support to
create this memory pool using Unified Memory (UM) and zero-copy (ZC). In this work, we
add support to the traditional allocation method to grant an equal comparison between all
results gathered from each memory configuration. Our analysis aims to provide conclusions
regarding the most suitable allocation method based on the identified program characteristics,
regarding mean measurements for those metrics to reveal the swiftest method, reinforced
with assessments of standard deviation and histogram representations to gauge predictability,
thereby providing valuable insights for informed decision-making.

The organisation of this paper is as follows: Section 2 introduces the most relevant
previous works that inspired this study. Section 3 presents the memory managing methods
that have been selected to conduct the time analysis on memory accesses that is presented in
this work. Section 4 describes XeroZeroz highlighting our modifications. Section 5 describes
the static characteristics and dynamic metrics used for evaluating how they are related and
affect the timing response. Section 6 exposes the data treatment, the value extracted from
executing every benchmark with different memory configuration and a comparative analysis
extracted from the results. Finally, Section 7 summarises the most important ideas and
outline future work to be undertaken.
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2 Related Work

In this section we present the prior work in the field, aiming to contextualise our research,
identify gaps, and build on established frameworks. We identify two categories of memory
management, a) studies which aim into new allocation strategies and b) studies which extract
conclusions from reverse engineering the GPU. Our work is influenced by two streams: studies
focused on new allocation strategies and those aimed at understanding memory through
reverse engineering. We employ these techniques to get metrics, using tools designed to alter
memory behaviour, to highlight which characteristics are relevant during program execution.

2.1 Allocation strategies

A. Calder6n introduces a tool named XeroZeroz, which is specifically designed for embedded
platforms [8]. This open source tool carries out a two-phase analysis and modification process
on the source code. In the first phase, it intercepts explicit GPU memory allocation calls and
copies creating a mapping between CPU and GPU variables. In the second phase, leveraging
this information, it strategically replaces the allocation method sections, opting for UM or
ZC allocation instead of the default GPU memory allocation method. XeroZeroz also creates
a pool of memory to allocate all the data at once at the beginning of the process and free
it at the end, being a desirable behaviour for safety-critical applications, first for avoiding
the timing overhead and non-time deterministic nature of the memory allocations which can
impact the worst case execution time of the program, as well as to ensure that the size of the
memory allocations is fixed, and therefore can always be satisfied at program deployment.
Another strategy is proposed by Sven Widmer et al. [23]. They developed an allocator
focused on enhancing SIMD scalability for small, frequent memory allocations, minimising
branch divergence. The system-wide default allocator performs well with few simultaneous
requests, and this approach optimises data accesses by utilising one superblock shared
among warp threads. A voting mechanism selects a worker thread, reducing simultaneous
memory requests and invocations. This design eliminates the need for superblock header

data, streamlining memory allocation and minimising synchronisation and memory overhead.

Aggregating memory requests within a warp ensures efficient cache utilisation, aligning with
the goal of minimising the use of the default allocator for improved performance.

Another approach is described by Andrew Adinetz [3]. HAlloc is a statically sized
memory pool, which is subdivided into chunks during initialization, while the handling of
large allocations relies on the CUDA dynamic memory allocator. For each allocation size,
only one active bin from which to allocate is kept by HAlloc. When a configurable threshold
for usage within a bin is reached, it is replaced with a new active bin, maximizing the chances
of subsequent allocations finding an available block in the active bin. Lists of bins that
are almost-exhausted and almost-empty are also kept by HAlloc for each size. Bins are
moved between these two lists during free operations, and bins in the almost-empty list
are used to select new active bins when needed. Per-size bins are also maintained by their
fine-grained allocator, but a linked list is used to track all active bins, avoiding costly active
bin replacement operations.

Zaid Qureshi et al. [19] develop the BaM System (Big accelerator Memory). This tool
allows programmers to access big data sets which exceed the GPU memory available in the
system, by accessing data stored in storage devices in an on-demand and fine-grained manner,
while improving the access time. The authors call this “accelerator-centric” architecture.
Threads on GPU can bring data wherever it is stored, either on CPU or any other storage
system. This reduces the use of page-faulting mechanism from CPU and it is demonstrated
using NVMe SSDs.

1:3
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In terms of predictability, Bjérn Forsberg et al. [14] show how to enhance cache hit rate
through the adept management of prefetching and evicting using Predictable Execution
Models (PREM). To enhance predictability, they introduce a division into a memory phase
and a compute phase, a strategy akin to that of XeroZerox. They leverage a “replacement
policy” that “selects which data to evict when new data is requested”.

2.2 Reverse engineering

On reverse engineering, Jake Choi et al. [13] performed a comparative analysis between
UM and ZC in relation to the traditional cudaMalloc over a NVIDIA Jetson TX2 SoC, an
embedded platform based on Pascal architecture. By evaluating those allocators against
three benchmarks of the Rodinia suite, they extract and compare metrics such as memory
usage and execution time. Their study concludes that the traditional method should not be
the default choice for programmers. In fact, the optimal allocator depends on the specific
application being considered.

Calderdn et al. [6] created a tool for the reverse engineering of the default CUDA memory
allocator in terms of functionality and timing behaviour. They showed that similar to CPU
allocators, the CUDA allocator works with power of two bin sizes and that GPU memory
allocations which fall into a newly allocated or reallocated bin affects the execution time
of the subsequent GPU kernel call. Their open source tool is able to extract the bin sizes
and memory pools of NVIDIA GPUs and has been demonstrated with both desktop and
embedded GPUs. Moreover, later the tool was extended to OpenCL and non-NVIDIA
GPUs [7].

3 Allocation Methods

Over time, there has been a concerted effort from both industry players and academic
researchers to devise quicker algorithms, all with the common goal of enhancing data access.
In the following we provide a succinct overview of the algorithms under evaluation. It’s
worth noting that these particular algorithms were selected for their seamless integration and
straightforward implementation on our embedded GPU platform i.e. open source availability
of their code and compatibility with embedded NVIDIA GPUs. Interestingly, the first three
algorithms hail from the research and development efforts of NVIDIA, while the fourth stems
from an independent researchers’ work.

CUDA traditional allocation is the native allocator of CUDA C programming language [12].
It is used through cudaMalloc, which allocates device global memory of a specified size. The
operating system looks for space in the memory pool using one of the following policies:
first-fit, best-fit, worst-fit or next-fit. Still, data movements must be explicitly done using
cudaMemcpy.

Zero-Copy. In order to transfer data from host (CPU) to device (GPU) or in the reverse
direction, the memory has to be copied to a page-locked buffer. This process can be
avoided by allocating paged-locked (aslo known as pinned memory) with cudaMallocHost
or cudaHostAlloc calls, so data can be directly accessed by the device using DMA (Direct
Memory Access). Enabled by Unified Virtual Addressing (UVA) released on CUDA 4, it
makes data accessible through PCl-e avoiding cudaMemcpy calls.
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Unified Memory. Supported since CUDA 6, this allocation method [15] joins both Central
Processing Unit (CPU) and GPU memory address spaces in a single one. Using cudaMal-
locManaged function, data is allocated into that space, returning a pointer accessible both
from host and device. Similar to ZC there is no need of explicit copy declaration because the
system migrates data automatically.

ScatterAlloc. This algorithm [22] organises a memory pool into a structure called Super
Block. This structure has a fixed size of memory that is also split into equal size pages. Its
author also proposes a method to keep track of free memory in two levels of hierarchy. At
higher level a Page usage table is used that stores which pages are in use and freed. At lower
level, inside each page, there is another table which keeps track of chunks within a page.
In order to make allocations faster, the algorithm changes the storing region when 90% of
the pages are filled. In addition, the author introduces an approach to reduce simultaneous
access from different threads to the same memory region.

4 Memory analysis and reconfiguration

To introduce a safety framework and enable consistent comparisons between allocation
methods, this work uses the XeroZerox tool [8] developed by A. J. Calderén mentioned in
Section 2, extended with support to traditional memory allocation to fit the needs of our
analysis. This tool offers numerous benefits: it allows us to modify memory models without
altering the original benchmark code. Additionally, it supports the use of a single, preallocated
memory pool at the program start-up. This is a highly desirable feature for safety-critical
systems, as it enables control over memory reservation and the ability to calculate the worst
case execution time of this process. In the utilisation of the XeroZerox tool for assessing
allocation methods, a critical observation emerges: the original tool initially overlooked the
case of the traditional allocation model. This discrepancy poses a substantial challenge to
achieving a comprehensive comparison among allocation strategies. In this work we address
this issue in order to perform a fair comparison. Next, we delineate our methodology for
utilising the XeroZerox tool and address the gap it initially presents concerning the traditional
allocation model. To enhance a robust comparison between allocation methods, we have
devised an approach to incorporate this gap within our analysis framework.

XeroZerozr analyses GPU applications and determines the size of a centralised memory
pool that can serve all its needs. This pool is allocated at the beginning of the application
using zero-copy or unified memory allocation and it is released upon its completion. Serving
as a sub-allocator, XeroZerox intercepts traditional memory allocations and substitutes them
with allocations served consecutively — i.e. similar to a bump allocator — from the centralised
memory pool, with minimal and constant runtime cost. This approach accommodates legacy
GPU applications within critical setups’ memory management constraints, without any code
modifications. Moreover, XeroZerozx priorities minimising memory consumption, effectively
reducing both the memory footprint and the runtime overhead associated with memory
management for these applications.

To intercept the target memory functions, the analysis library employs a technique
referred to in the literature as interposition [9]. This method involves substituting the target
functions with user-defined wrapper functions. These wrappers serve to augment the original
functions with additional functionality, such as extracting information from their arguments,
which is particularly pertinent to our objectives. The analysis library is executed only the
first time of executing the application and generates a comprehensive report including details
like the maximum memory utilisation, the count of memory pool instances generated, the
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Figure 1 XeroZerox tool behaviour.

frequency of memory transfers and the detection of any memory leaks. On a second phase,
which is the only one used for subsequent executions, eg. at deployment, once the centralised
memory pool is established in the initialisatiton of the GPU application, XeroZerox assumes
the role of a sub-allocator, handling allocation requests from the application in accordance
with the matches loaded from the optimisation profile. Notably, XeroZerox adopts a strategy
where it fulfils memory allocation requests solely for the initial request it receives. Subsequent
allocation requests prompt XeroZeroxr to return a pointer to the memory region already
allocated for the preceding request, effectively optimising memory utilisation by reusing
allocated space. This approach minimises redundant allocations and contributes to more
efficient memory management within the application.

In this paper, we extended XeroZerox with support for the traditional allocation method.
We took advantage from the analysis phase, to identify the CUDA calls. At this point,
instead of creating just one memory pool to be allocated using ZC (Zero Copy) or UM
(Unified Memory) method at the beginning of the optimisation phase, host and device pools
are created separately as it is performed when the default CUDA allocation method is used.
During an allocation call, the tool discerns whether it is a GPU or CPU allocation, storing
the data in the corresponding pool through a linked list. Additionally, the incorporation of
support for copy calls has been essential due to the existence of two distinct allocated pools.
This ensures that whenever such a call is activated, the tool can reference the variables to
the pre-allocated pools, facilitating the migration of data.

As illustrated in Figure 1, the dark blue boxes denote components of the original XeroZerox
tool, representing the baseline framework. Whereas, the yellow boxes highlight additional
elements we added to ensure a fair comparison among different allocation methods.
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5 Benchmark’s characterisation

The Rodinia benchmark suite is a collection of parallel applications designed to evaluate the
performance and scalability of computer systems, particularly those with multicore processors
or GPU accelerators. It was developed by researchers at the University of Virginia as a
resource for evaluating and comparing different parallel computing architectures.

This benchmarking suite is one of the most widely used GPU bencmarking suites used in
the literature. Since our purpose is to analyse the general memory allocation behaviour of
GPU software and find out the optimal memory allocation method for use in safety critical
systems, we intentionally avoid using a GPU benchmarking suite targeting explicitly safety
critical systems like GPU4S Bench and OBPMark, wich have a predictable, easy to analyse
memory allocation behaviour, similar to the one achieved by XeroZeroz.

Rodinia contains 23 benchmarks, characterised by their computation patterns, named
Duwarfs by Paul Springer [21] and introduced by Asanovic et al. [4]. They refer to recurring
structures or strategies used to solve problems and perform tasks in computational systems.
These patterns provide standardized ways to approach common computational problems,
making it easier to design, implement, and understand. Despite their utility in classifica-
tion, our analysis indicates that these patterns do not have any relevance on our results.
Furthermore, during the execution of 13 out of 23 Rodinia benchmarks, runtime errors or
system crashes were encountered, causing the hardware to reboot. To maintain the integrity
of the results, we opted not to modify the benchmark code to force compatibility with the
ARM-based embedded system used. Those evaluated are presented in Table 1 along with
the name of the benchmark and the data loaded is provided by Rodinia’s developers.

Table 1 Evaluated Rodinia benchmarks.

Applications Dwarfs Datasets
Back Propagation Unstructured Grid (UG) 65536 elements
Gaussian Elimination Dense Linear Algebra (DLA) 3x3 matrix and 1024x1024 matrix
LU Decomposition Dense Linear Algebra (DLA) 64x64 matrix and 2048x2048 matrix
Kmeans Dense Linear Algebra (DLA) 100 and 819200 elements x 34 columns
Breadth-First Search Graph Traversal (GT) 1 million nodes and 4096 nodes
SRAD_ vl Structured Grid (SG) 512x512 image

. Two square matrices of 64x64, 512x512
Hotspot Structured Grid (SG) and 1024X1024 each
Heart Wall Structured Grid (SG) 104 frames: 609x590 pixels
Leukocyte Structured Grid (SG) 600 frames: 640x480 pixels
Myocyte Structured Grid (SG) 16 parameters 1 instance 100 ms

Taking into consideration prior research, we have curated a set of characteristics that
define a program for our experimental setup, categorized into static and dynamic metrics.
Static metrics provide intrinsic insights into program structure, encompassing cache hit
rates, shared memory usage, coalescence, memory access frequency, and data transfer sizes
between CPU and GPU. On the other hand, dynamic metrics focus on timing operations,
including overall program execution time, kernel execution time, CUDA APIs execution
time, and memory operations execution time. This comprehensive approach enables a
thorough evaluation of program performance across various dimensions, facilitating informed
comparisons between different allocation methods and program configurations. Crossing
results from both categories is the key to obtain conclusions of how program characteristics
influence its timing results. The following subsections give a deeper understanding of these
categories.
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5.1 Static metrics

These metrics provide intrinsic insights into program structure, highlighting how a program
is coded and its inherent characteristics. These metrics are crucial for understanding the
efficiency and resource usage of a program. The following points explain each static metric

in detail:

1.

Cache Hit Rates: This metric assesses the efficiency of data retrieval from cache
memory. A high cache hit rate indicates that most data requests are satisfied by the
cache, leading to faster data access and improved performance. Analysing cache hit rates
helps in optimizing memory hierarchy and reducing latency.

. Shared Memory Usage: This metric evaluates the utilization of shared memory

resources within the system. Efficient use of shared memory can reduce global memory
accesses and increase the speed of data processing. Understanding shared memory usage
is key to optimizing memory allocation and parallel processing capabilities.

. Coalescence: This metric examines the degree to which memory accesses are coalesced,

which optimizes data transfer efficiency by grouping multiple memory requests into a single
transaction. High coalescence reduces the number of memory transactions, improving
bandwidth utilization and reducing latency.

. Memory Access Frequency: This metric quantifies the frequency of memory accesses,

indicating the demand for data retrieval during program execution. High memory
access frequency can highlight potential bottlenecks and guide optimizations to minimize
redundant memory operations and enhance overall performance.

. Data Transfer Sizes Between CPU and GPU: This metric measures the volume of

data exchanged between the central processing unit (CPU) and the graphics processing unit
(GPU). Large data transfers can introduce significant overhead and latency. Understanding
and optimizing data transfer sizes are crucial for improving inter-device communication
and overall program efficiency.

5.2 Dynamic metrics

On the other hand, dynamic metrics focus on timing operations, providing insights into

various aspects of program execution. The following points explain each dynamic metric in
detail:

1.

Overall Program Execution Time: This metric captures the total duration from the
start to the end of the program’s execution.

. Kernel Execution Time: This metric measures the time taken to execute computational

kernels, which represent the core processing tasks of the program. Analysing kernel
execution time helps in understanding the efficiency of the computational workload and
identifying areas for optimisation within the kernels.

. CUDA APIs Execution Time: This metric examines the time spent executing CUDA

Application Programming Interface (API) calls. These calls manage GPU resources and
operations, so their execution time reflects the overhead associated with GPU management.
Specifically, this includes the time taken for kernel launches, memory allocations, data
transfers, and, in some cases, synchronization operations.

. Memory Operations Execution Time: This metric measures the duration required

for memory read and write operations. It is indicative of data transfer efficiency and
memory access latency. Optimizing memory operations execution time can significantly
enhance overall program performance, particularly in data-intensive applications.
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6 Experimental Results

In this section, we present the results of testing various allocators on the Rodinia benchmark
suite using their standard input set. Subsequently, in the following sections of this section,
graphical representations of the data are provided to facilitate a time comparison between
the selected allocators for each metric across all benchmarks. This analysis examines the
performance characteristics, strengths, and weaknesses of each allocator in relation to the
benchmarks’ nature.

Due to the extensive volume of collected data, we have opted to store it in a dedicated
GitHub repository [2]. Detailed information from each of the 500 iterations, as well as
summarised characteristics in Excel files, can be accessed through this repository. This
approach allows for transparency and facilitates access to the comprehensive dataset for
those interested in further analysis or replication of the study.

6.1 Experimental setup

For each allocation method outlined in section 3, we performed multiple iterations of each
benchmark on an NVIDIA Jetson Orin AGX, an embedded GPU platform certified for use in
the automotive sector. Due to the inherent variability in GPU execution times, as discussed
in section 5, each benchmark was executed 500 times with the same data inputs. This number
of runs allows for a reliable calculation of the mean and standard deviation for each selected
parameter, ensuring statistically meaningful results. The variability in execution times was
verified through time histograms, which support the assumption of a Gaussian distribution.
These histograms are available for review on our GitHub repository [2]. In contrast, obtaining
static metrics was more straightforward, as these remain consistent regardless of when the
data collection tool was launched or the memory configuration selected.

Only memory access methods interacting with XeroZerox have been studied, using the
unmodified benchmarks as baseline. This approach was chosen due to a key feature of
XeroZerox that aligns it with safety-critical systems: memory allocation is managed by
ensuring that all allocations occur at the start of the execution.

Using the NVIDIA NSight Systems and NVIDIA NSight Compute tools alongside each
benchmark, we generated a timing report containing dynamic metrics and a characterization
report featuring static metrics. The benchmarks from Rodinia were compiled using CUDA
version 11.4 and automated with Python scripts version 3.8.10. Metric extraction was
performed using NVIDIA NSight Systems version 2022.4.2.1 and NVIDIA NSight Compute
version 2023.2.0.0 build 32895467.

6.2 Profiling

The initial set of static characteristics was extracted from the profiling tool NVIDIA NSight
Systems, and the results are presented in Table 2. This table displays basic static charac-
teristics, such as the number of allocations and deallocations performed using cudaMalloc
and cudaFree, the number of copies made by cudaMemcpy, the quantity of kernels launched,
and the size of the data moved. The data related to other native allocation instructions,
like cudaBindTexture or cudaMemcpyToSymbol, has been retained in its original form. This
decision is grounded in the belief that these instructions offer essential functionality required
by programmers. To aid interpretation, certain cells in the table have been colour-coded
and star-marked: blue cells (*) are the value believed to be the edge on the allocator choice,
while a green background (**) represent values that exceeded the threshold established for
influencing allocator selection, this is founded on the conclusions presented in the following
subsection.

1:9

PARMA-DITAM 2025



1:10 Analysis of GPU Memory Allocation Characteristics

Metrics evaluated

Cache Hit Rate

|Kernel Charactiristics ‘ LEEarEiE T

memory
Memory
coalescence
tradition traditional
Unified Memory managing | P e e Behaviour
Memory (- XeroZerox Methods | |EedeChanciisics ‘ CPU-GPU copies ™1 conciusions
Pinned Data size
MEMory ) seatteralloc

Overall execution

Kernel executions

| Temporal Results

m Memory Operations
B CUDAAFIs

Figure 2 Metrics extracted for every evaluated benchmark.

During our work, the necessity of acquiring a deeper understanding of the behaviour of each
benchmark was recognised. For this reason, we have made use of NVIDIA NSight Compute
to acquire a second set of static metrics related to kernels. To make sure that the allocation
method does not interfere with these results by comparing the kernels’ characteristics, binaries
run from a clean build and from binaries interfered with XeroZerox, which are shown in
Table 3. In three benchmarks (gaussian with 1024 size matrix, srad_wv1 and myocyte) the
NVIDIA’s tool could not complete the analysis. For these two cases the report was empty
despite how many times we run the test. We suspect that this might be due to the high
number of kernels launched, due to this limitation we could not provide information about
these tests.

We observed an anomalous L2 cache hit rate for kernel 2 in the leukocyte benchmark,
consistently reported by the NVIDIA NSight Compute tool, despite multiple reruns of the
benchmark. Since we lack access to the internal workings of this tool, we are unable to
provide a definitive explanation for this irregularity.

At the core of our analysis lies a meticulous process of data collection of the dynamic
metrics during each iteration of the benchmarking procedure. This data, intricately tied to
the associated process and variable, serves as the foundation for subsequent calculations of
mean and standard deviation. An example of results from those executions is illustrated in
Figure 3 for API’s executions and in Figure 4 for memory and kernel operations.

Figure 3 represents a benchmark with a specific input set size. Vertical axis (y) represents
the normalised time consumed on running every API taking as baseline benchmarks without
being modified with a value of 1.00, called traditional alloc at the picture. The x axis
represents each allocation method evaluated, from left to right: traditional alloc, traditional
cudaMalloc with XeroZerox optimisation, ScatterAlloc, ZC with XeroZerox optimisation and
UM with XeroZerox optimisation. The z axis represents every API call considered relevant,
from front to rear: Kernel launch time, allocation API (every method has its own), copy API,
synchronisation API (not every benchmark uses this instruction) and overall execution time.

On the other hand, Figure 4 illustrates kernel and memory operations execution times.
Similar to the representation used in the APIs figures, these figure differ in that one of the
horizontal axes has been adjusted to show which operations are being evaluated. Each kernel
call and the normalised time it takes to transfer data from the CPU to the GPU and vice
versa are depicted, using the traditional allocation method as a baseline with a value of
1.00. For UM and ZC, the transfer time is not included due to the unique behaviour of these
methods, as explained in Section 3.
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Table 2 Benchmark Characteristics.

Dwarf | Benchmark Data Allocations Copies Eiﬁ;;lsd Data sizes
. Matrix 3x3 3 6 4 < 64kB
Gaussian Matrix
1024x1024 3 6 2046 ** 4 MB, < 64kB *
DLA LUD Matrix 64x64 1 2 10 < 64kB
A 1 2 382 %% | 16,777 MB **
List 100x34 ele- 4 7 3 < 64kB
Kmeans ments
List 819200x34 1 4 7 3 11.4 MB, 3,277 MB **
srad_ vl 512x512 image 12 206 ** 502 ** 0.920 MB , < 64kB
Two ] squared 3 3 1 < 64kB
matrix 64x64 -
SG hotspot Two squared 3 3 1 1.049 MB
matrix 512x512 :
Two squared
matrix 3 3 1 4.149 MB *
1024x1024
104 frames: .
heartwall 609x590 pixels 623 50 20 1.952 MB , < 64kB
600 frames: 0.561 MB , 0.472 MB ,
leukocyte 640x480 pixels | 5% 39 7 < 64k B
16 parameters 1 o0 52 L
myocyte instance 100 ms 4 16500 3900 < 64kB
. 4.457 MB , 0.262 MB ,
UG backpropagation 65536 elements 6 8 2 < 64kB *
4096 nodes 23 16 98 kB , < 64kB
GT BFS , S
1 million nodes 31 24 25 IS, © IS o & N , 11

MB , < 64kB **

Complete information is contained in a Github repository [2], where Excel documents

contain detailed information of the mean and standard deviation arranged in folders ordered
by DWARF'S alongside with 3D chart representations to condense data.

6.3 Comparative Analysis

In this subsection we discuss the results extracted from the correlation between static and
temporal analysis, taking two distinct scenarios. The first revolves around an analysis just

concerning the overall execution time. In contrast, the second is oriented to those systems

characterised by continuous operation, like safety-critical systems responsible for monitoring
the environment from startup to the moment the machine is shutdown. These systems
typically entail a single allocation at initialisation, followed by recurrent data movement and

kernel launches throughout operation, culminating in memory deallocation upon shutdown.
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Table 3 Kernels Characteristics.

Dwarf | Benchmark | Data L1 cache hit rate L2 cache hit rate Coalescent Excesive  sectors
memory accessed
Matrix 3x3 kernel 1: 33,33% kernel 1: 56,77% Uncoalesced kernel 1: no kernel
Gaussian kernel 2: 60% kernel 2: 66,47% Global Accesses | 2: 2 (20%)
i\g;z:)l(o24 no data no data no data no data
’ . kernel 1: 562
kernel 1: 48,39% kernel 1: 40,51% IRP, o . .
DLA Matrix 64x64 kernel 2: 39,24% | kernel 2: 42,87% g“c‘“lj“d (41%) lf;md 2
kernel 3: 25% kernel 3: 61.14% hared Accesses 6216 (70%) kernel
LUD : . ’ 3: no
kernel 1: 562
. 0, . 0y
Matrix kernel 1: 48,39% | kernel 1: 40’?1/0 Uncoalesced (41%) kernel 2:
kernel 2: 58,22% | kernel 2: 49,38%
2048x2048 Kkernel 3_‘ 53 2’9% kernol 3" 64 4’2% Shared Accesses | 263144 (70%) ker-
i : ’ o ’ nel 3: no
List 100x34 ele- | kernel 1: 82,08% kernel 1: 54,79% Uncoalesced kernel 1: 3009
ments kernel 2: 86,49% kernel 2: 27,73% Global Accesses (70%) kernel 2: no
Kmeans List 819200x34 | kernel 1: 52,78% | kernel 1: 71,98% | Uncoalesced ]2(2?;?[1200 (78‘71):
elements kernel 2: 41,07% kernel 2: 67,62% Global Accesses °
kernel 2: no
srad_ vl 512x512 image no data no data no data no data
Two squared L. . Uncoalesced .
matrix 64x64 16,13% 62,54% Global Accesses 864 (27%)
Two squared N o A0 Uncoalesced . .
hotspot matrix 512x512 4,65% 68,69% Global Accesses 67192 (31%)
P Two squared Uncoalesced
SG matrix 3,54% 68,67% Global Accesses 273184 (31%)
1024x1024 U
i . 104 frames: o Uncoalesced
heartwall 609x590 pixels 95,48% 97,14% Global Accesses 9958 (19%)
kernel 1: 3051
600 frames: kernel 1: 99,23% | kernel 1: 22,51% Uncoalesced (19%) kernel 2:
leukocyte 640x480 pixels * | kernel 2: 98,78% | kernel 2: 172,91% Global Accesses 122584 (88%) ker-
p kernel 3: ~ 98% kernel 3: = 80% nel 3: &~ 580000
(18%)
16 parameters 1
myocyte instance 100 ms no data no data no data no data
Uncoalesced kernel 1: 73728
uG backprop 65536 elements ternell 21 7?81’35;% iernell 21 5221’,?;% Global Accesses | (18%) kernel 2:
ernel £: 15,1870 ernel 23 0% 070 | iy hoth kernels | 163847 (15%)
4096 nodes kernel 1: 19,40% | kernel 1: 50,19% | No coalescence
aT BFS - kernel 2: 7,19% kernel 2: 49,48% warning
1 million nodes kernel 1: 0,04% | kernel 1: 0,91% | No coalescence
) kernel 2: 0,01% kernel 2: 0,93% warning

6.3.1 Analysis regarding overall execution time

By correlating static results (explained in section 5) and dynamic results from the time
analysis, we derived programming guidelines for GPU usage, presenting distinct conclusions
based on overall execution time and considerations more pertinent to safety-critical systems.
Generally speaking, the traditional method with the XeroZerox optimisation out stands
over the other allocation methods regarding the total execution time of the benchmark.
Additionally, there are other characteristics that had been seen relevant to choose a method
of memory management. It appears that the most relevant one is the cache hit rate. This
can be observed in the cases of both the heartwall and leukocyte benchmarks, where the hit
rates for both L1 and L2 caches exceed 90%. In such cases, the traditional allocation method
without optimisation yields the lowest overall execution times.

In general, when a substantial number of kernels is launched, and some data involved in
copies that exceed 4 MB, the zero-copy method with XeroZerox proves to be the optimal
allocation method, resulting in the lowest overall execution times. Conversely, when the
number of copies and kernel launches is small, and the data copied does not exceed 4 MB,
both zero-copy and unified memory yield similar results, with unified memory demonstrating
the lowest execution times for sizes below that threshold.

There are, however, exceptions. For instance, the BFS benchmark should have a clear
allocator preference. When using 4096 nodes, unified memory is preferred, while when
loading 1 million nodes, zero-copy performs better. Remarkably, the execution times are
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very similar for both allocators, with the size having only a minor impact. This benchmark
is unique in that it exhibits coalescent memory, thereby minimising excessive sector accesses,
which could explain the observed behaviour.

Given these observations, benchmarks such as gaussian (loading a 3x3 matrix), LUD
(loading a 64x64 matrix), kmeans (loading 100x34 elements), and hotspot (loading a 64x64
matrix) were expected to behave similarly. However, temporal results reveal that hotspot and
LUD perform better with unified memory, while kmeans and gaussian yield better overall
execution times with zero-copy. It was found that the first couple make use of shared memory
and experience a higher number of warps stalled compared to the latter two benchmarks.

Below, observations are presented concerning overall execution time, categorized by
their respective levels of importance, with the highest level of importance listed first. Each
observation is paired with a recommended allocator:

1. L1 and L2 cache hit exceed 90% -> traditional allocation method

2. Coalescent memory -> zero-copy + XeroZerox or Unified Memory + XeroZerox

3. When a substantial number of kernels (measured at 2 in blue or green) are launched &
data size greater or equal than 4 MB -> zero-copy + XeroZerox

4. When number of kernels launched is small & data size less or equal than 4 MB -> Unified

Memory + XeroZerox
5. Use of shared memory -> Unified Memory + XeroZerox
6. High number of warps stalled -> zero-copy + XeroZerox

6.3.2 Analysis regarding kernels and copies execution times

Another interpretation of the results can be made if the programmer is looking to adapt
the code into safety-critical systems. One important recommendation is to perform memory
allocations only once at the beginning, a behaviour achieved automatically with the XeroZerox
optimisation. Moreover, memory freeing is not a relevant characteristic in this case, because
the expected execution is that the system runs continuously, reading and writing data,
moving it between CPU and GPU and executing functions and kernels. So considered metrics
here are the time that the copy and kernel launch APIs are active, and the kernel and copy
execution times.

Upon examining the active time of the copy API and the kernel launch API, it’s observed
that conventional method without XeroZerox intervention and ScatterAlloc
typically emerge as the faster options. However, there are instances where other methods
yield similar times. The observed behaviour aligns closely with the previous findings, with
one notable exception found in the backpropagation benchmark. Here, both ZC and UM
methods show comparable performance to the traditional method.

When looking at copying operations, the first thing noticed is that there is no data when
using ZC or UM, presumably because there is no explicit copy between CPU and GPU, so
the delay depends on the related API. On the other cases, the time grows proportionally
with the size copied being in any case in the same magnitude order, no special correlation is
found here.

To verify the accuracy of the mean and standard deviation as appropriate measures,
histograms were generated for each process, also available on the mentioned GitHub reposit-
ory [2]. Notably, the traditional allocation method exhibited considerable variation in results,
suggesting a lack of consistency. As a result, it is advisable to avoid the traditional
allocation method in systems targeting safety-critical or real-time scheduling, regardless
of the mean results. Also when employing the traditional allocation method in any form, the
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histograms for copying and allocating APIs exhibited a multi-modal distribution, while ZC
and UM usually exhibit one gaussian bell shape, so in terms of predictability it is advised to
use these last two methods in case that ScatterAlloc is not the preferable method.

7 Conclusion

In this work, we analysed the dynamic memory behaviour of GPU programs for safety critical

systems, targeting the widely used suite GPU benchmark suite, Rodinia. Studying all this

data has revealed some reasons behind the allocator’s behaviour have been identified through

a static analysis of the benchmarks.

The specific characteristics and requirements of each benchmark and kernel influence
the choice of GPU memory allocation method. Factors such as cache hit rates, data sizes,
and the number of kernel launches may play a crucial role in determining which allocation
method is the most suitable for a given scenario.

For future research and validation of the conclusions presented in this work, the following
avenues can be explored:

1. Microbenchmarks for Specific Scenarios: Conducting microbenchmarks designed to test
each specific scenario and characteristic identified in this research can provide a more
detailed and comprehensive validation of the conclusions. This can help in fine-tuning
allocation methods for precise use cases.

2. GPU Direct RDMA [16] and GPUDirect Storage [17]: Investigating the use of NVIDIA’s
GPUDirect RDMA and GPUDirect Storage methods represents a promising direction.
These technologies facilitate direct GPU access to data stored in storage units such as
SSDs, circumventing CPU involvement. This approach holds the potential to deliver
substantial performance benefits and minimize latency in data-intensive applications.
The work of J. Bakita et al.[5] is directly relevant to this topic and can be utilised to
propel advancements in this area.

3. Evaluation on other platforms: Consider how these allocation methods perform on
different GPU architectures and platforms, as compatibility and performance can vary.
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—— Abstract

Mean Field Analysis and Markovian Agents are powerful techniques for modeling complex systems

of distributed interacting objects, for which efficient analytical and numerical solution algorithms can
be implemented through linear systems of ordinary differential equations (ODESs). Solving such ODE
systems on Field Programmable Gate Arrays (FPGAs) is a promising alternative to traditional CPU-
and GPU-based approaches, especially in terms of energy consumption; however, the floating-point
computations required are generally thought to be slow and inefficient when implemented on FPGA.
In this paper, we demonstrate the use of High-Level Synthesis with automated customization of low-
precision floating-point calculations, obtaining hardware accelerators for ODE solvers with improved
quality of results and minimal output error. The proposed methodology does not require any manual
rewriting of the solver code, but it remains prohibitively slow to evaluate any possible floating-point
configuration through logic synthesis; in the future, we will thus implement automated design space
exploration methods able to suggest promising configurations under user-defined accuracy and
performance constraints.
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1 Introduction

Analytical modeling techniques such as Mean Field Analysis (MFA) and Markovian Agents
(MA) can be applied to predict and optimize the performance of systems composed of many
interacting objects, including e.g., cyber-physical systems. MFA [29] describes the transient
evolution and the stationary behavior of such systems dividing their constituent objects into
classes, each one describing a specific behavior [6, 12]. MA extends MFA by allowing objects,
also called agents, to be distributed in a space that can be either continuous or discrete [22];
each agent has its own local behavior, which is influenced by mutual interactions with
other agents. MA provides a powerful and scalable technique for modeling complex systems
of distributed objects, and as such it has been applied e.g., to study sensor networks [9],
Covid-19 diffusion [23], and forest fire monitoring [10].

Both MFA and MA models are analyzed using linear systems of ordinary differential
equations (ODEs). One (large) vector is used to count the number of objects in each state for
each class in MFA models, and MAs extend this representation by repeating these components
for each considered spatial location. A kernel function defines how each element in the
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state vector will evolve in time according to the definitions of the individual components,
and the transient evolution of the system is computed by integrating this kernel. This
representation can easily be parallelized, which motivated us to explore hardware acceleration
on Field Programmable Gate Array (FPGA) or Application-Specific Integrated Circuits
(ASICs) as a faster and more energy-efficient solution than software execution on general-
purpose processors. ASICs are the best solution in terms of performance, but they incur
higher development costs; FPGAs are more accessible and can be quickly reconfigured,
allowing to update accelerators according to the requirements of new applications or to try
multiple configurations in a prototyping phase before committing to long and expensive
ASIC manufacturing.

The design flow we envisioned for the implementation of hardware accelerators that
will solve the MFA/MA ODE systems is based on High-Level Synthesis (HLS), which
allows a faster and more reliable process than manual hardware design. HLS tools, in
fact, automatically generate hardware accelerators starting from a software description (e.g.,
written in C/C++), greatly increasing developers’ productivity and allowing application
experts to obtain efficient designs without being experts in low-level circuit design [11].

A typical optimization opportunity available in HLS tools is the usage of custom data
types instead of the standard IEEE floating-point types used in software. In fact, FPGA
implementations of floating-point functional units are usually slower than the specialized
floating-point units present in modern CPUs, and they require a considerable amount of
resources. If the computational precision of the application allows it, fixed-point calculations
are to be preferred as they can be implemented through simpler logic. While a few previous
attempts at implementing fixed-point ODE solvers exist, in this paper we focus on the
exploration of custom floating-point types, i.e., types with a non-standard number of bits for
mantissa and exponent, through the TrueFloat framework [19] integrated into the Bambu
HLS tool [17]. The main strength of TrueFloat compared to existing libraries of floating-
point components is its integration within the HLS flow, allowing deeper optimization of
the functional units during the process of generating the accelerator datapath. TrueFloat
types allow us to improve the quality of results (QoR) of the generated accelerators while
maintaining the desired accuracy, and we demonstrate it by testing the application of different
TrueFloat configurations on a proxy ODE solver representative of the type of computation
performed in MFA /MA models.

TrueFloat provides the required support to implement approximate applications in HLS,
but it fully relies on the user to specify the desired floating-point configuration. A key step
in the design process is thus to determine the minimal precision required to maintain an
acceptable output error. We argue, however, that the configuration space is too wide to be
explored exhaustively and that previous research in design space exploration (DSE) tools
for approximate computing are too specific to software, so further research will be required
to equip Bambu and TrueFloat with a useful DSE tool able to suggest good floating-point
configurations without long logic synthesis and implementation runs.

In summary, this paper makes the following contributions:

We present a practical application of TrueFloat custom floating-point computations in

the synthesis of a non-trivial program;

We highlight the need for automated methods for the search of good floating-point

configurations in a wide design space;

We demonstrate the QoR improvement provided by custom low-precision types for an
ODE solver accelerated on FPGA.
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The rest of the paper is structured as follows: Section 2 summarizes related work on
the acceleration of ODE solvers on FPGA and on custom-precision floating-point formats,
Section 3 describes our HLS-based methodology and the exploration of different formats
targeting improved QoR and minimal effect on accuracy, Section 4 presents the results we
obtained after FPGA synthesis, and Section 5 concludes the paper with final remarks and
future research directions.

2 Related work

2.1 Solving ODEs on FPGA

ODE systems are a fundamental component of many scientific applications in high-
performance computing, and a significant amount of research focuses on improving the
performance of the numerical methods used to solve them. FPGA-based solutions have been
explored because of their potential to provide high throughput and low energy consumption,
making them an attractive alternative to GPUs and multi-core CPUs despite the steep
learning curve of low-level hardware design.

The Differential Equation Processing Element (DEPE) co-processor [27, 28, 26] has been
proposed as an alternative to customizing an FPGA accelerator for the solution of a specific
ODE system. The co-processor was designed as a no-instruction-set computer together with
its compiler and it solves ODEs with a Runge-Kutta fourth-order method implemented
through fixed-point computations; the evaluation focuses on its low area consumption
compared to HLS-generated designs. Another co-processor based on the RISC-V architecture
was proposed targeting a specific class of ODEs [25], implementing Euler and Runge-Kutta
methods through single-precision floating-point computations and obtaining faster execution
time than a single-core CPU. Other research works present custom solver units where both
the solver method and the ODEs are hard-coded into the accelerator [4, 5].

HLS tools raise the level of abstraction required to design FPGA accelerators [11], and
they have been applied to implement accelerators for various ODE solvers [35]. Another
possibility to simplify the design flow of ODE accelerators is to rely on domain-specific
languages and map their primitives to optimized register-transfer level (RTL) primitives [3] or
to exploit commercial tools provided within Matlab/Simulink to generate RTL components
from model-based representations [1].

New computational models have also been proposed in place of conventional numerical
solvers, as they might provide an advantage when implemented in custom hardware. For
example, since analog components can solve ODEs faster than numerical methods, a possibility
is to simulate analog components in FPGA logic through digital differential analyzers [15, 21].
The Euler solver can also be approximated through the use of stochastic integrators, which
can be efficiently implemented as RTL components [30].

2.2 Approximate computing

Research in the field of approximate computing led to a variety of techniques that aim at
improving the energy efficiency of an application through reduced precision, and tools that
analyze the application to understand the impact of approximation on the quality of its
results [31, 13].

The problem of finding the best approximation scheme has been addressed through
both analytical models and learning-based approaches, mostly focusing on the few precision
levels available in existing general-purpose CPUs (single- and double-precision floating-point
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as defined by IEEE standards). Precimonious [33], for example, implements a dynamic
program analysis pass that, given a set of representative inputs and a target accuracy, aims
at improving the runtime of the program by reducing its precision. The tool automatically
performs a search of the configuration space and suggests a floating-point type for each
variable in the program which can be implemented with lower precision (converting from
long double to double or float). The work presented by Ho et al. [24] focuses on reducing
the number of mantissa bits to be assigned to floating-point variables through the GNU
Multiple Precision Floating-Point Routines (MPFR) [20]; the search for the best solution
is implemented in Python by running multiple versions of the application with different
precision levels; and it can be extended to find a fixed-point configuration suitable for FPGAs.
SmartFPTuner [8], instead, introduces a machine learning component that predicts the output
error generated by a reduced precision configuration, and uses mathematical programming to
search for the smallest possible format for each variable among those supported by a custom
RISC-V platform; such a combined approach results in much faster time-to-solution.

For what concerns FPGA implementations of approximate computing, multiple RTL
and HLS libraries exist that provide optimized implementations of fixed- and floating-
point operators with arbitrary precision. VFLOAT [37] and FloPoCo [14] provide VHDL
components for custom-precision floating-point arithmetic that users have to manually
integrate into their designs. The AdaptivFloat representation [36] was motivated by the
precision requirements of deep learning applications on FPGA, but the implementation
of corresponding arithmetic units still requires significant manual effort. Proprietary HLS
tools map fixed- and floating-point C++ types with arbitrary precision onto a back-end
RTL library during the synthesis process [2, 34]. TrueFloat [19] stands out as it not only
provides a library of customizable floating-point operators with arbitrary precision, but
also is fully integrated within the HLS tool Bambu [17]; its results are competitive with
hand-designed library operators when applied to isolated functional units, and it outperforms
commercial HLS tools when synthesizing whole applications because it allows Bambu to
optimize floating-point operators rather than treating them as black boxes.

3 Methodology
3.1 High-Level Synthesis

We based our design flow on High-Level Synthesis (HLS) because it allows us to quickly
translate existing MFA- and MA-based C applications into FPGA accelerators, and to
evaluate different configurations without having to manually modify the RTL design. For
example, the output of HLS tools is a description in low-level Verilog/VHDL, tailored to a
specific FPGA board to extract the best performance in terms of latency (number of cycles,
clock frequency), resource consumption (number of FPGA resources used among the different
categories of logic and memory elements available), or power consumption. It is possible to
specify directives that prioritize one of these metrics over the other, to change the hardware
target, or to request specific backend optimizations starting from the same input program
with no manual rewriting of the code.

FPGA vendors typically offer HLS as part of their design toolkits (e.g., Vitis HLS from
AMD /Xilinx or the Intel HLS compiler), but such tools only support FPGA boards from
a single vendor, and they cannot be modified, as their source code is proprietary. Instead,
we exploit the open-source HLS framework Bambu [17], which facilitates research into new
design automation methods. Bambu has been an invaluable tool in previous projects where
knowledge of the internal HLS process and the possibility of modifying it were crucial to
generate better accelerators in a specific domain (e.g., big data [32], aerospace [18]).
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Bambu supports most C/C++ constructs, including function calls, access to arrays and
structs, parameters passed by reference or copy, pointer arithmetic, dynamic resolution of
memory accesses, and module sharing. Moreover, it can also take as input intermediate
representations from the GCC and Clang compilers, leading to the possibility of direct
integration between Bambu and compiler-based toolchains [7]. The HLS flow in Bambu
is similar to a software compilation process, beginning with a high-level specification and
generating low-level code through a series of analysis and optimization steps divided into
three phases (front-end, middle-end, and back-end). In the front-end, Bambu parses the
input code and translates it into an intermediate representation (IR), while numerous target-
independent analyses and optimizations are performed in the middle-end. The back-end
performs the actual synthesis of Verilog/VHDL code ready for simulation, logic synthesis,
and implementation on FPGA or ASIC through external tools.

When a software description is translated into a hardware accelerator through HLS, there
are ample opportunities to include optimizations that drastically impact the QoR in terms
of performance, area, and energy consumption. One common example is loop unrolling:
replicating the instructions of independent loop iterations allows implementing them in
parallel in the accelerator, increasing performance at the expense of resource consumption.
Alongside techniques that aim at exploiting different degrees of parallelism present in the input
applications, another possibility to generate efficient accelerators in terms of performance per
area is to explore the usage of custom data types, avoiding the generation of floating-point
functional units which are usually inefficient when compared to the specialized floating-point
arithmetic units of modern CPUs and GPUs.

In this paper, we focus on the customization of floating-point computations in isolation,
disregarding all other optimization opportunities available in Bambu. While this will likely
result in sub-optimal results in absolute terms, which would not justify the choice of offloading
computations to FPGA, our aim is to conduct an ablation study to understand the impact
of this specific type of optimization on the QoR of generated accelerators, and on the
application accuracy. We will then exploit information gathered from this study during
future experiments with MFA- and MA-based applications to be accelerated.

3.2 TrueFloat

Experiments with custom data types are usually limited by the back-end libraries supported
by HLS tools, mostly focused on fixed-point types; however, Bambu also integrates the
dedicated TrueFloat framework for the generation of custom floating-point types. TrueFloat
allows users to specify custom formats for floating-point computations and automatically
synthesizes corresponding optimized arithmetic units; different TrueFloat encodings can be
specified for different parts of the input application, resulting in the generation of multi-
precision accelerators. The main strength of TrueFloat is the integration within the HLS
process, providing effortless translation between different floating-point encodings through
simple command-line options and integration with other optimization techniques present in
the HLS flow. TrueFloat also opens the possibility of generating an equivalent representation
of the synthesized accelerator at a higher level of abstraction, which could be used for fast
and accurate software simulation.

Figure 1 describes the TrueFloat synthesis flow within Bambu. The input code is in one of
the standard formats supported by Bambu, and it contains standard floating-point operations
and types. The user expresses one or more required custom representations (one for each
function in the input code) through command-line options, and the HLS flow autonomously
handles type replacement, conversions, and custom arithmetic units generation, avoiding
manual and error-prone code rewriting.
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Figure 1 TrueFloat design methodology as presented in [19].
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A compiler step called FPBlender handles all floating-point operations within the HLS
flow in Bambu, exploiting information generated during previous analysis steps on the
intermediate representation of the input program and allowing subsequent steps to apply
more accurate optimizations after the custom floating-point format has been implemented.
FPBlender generates ad-hoc functional units exploiting the TrueFloat library of templat-
ized components, which contains optimized implementations for basic arithmetic operators
(addition, subtraction, multiplication, division, and comparison) and bidirectional type con-
version operators (floating-point to integer, integer to floating-point, and floating-point to
floating-point). The TrueFloat library components are soft-float implementations in C built
by combining basic integer operations; input and output parameters are defined as unsigned
integers as well. All functions have arguments representing standard operands followed by a
set of eight specialization arguments to indicate the number of exponent bits, fractional bits,
the exponent bias, the rounding mode, the exception mode, whether hidden one is enabled,
whether subnormals are enabled, and the sign mode.

Users of TrueFloat should explicitly define a floating-point format for each function
they want to customize in the input code through the -fp-format command-line option,
which Bambu will use to replace the standard single- or double-precision data type present
in the input file. In particular, -fp-format requires the name of the function that will
be customized and a string that encodes the requested format. Functions called by the
selected function will be implemented with standard types unless —fp-format-propagate is
set, instructing Bambu to propagate the custom data type to all called functions. Besides
the choice of the number of bits for mantissa and exponent, TrueFloat also allows tuning
settings such as whether subnormals are supported or not, as they result in simpler logic and
lower resource consumption. The format string following the function name is composed as
follows:

e<exp_bits>m<frac_bits>b<exp_bias><rnd_mode><exc_mode><spec><sign>

The number of bits requested for the exponent and for the mantissa are set through
exp_bits and frac_bits, and exp_bias indicates the bias added to the unsigned value
represented by the exponent bits. The rounding mode rnd_mode can be either nearest even,
which is the IEEE standard rounding mode, or truncate, where no rounding is applied. The
exception mode exc_mode can be set to require IEEE standard exceptions, to saturation,
where infinite is replaced with the highest possible value and not-a-number results in undefined
behavior, or to overflow, where both infinite and not-a-number result in undefined behavior.
Finally, with spec it is possible to select whether to enable the IEEE standard representation
with hidden one and subnormal numbers, while sign specifies whether all values should be
considered as negative numbers, positive numbers, or if IEEE dynamic sign should be used.
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Accelerators that use floating-point types with lower precision have higher performance
and to use fewer FPGA resources with respect to designs based on standard float or double
calculations. Moreover, TrueFloat arithmetic operators have been shown to have similar or
better performance than other implementations from state-of-the-art libraries [19]. However,
to the best of our knowledge, this is the first time that TrueFloat gets applied to a realistic
input application beyond the single arithmetic operation or small kernel.

TrueFloat provides the required support to implement approximate applications in HLS,
but it fully relies on the user to specify the desired floating-point configuration. Unfortunately,
none of the approaches described in Section 2.2 can be directly applied to find an optimal
TrueFloat configuration within an accuracy constraint. In fact, tools and techniques designed
for software applications tend to consider only a few possible formats, which are the ones
supported by the target CPU, while the design space of possible TrueFloat formats is much
larger: it is possible to specify the exponent bitwidth and the mantissa bitwidth independently,
and tune several other configuration options. Moreover, TrueFloat controls floating-point
precision on a per-function level instead of variable by variable. Finally, the performance
target for a hardware accelerator possibly includes resources consumption besides latency, and
both metrics can only be assessed reliably after long logic synthesis runs. A learning-based
approach would also not be feasible due to the absence of a reference dataset for our target
application. Under these circumstances, manually sampling a limited number of points in the
design space remains the simplest but most effective method to explore the trade-off between
accelerator performance and accuracy of the results. Fortunately, this does not require any
manual code rewriting, as TrueFloat automatically replaces the types of all variables and
operations according to the specified Bambu command-line options.

4 Experimental results

4.1 Target application and configuration exploration

To keep synthesis times within reasonable limits (e.g., less than one hour per configuration),
we evaluated a proxy application in place of the performance modeling use case. The
proxy application solves the n-body problem through a Runge-Kutta-Fehlberg method with
adaptive step size (RKF45) [16], and it has been implemented in C. The gravity interactions
between bodies simulated by the application resemble the patterns of interaction among
multiple agents in our target MFA /MA model, and the same RKF45 method will be used
to solve the ODEs modeling the evolution of the cyber-physical system under investigation.
Therefore, results from the synthesis of the n-body application can be used to decide which
floating-point configurations shall be evaluated in the synthesis of the MFA /MA accelerator,
keeping in mind that the requested precision may change when the number of interacting
agents increases.

Our target application contains the kernel function to be accelerated (solve) together
with a main program that runs the n-body simulation and plots its outputs. By looking at
the output plots, it is easy to assess if the solution is converging correctly. Figure 2 shows the
output plots obtained running simulations of the motion of two planets, i.e., the evolution of
their orbits starting from an initial condition where the planet with the smallest mass has
non-zero speed (purple trace) and the planet with the biggest one is still (green trace). The
correct plot in Figure 2a is obtained with double-precision floating-point calculations, while
using an extremely low precision in part of the simulation may lead to an incorrect plot such
as the one in Figure 2b. Thanks to its advanced co-simulation features, Bambu is able to use
the main function of the target application as a testbench to verify the correct behavior of
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(a) Correct output. (b) Inaccurate output.

Figure 2 Plots generated by the target application with different floating-point accuracies.
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Figure 3 Call graph of the target application.

the accelerated kernel function; it is therefore possible to plot similar output graphs with
results from the RTL simulation of the generated accelerator. TrueFloat configurations with
unacceptably low precision will then be discarded either because the simulation does not
produce a result within a given time limit or by comparing their outputs with Figure 2a.

As TrueFloat allows controlling floating-point configurations at the function level, it
is important to analyze the call graph of the target application (Figure 3). The solve
kernel function repeatedly calls subfunctions interpolateResult and RKF45Step; the latter
contains a loop calling subfunction RKF45SubStep, which in turn calls multiple times the
computeF function. The application also includes calls to floating-point mathematical
functions from the C standard library. The amount of floating-point operations executed by
the application partially depends on the floating-point format used, as there are loops that
terminate based on the achieved precision; in a double-precision run, there are approximately
200.000 floating-point additions and just as many multiplications, floating-point divisions
and other mathematical functions are less than 1000.

We kept the double-precision version of the target application as a baseline (configuration 0
in Table 1) and selected six TrueFloat configurations to compare against it, all of which
produced correct simulation results. We first reduced the number of bits for mantissa and
exponent for the whole accelerator, specifying a format for solve in the Bambu command-
line options and requesting the propagation of the format to all called functions. The
specialization string was selected to obtain IEEE-compliant behavior. The minimum number
of bits was found to be 22 for the mantissa and 7 for the exponent, scaling the bias accordingly
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Table 1 List of floating-point configurations to be evaluated.

Configuration Function affected Exponent bits (bias) Mantissa bits Specialization string

0 solve 11 (-1023) 52 nihs
1 solve 8 (-127) 23 nihs
2 solve 7 (-63) 22 nihs
3 solve 7 (-63) 22 nihs
interpolateResult 6 (-31) 10 nihs

solve 7 (-63) 22 nihs

4 interpolateResult 6 (-31) 10 nihs
RKF45subStep 6 (-31) 21 nihs

5 solve 7 (-63) 22 tih
6 solve 7 (-63) 22 tih
interpolateResult 6 (-31) 10 tih

(configuration 2); trimming the bitwidths further resulted in no convergence or unacceptable
errors in the output plots. Interestingly, this means that IEEE single-precision floating-
point would also be an acceptable configuration, and so we included that in the evaluation
(configuration 1). Next, we tested whether we could further reduce the number of bits
with respect to configuration 2 by selecting a different format for one or more subfunctions
(configurations 3 and 4); in fact, lowering the precision of functions that contain fewer
operations has a smaller impact on the accelerator QoR, but also a smaller impact on the
application accuracy. Finally, we acted on the specialization string of configurations 2 and 3
removing support for subnormal numbers and using truncation instead of rounding to nearest
even (configurations 5 and 6), as this was previously shown to be beneficial, especially in
terms of area consumption [19].

4.2 Synthesis results

We synthesized six versions of the n-body application with Bambu according to the configur-
ations of Table 1 and evaluated the QoR of the generated accelerators after place-and-route
(p&r). We chose an Alveo U55C FPGA from AMD/Xilinx as target and requested a clock
period of bns, which was achieved by all configurations; all other Bambu options were left as
default in order to focus on the effects of customizing floating-point formats on performance.
We evaluated and reported in Figure 4 the number of clock cycles from simulation, the latency
considering the achieved frequency post p&r, and area consumption in terms of number
of digital signal processing blocks (DSPs, the scarcest resource on FPGA and required to
implement floating-point multiplications), slices, lookup tables (LUTS), and registers.

Green bars represent synthesis results for configuration 0, i.e., the 64-bit double-precision
baseline; all other configurations use floating-point formats with fewer bits, which translates
directly into fewer resources consumed (Figures 4c-4f). The comparison is especially striking
in Figure 4c, as the other configurations use ~ 85% fewer DSPs. Looking at performance
(Figures 4a and 4b), however, configuration 0 is not the slowest one: configurations 3, 4,
and 6 perform worse than configurations 1, 2, and 5, with configuration 4 even running
slower than the double-precision baseline. Despite using custom formats with fewer bits, in
fact, these configurations have to pay the price of converting data between different types
every time that one of the affected subfunctions is called. (It is likely possible to restructure
the code to mitigate this issue, e.g., by unrolling loops that call the same function multiple
times.) The suggestions of moving from rounding to truncation and of dropping support for
subnormals were proven to be beneficial, as configurations 5 and 6 result in better QoR than
configurations 2 and 3 along all considered metrics.
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Figure 4 Synthesis results for six different floating-point configurations.

From these results, we can conclude that using custom floating-point formats generated
by TrueFloat is highly beneficial to reduce the area consumption of ODE solvers accelerated
on FPGA. The latency of the generated accelerators can decrease when reducing the number
of bits used for floating-point computations, but other factors, such as the amount of required
conversion operators, may counter the improvement. In absolute terms, the accelerators we
generated are quite slow (~ 7 times higher latency than software execution); however, we did
not exploit any of the available parallelism in the application, and thus we are confident that
it would not take too much effort to obtain higher-performance versions of the accelerator.
Even in the worst case that we evaluated, the resources required occupy less than ~ 4%
of the target FPGA, suggesting that, for example, aggressive unrolling of loops should be
possible (considering also that the application is highly compute-intensive and thus memory
bandwidth should not be a bottleneck if intermediate results are kept on-chip).

5 Conclusion

We applied the TrueFloat framework to an ODE solver performing double-precision floating-
point calculations to generate FPGA accelerators with custom precision, aiming at studying
the effect of lower mantissa and exponent bitwidth on performance and area consumption.
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The results we obtained highlight the possible savings in terms of resources and latency but
also the care required to choose the best floating-point configuration in a wide design space

where the loss of accuracy in the application output is also a concern; future research on
automated design space exploration will undoubtedly improve the usability of TrueFloat.

—— References

1

10

11

12

13

Hassan Al-Yassin, Mohammed A. Fadhel, Omran Al-Shamma, and Laith Alzubaidi. Solving
Lorenz ODE System Based Hardware Booster. In Intelligent Systems Design and Applications
(ISDA), pages 245254, 2019. doi:10.1007/978-3-030-49342-4_24.

AMD/Xilinx. Arbitrary Precision Data Types Library, 2024. URL: https://docs.amd.com/
r/en-US/ugl1399-vitis-hls/Arbitrary-Precision-AP-Data-Types.

Silas Bartel and Matthias Korch. Generation of logic designs for efficiently solving ordinary
differential equations on field programmable gate arrays. Software: Practice and Ezrperience,
53(1):27-52, 2023. doi:10.1002/spe.3043.

Soham Bhattacharya and Dwaipayan Chakraborty. Design-Space Exploration of the Runge-
Kutta Hardware Accelerator for Solving Ordinary Differential Equation. In 2023 IEEE
International Conference on Electrical, Automation and Computer Engineering (ICEACE),
pages 260-264, 2023. doi:10.1109/ICEACE60673.2023.10442673.

Soham Bhattacharya and Dwaipayan Chakraborty. Implementation of a Hardware Accelerator
with FPU-Based Euler and Modified Euler Solver For an Ordinary Differential Equation.
In 2028 International Conference on Computational Science and Computational Intelligence
(CSCI), pages 1106-1112, 2023. doi:10.1109/CSCI62032.2023.00182.

Andrea Bobbio, Marco Gribaudo, and Miklés Telek. Analysis of Large Scale Interacting
Systems by Mean Field Method. In 2008 Fifth International Conference on Quantitative
FEvaluation of Systems, pages 215-224, 2008. doi:10.1109/QEST.2008.47.

Nicolas Bohm Agostini, Serena Curzel, Jeff Jun Zhang, Ankur Limaye, Cheng Tan, Vinay
Amatya, Marco Minutoli, Vito Giovanni Castellana, Joseph Manzano, David Brooks, Gu-Yeon
Wei, and Antonino Tumeo. Bridging Python to Silicon: The SODA Toolchain. IEEE Micro,
42(5):78-88, 2022. doi:10.1109/MM.2022.3178580.

Andrea Borghesi, Giuseppe Tagliavini, Michele Lombardi, Luca Benini, and Michela Milano.
Combining learning and optimization for transprecision computing. In Proceedings of the 17th
ACM International Conference on Computing Frontiers, pages 10-18, 2020. doi:10.1145/
3387902.3392615.

Dario Bruneo, Marco Scarpa, Andrea Bobbio, Davide Cerotti, and Marco Gribaudo. Ana-
lytical modeling of swarm intelligence in wireless sensor networks through Markovian agents.
In Proceedings of the Fourth International ICST Conference on Performance FEvaluation
Methodologies and Tools, 2009. doi:10.4108/ICST.VALUETO0LS2009.7672.

Lelio Campanile, Mauro lacono, Fiammetta Marulli, Marco Gribaudo, Michele Mastrioi-
anni, et al. A DSL-Based Modeling Approach For Energy Harvesting IoT/WSN. In
36th International ECMS Conference on Modelling and Simulation, pages 317-323, 2022.
doi:10.7148/2022-0317.

Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vissers, and Zhiru
Zhang. FPGA HLS Today: Successes, Challenges, and Opportunities. ACM Transactions on
Reconfigurable Technology and Systems, 15(4):1-42, 2022. doi:10.1145/3530775.

Francesca Cordero, Daniele Manini, and Marco Gribaudo. Modeling Biological Pathways: An
Object-Oriented like Methodology Based on Mean Field Analysis. In 2009 Third International
Conference on Advanced Engineering Computing and Applications in Sciences, pages 117-122,
2009. doi:10.1109/ADVCOMP.2009.25.

Ayad M. Dalloo, Amjad Jaleel Humaidi, Ammar K. Al Mhdawi, and Hamed Al-Raweshidy.
Approximate Computing: Concepts, Architectures, Challenges, Applications, and Future
Directions. IEEE Access, 12:146022-146088, 2024. doi:10.1109/ACCESS.2024.3467375.

2:11

PARMA-DITAM 2025


https://doi.org/10.1007/978-3-030-49342-4_24
https://docs.amd.com/r/en-US/ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types
https://docs.amd.com/r/en-US/ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types
https://doi.org/10.1002/spe.3043
https://doi.org/10.1109/ICEACE60673.2023.10442673
https://doi.org/10.1109/CSCI62032.2023.00182
https://doi.org/10.1109/QEST.2008.47
https://doi.org/10.1109/MM.2022.3178580
https://doi.org/10.1145/3387902.3392615
https://doi.org/10.1145/3387902.3392615
https://doi.org/10.4108/ICST.VALUETOOLS2009.7672
https://doi.org/10.7148/2022-0317
https://doi.org/10.1145/3530775
https://doi.org/10.1109/ADVCOMP.2009.25
https://doi.org/10.1109/ACCESS.2024.3467375

2:12

Custom Floating-Point Computations for the Optimization of ODE Solvers on FPGA

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

F. de Dinechin and B. Pasca. Designing Custom Arithmetic Data Paths with FloPoCo. IEEFE
Design & Test of Computers, 28(4):18-27, 2011. doi:10.1109/MDT.2011.44.

Alireza Fasih, Tuan Do Trong, Jean Chamberlain Chedjou, and Kyandoghere Kyamakya.
New computational modeling for solving higher order ODE based on FPGA. In 2009 2nd
International Workshop on Nonlinear Dynamics and Synchronization, pages 49-53, 2009.
doi:10.1109/INDS.2009.5227969.

Erwin Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and their
application to some heat transfer problems, volume 315. National aeronautics and space
administration, 1969.

Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito,
Marco Lattuada, et al. Bambu: an Open-Source Research Framework for the High-Level
Synthesis of Complex Applications. In Proceedings of the 58th ACM/IEEE Design Automation
Conference (DAC), pages 1327-1330, 2021. doi:10.1109/DAC18074.2021.9586110.

Fabrizio Ferrandi, Michele Fiorito, Claudio Barone, Giovanni Gozzi, and Serena Curzel.
High-Level Synthesis Developments in the Context of European Space Technology Research.
In 15th Workshop on Parallel Programming and Run-Time Management Techniques for
Many-Core Architectures and 13th Workshop on Design Tools and Architectures for Multicore
Embedded Computing Platforms (PARMA-DITAM 2024), volume 116, pages 1:1-1:12, 2024.
doi:10.4230/0ASIcs.PARMA-DITAM.2024.1.

Michele Fiorito, Serena Curzel, and Fabrizio Ferrandi. TrueFloat: A Templatized Arithmetic
Library for HLS Floating-Point Operators. In Embedded Computer Systems: Architectures,
Modeling, and Simulation: 23rd International Conference, SAMOS 2023, Samos, Greece, July
2-6, 2023, Proceedings, pages 486493, 2023. doi:10.1007/978-3-031-46077-7_35.

Laurent Fousse, Guillaume Hanrot, Vincent Lefévre, Patrick Pélissier, and Paul Zimmermann.
MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding. ACM
Trans. Math. Softw., 33(2), 2007. doi:10.1145/1236463.1236468.

Jonathan Garcia-Mallen, Shuohao Ping, Alex Miralles-Cordal, ITan Martin, Mukund Ra-
makrishnan, and Yipeng Huang. Towards an Accelerator for Differential and Algebraic
Equations Useful to Scientists. IEEE Computer Architecture Letters, 22(2):185-188, 2023.
doi:10.1109/LCA.2023.3332318.

Marco Gribaudo, Davide Cerotti, and Andrea Bobbio. Analysis of On-off policies in Sensor
Networks Using Interacting Markovian Agents. In 2008 Sixzth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom), pages 300-305, 2008.
doi:10.1109/PERCOM.2008.100.

Marco Gribaudo, Mauro Iacono, and Daniele Manini. COVID-19 Spatial Diffusion: A
Markovian Agent-Based Model. Mathematics, 9(5), 2021. doi:10.3390/math9050485.
Nhut-Minh Ho, Elavarasi Manogaran, Weng-Fai Wong, and Asha Anoosheh. Efficient floating
point precision tuning for approximate computing. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 63—68, 2017. doi:10.1109/ASPDAC.2017.7858297.
Andrew Hollabough and Dwaipayan Chakraborty. An Open-Source Co-processor for Solving
Lotka-Volterra Equations. In 2022 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1690-1694, 2022. doi:10.1109/ISCAS48785.2022.9937835.

Chen Huang, Bailey Miller, Frank Vahid, and Tony Givargis. Synthesis of networks of custom
processing elements for real-time physical system emulation. ACM Trans. Des. Autom. Electron.
Syst., 18(2), 2013. doi:10.1145/2442087.2442092.

Chen Huang, Frank Vahid, and Tony Givargis. A Custom FPGA Processor for Physical Model
Ordinary Differential Equation Solving. IEEE Embedded Systems Letters, 3(4):113-116, 2011.
doi:10.1109/LES.2011.2170152.

Chen Huang, Frank Vahid, and Tony Givargis. Automatic synthesis of physical system
differential equation models to a custom network of general processing elements on FPGAs.
ACM Trans. Embed. Comput. Syst., 13(2), 2013. doi:10.1145/2514641.2514650.


https://doi.org/10.1109/MDT.2011.44
https://doi.org/10.1109/INDS.2009.5227969
https://doi.org/10.1109/DAC18074.2021.9586110
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2024.1
https://doi.org/10.1007/978-3-031-46077-7_35
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1109/LCA.2023.3332318
https://doi.org/10.1109/PERCOM.2008.100
https://doi.org/10.3390/math9050485
https://doi.org/10.1109/ASPDAC.2017.7858297
https://doi.org/10.1109/ISCAS48785.2022.9937835
https://doi.org/10.1145/2442087.2442092
https://doi.org/10.1109/LES.2011.2170152
https://doi.org/10.1145/2514641.2514650

S. Curzel and M. Gribaudo

29

30

31

32

33

34
35

36

37

Thomas G. Kurtz. Solutions of Ordinary Differential Equations as Limits of Pure Jump

Markov Processes. Journal of Applied Probability, 7(1):49-58, 1970. URL: http://www. jstor.

org/stable/3212147.

Siting Liu and Jie Han. Hardware ODE Solvers using Stochastic Circuits. In Proceedings of the
54th Annual Design Automation Conference (DAC), 2017. doi:10.1145/3061639.3062258.
Sparsh Mittal. A Survey of Techniques for Approximate Computing. ACM Comput. Surv.,
48(4), 2016. doi:10.1145/2893356.

Christian Pilato, Subhadeep Banik, Jakub Beranek, Fabien Brocheton, Jeronimo Castrillon,
Riccardo Cevasco, et al. A System Development Kit for Big Data Applications on FPGA-based
Clusters: The EVEREST Approach. In 2024 Design, Automation & Test in Europe Conference
& Ezhibition (DATE), pages 1-6, 2024. doi:10.23919/DATE58400.2024.10546518.

Cindy Rubio-Gonzéalez, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan,
Koushik Sen, et al. Precimonious: Tuning assistant for floating-point precision. In SC ’13:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, pages 1-12, 2013. doi:10.1145/2503210.2503296.

Siemens Digital Industries Software. HLS Libs, 2024. URL: https://hlslibs.org/.

Toannis Stamoulias, Matthias Moller, Rene Miedema, Christos Strydis, Christoforos Kachris,
and Dimitrios Soudris. High-Performance Hardware Accelerators for Solving Ordinary Dif-
ferential Equations. In Proceedings of the 8th International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies (HEART), 2017. doi:10.1145/3120895.3120919.
T. Tambe, E. Y. Yang, Z. Wan, Y. Deng, V. Janapa Reddi, et al. Algorithm-Hardware
Co-Design of Adaptive Floating-Point Encodings for Resilient Deep Learning Inference. In
2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1-6, 2020. doi:10.1109/
DAC18072.2020.9218516.

Xiaojun Wang and Miriam Leeser. VFloat: A Variable Precision Fixed- and Floating-Point
Library for Reconfigurable Hardware. ACM Trans. Reconfigurable Technol. Syst., 3(3), 2010.
doi:10.1145/1839480.1839486.

2:13

PARMA-DITAM 2025


http://www.jstor.org/stable/3212147
http://www.jstor.org/stable/3212147
https://doi.org/10.1145/3061639.3062258
https://doi.org/10.1145/2893356
https://doi.org/10.23919/DATE58400.2024.10546518
https://doi.org/10.1145/2503210.2503296
https://hlslibs.org/
https://doi.org/10.1145/3120895.3120919
https://doi.org/10.1109/DAC18072.2020.9218516
https://doi.org/10.1109/DAC18072.2020.9218516
https://doi.org/10.1145/1839480.1839486




System-Level Timing Performance Estimation
Based on a Unifying HW/SW Performance Metric

Vittoriano Muttillo &

University of Teramo, Italy

Vincenzo Stoico &
Vrije Universiteit Amsterdam, The Netherlands

Giacomo Valente =
University of L’Aquila, Italy

Marco Santic &
University of I’Aquila, Ttaly

Luigi Pomante &
University of L’Aquila, Italy

Daniele Frigioni &
University of L’Aquila, Italy

—— Abstract

The rapidly increasing complexity of embedded systems and the critical impact of non-functional

requirements demand the adoption of an appropriate system-level HW/SW co-design methodology.
This methodology tries to satisfy all design requirements by simultaneously considering several
alternative HW/SW implementations. In this context, early performance estimation approaches
are crucial in reducing the design space, thereby minimizing design time and cost. To address the
challenge of system-level performance estimation, this work presents and formalizes a novel approach
based on a unifying HW/SW performance metric for early execution time estimation. The proposed
approach estimates the execution time of a C function when executed by different HW/SW processor
technologies. The approach is validated through an extensive experimental study, demonstrating its
effectiveness and efficiency in terms of estimation error (i.e., lower than 10%) and estimation time
(close to zero) when compared to existing methods in the literature.

2012 ACM Subject Classification Computer systems organization — Embedded systems; Computer
systems organization — Embedded hardware

Keywords and phrases embedded systems, hw/sw co-design, performance estimation, lasso, machine
learning

Digital Object Identifier 10.4230/OASIcs. PARMA-DITAM.2025.3

Supplementary Material Software (Source Code): https://github.com/hepsycode/SLIDE-x [22]
archived at swh:1:rev:0907c£39£7d023d0dc2e8307e1ffef6115d0377a

Funding This research work has been funded by the Electronic Components and Systems for European
Leadership Joint Undertaking (ECSEL JU) through the project AIDOaRt, grant agreement No.
101007350, and the Key Digital Technologies Joint Undertaking (KDT JU) through the project
MATISSE, grant agreement No. 101140216.

1 Introduction

In the last thirty years, there has been an exponential increase in the exploitation of
embedded systems in everyday life. This increase has led to a rise in the complexity of such
embedded systems due to: (i) the continuous demand for additional improvements in both
functional and non-functional requirements and (ii) the growing design automation with the
application of embedded systems in various domains (e.g., Automotive, Aerospace) [11,25].
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Therefore, designing these systems is even more a critical task and so early-stage HW/SW
performance estimation for rapid design space exploration at higher abstraction levels becomes
crucial [10,29].

In this context, numerous studies have explored the use of Machine Learning (ML)
techniques for performance estimation [2,14,15,17,28,34]. The adoption of these techniques
has been driven by the challenges associated with creating an accurate analytical model of
the HW/SW micro-architecture, which is often error-prone or sometimes impossible due
to the lack of detailed documentation and necessary human expertise for model design [2].
Despite this scenario, the current state of the art lacks, to the best of our knowledge, of a
unified HW/SW model capable of facilitating rapid performance estimation across several
platforms at the system level.

For the above reasons, this study investigates how to overcome the limitations of the
existing methods, particularly those restricted to specific application domains or technologies,
through an approach that allows performance estimation of different HW/SW designs at
the system level of abstraction. The provided approach uses the LASSO model to estimate
the CC4CS performance metric presented and validated in [26]. CCACS is a statement-level
metric that can be used to quantify and, therefore, compare the performance of different
processor technologies (i.e., Commercial Off-the-Shelf — COTS 8/32-bit embedded processors
and HW components synthesized on FPGAs). CC4CS is defined as the ratio between the
clock cycles and statements executed by a C function. In addition, this study presents a
preliminary evaluation of the accuracy of the LASSO model in estimating CC4CS values.
The evaluation of the accuracy of LASSO is carried out by using the SLIDE-x! framework,
which executes a benchmark of well-known C functions across a set of 3 processors, namely
Intel 8051, Atmega328p, Leon3, and an FPGA, i.e., the Artix7. Consequently, SLIDE-x
outputs the CC4CS values that are used to train the LASSO model. Finally, the accuracy of
LASSO is evaluated by comparing its predictions against the measurement profiled using
SLIDE-x. The results are promising as they show a Mean Absolute Percentage Error (MAPE)
of less than 10% for the Intel 8051, Leon3, and Artix7, with a maximum speed-up of up
to 32x compared to the traditional HLS flow. In summary, our paper offers the following
contributions: (1) formal HW/SW processor characterization through statistical analysis;
(2) a detailed regression-based approach for evaluating HW/SW design performance; (3) a
preliminary assessment of the accuracy of our performance predictions. This work is useful
for system designers, helping them evaluate multiple HW/SW solutions and reduce design
space exploration overhead.

2 Related works

In this section, we review the current state of research focused on two key areas within
embedded systems design: predicting the timing performance of processors built to execute
a given Instruction Set Architecture (ISA) (i.e., General Purpose Processors — GPPs, called
SW processors), and of processors designed to directly execute application functions (i.e.,
Single Purpose Processors - SPPs, called HW processors) at the system level of abstraction.

To describe a SW processor and its behavior, several levels of abstraction can be considered.
Accordingly, several timing estimations can be performed [27]. In such a context, the authors
in [14] use a linear regression technique based on an application analysis performed at
the Register Transfer Level (RTL) internal representation of the GNU GCC compiler (i.e.,

! SLIDE-x repository: https://github.com/hepsycode/SLIDE-x


https://github.com/hepsycode/SLIDE-x

V. Muttillo, V. Stoico, G. Valente, M. Santic, L. Pomante, and D. Frigioni

needs for micro-architectural knowledge of the system). Zhang et Al. [34] use a linear
regression model to estimate the performance of a given embedded software executed by
the RISC-V processor, using metrics related to (assembly) instruction level. The final
speed-up in comparison to the cycle-accurate simulation is up to 5x for RV32I and 4.2x for
RV32IM. Finally, Amalou et Al. [2] present several approaches: (1) Ithemal: a tool that
uses a Recurrent Neural Network (RNN) architecture with a hierarchical Long Short-Term
Memory (LSTM) approach to predict the throughput of a set of instructions considering
the opcodes and operands of instructions in a basic block (BB); (2) CATREEN: an RNN
predictive algorithm able to predict the steady-state execution time of BBs in a program,;
(3) ORXESTRA: a tool that predicts the execution time of BBs within compiled binaries
using a ML technique named Transformers XL, a recurrent variant of Transformers.

In the HW domain, the use of High-Level Synthesis (HLS) tools has become of vital
importance [3,16]. HLS tools provide automatic transformation of C/C++/SystemC spe-
cifications into Hardware Description Languages (HDL) like Verilog or VHDL, significantly
boosting productivity in custom hardware development 22. However, for large-scale sys-
tems, the time needed to perform HLS can often become a bottleneck [27]. Additionally,
fast platform selection remains a significant challenge for developers due to the significant
performance variations among platforms for the same workload [§].

To address this issues, Makrani et al. [15] introduced the Cross-Platform Performance
Estimation (XPPE) tool based on ML. XPPE uses the resource usage reported by the Xilinx
HLS tool and predicts application acceleration on various platforms using a Neural Network
(NN) model, considering both application characteristics and FPGA platform parameters.
The authors of [28] propose HLSPredict, an ML-based cross-platform estimator. Unlike
XPPE, HLSPredict uses workloads as inputs to estimate performance on an FPGA by
executing them on a Commercial Off-The-Shelf (COTS) host CPU. Finally, [17] presents
Pyramid, a tool that uses ML to estimate optimal performance and resource usage of HLS
designs, with the Random Forest (RF) outperforming other ML models.

2.1 State-of-the-Art Limitations

Table 1 compares our work with state-of-the-art ML studies by examining prediction errors.
While existing studies focus on reducing errors through SW implementation or HW synthesis,
none offer a unified HW/SW model with low prediction times and errors. This gap highlights
the need for a unified model to compare HW and SW processors at the system level. Our
paper aims to address these limitations.

3 Preliminaries

Our work introduces a method for system-level execution time estimation of C functions
across different HW/SW processor technologies, using the CC4CS performance metric [26].
This metric, already used in literature for HW/SW Co-Design methodologies [21,24], sim-
plifies performance estimation and comparison by abstracting the execution of “generic C
statements”. Our approach is built on the model in [5], which defines a “generic C statement”
as a combination of fundamental units, called “atoms”. Atoms are the basic components
of statements, and the complexity of a statement depends on the number of atoms it con-

2 Panda/Bambu Project: https://panda.dei.polimi.it/
3 Vitis HLS: https://wuw.xilinx.com
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Table 1 Comparison of literature Timing Estimation works. L /NL:= Linear/Non-Linear, LR:=

Linear Regression.

’ ‘Work H Target Approach ‘ Error (%)
» ARMO926EJ-S (SW) R 8.25% < --- < 15.45%
LEON3 (SW) 8.03% < --- < 13.60%
RV32 (SW) 7.03%
[34] RV32IM (SW) LR 5.27%
ARM Cortex M4. M7 ITHEMAL 9.1% < --- <18.2%
1 Cortex M4, M7, o - o
2] A53, AT2 (SW) CATREEN 8.9% < -+ < 13.4%
ORXESTRA 6.2% < --- <8.9%
(28] Artix7 (HW) L/NL ML 1.88% < -+ < 9.79%
[15] || 20 Xilinx FPGA (HW) NN 51% < - < 9%
[17] || 3 Xilinx FPGA (HW) L/NL ML 3.5%< - < 4.8%
8051 (SW - CISC), System-Level 4.26% < -+ < 6.53%
Our ATmega (SW - RISC), Linear ML 6.99% < --- < 22.04%
Work || LEON3 (SW - RISC)) | (Unified HW/SW | 0.34% < --- < 2.58%
Bambu (HW - ArtixT7) Approach) 6.54% < --- < 11.84%

tains. Although the complexity of a C statement is not strictly predefined [26], factors like
programmer experience, coding style, and standards [13] usually keep it at a “low/medium
average complexity”. A “generic C statement” reflects the common way programmers write
statements. When a C function runs with input data set Dy, each atom and statement
executes a certain number of times, enabling the collection of profiling data, such as through
tools like Gcov.

3.1 Performance Model for SW Processors

This subsection introduces a general mathematical model representing the execution time of
a C function executed by a basic GPP (i.e., no advanced microarchitecture features, such as
pipeline), refining the model proposed in [5]. To perform timing performance estimation, a
model for the approximate (ideal) execution time T}, is required. Therefore, in a basic GPP,
the ideal execution time of a generic C function is:

7. = NL.coy 7 (1)

where C'C} is the average number of clock cycles per statement, 7; is the GPP processor’s
clock period, and N, ,5 represents the number of executions of all assembly instructions in the
generic C function when run with input data set Dy.

3.2 Performance model for HW Processors

HW implementation (i.e., SPP) of a generic C function can be done using HLS tools
like Bambu?, LegUp [6], or Vitis HLS®. As noted in [27], common HLS practices use an
intermediate representation to capture the control and data flows of the C code. Basic Blocks
(BBs) represent the code control flow at the statement level.

The visual representation of control and data flow using BBs is called Control and Data
Flow Graph (CDFG). Each operation is assigned to a Functional Unit (FU) capable of
executing it [1], and FUs are encapsulated within the BBs of the CDFG model, as shown in
Figure 1. Each datapath within the g-th BB contains LYl functional units of type FUj 4.
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B1 B2

(Kouagey)th

B3

B4

Figure 1 CDFG representation. FU, > is one of the FU of basic block B2, while s is the total
latency of basic block B2.

(e.g., sum, mul, sub). The total propagation time (latency) depends on Integrated Circuit (IC)
technologies and micro-architecture. Lf f]] is obtained from code analysis on non-scheduled
DFGs, while delays from registers and multiplexers are ignored. The actual execution time
of a generic C function synthesized as an SPP is defined as:

st FU
NI?BNqu L
Z Z Nst Z%qv Yi.qv.k " Tj
q=1 54k =1

1if FU, 4 € longest data path

where w; ., = 2
S {0 otherwise @

where T,fl W in Eq. 2 is the execution time of the q-th BB in a generic C function synthesized
as SPP p; with input data set Djy. N,?B is the total number of executed BBs, Nij . 18
the number of executed statements in the g-th BB, and v; 4.1 is the latency of the v-th
FU in the g-th BB. The clock period 7; depends on IC technology, micro-architecture, and
scheduling policy. Assuming no multi-cycling, pipelining, or chaining, 7; is given by the
following equation.

T = vr?j;(}t(FU%q, v)

An average slack time (i.e., idle time of operations in a control step) can be used in multi-
cycling and pipelined implementations [27] to calculate 7;. HLS tools allow setting a desired
clock period 7; (e.g., Bambu?), and aim to minimize the difference between the desired 7
and the actual 7j. From Eq. 2, the simplified execution time model for a generic C function
synthesized as SPP can be approximated as follows:

LFU

Tk h Z Tk n =1/Ng Z Z W.qw * Visgww * Tj (3)

—HW
where T’y ; is the average execution time of the h-th statement belonging to the g-th BB in
a generic C function synthesized as SPP p; with data Dy, under the desired clock period 7;.
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3.3 Proposed Unified HW/SW Performance Model

The proposed unified HW/SW performance model integrates the timing behavior of a generic
C function executed on a GPP with that of the same function synthesized as an SPP, achieved
through HLS tools.

For the SW side, let N,{’k’ ; represent the number of assembly instructions needed to
execute statement h of the C function on GPP p; with input data set Dj. This can be
determined using an assembly-level execution trace [20]. The average number of executed

. . ~1 .
assembly instructions N, is:

Lst Lst
Ny=1Ng S NL, and N =Y N[, =N, - Ny
h=1 h=1

N ,g is the total number of executed assembly instructions, and Nt is the total number of
executed statements for a generic C function with Dy. Therefore, Eq. 1 can be redefined:

Lt I
TiW:NiN]?tCC]TJ:Nl‘:t h=1 ](l]sktj J
k

“Tj (4)

According to Eq. 4, the expressions for the approximate (ideal) T, can be redefined for basic
GPP processors as follows:

Lt
UST)SW = 1/Ng* - S Ni ;- CCy -7 (6)
h=1
Lst
CC']-S:ZV = Z N}{,k,j -CC; @
h=1

Eq. 7 shows the total clock cycles CCf,ZV needed to execute a generic C function on GPP
p; with input Dj. This value is normalized in Eq.6 to the total number of C statements
executed with input Dy.

For the HW side, based on Eq. 3, the number of clock cycles CkaW needed to execute a
generic C function synthesized as an SPP can be evaluated using HLS tools?. These tools
generate HDL files (Verilog or VHDL) and provide the required clock cycles for executing C
functions with data Dy, as follows:

BB 7 FU
Ny Lj,q

CCHY =Y > wigw Viaw (8)

g=1 v=1

According to Eq. 5 and Eq. 8, a generic C function with input data Dy executed by a
GPP or by an SPP requires an execution time of:

HW

__Hw _ cCsy

TV = NpHST) S = N | ) (9)
k

The fraction within parentheses in Eq. 9 represents the unified metric Clock Cycles
for C statements (CC4CS) [26]. The CC4CS metric, at the statement level of abstraction,
encompasses both atoms (SW) and blocks (HW). According to Eq. 9, the empirical evaluation
of the CC4CS metric across a set of HW/SW processor technologies requires a well-defined
methodology for automated and repeatable operations, as shown in Figure 2.
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HDL Simulator (HW)
Compilation/Synthesis
for the target processor
Number of Clock Cycles) ISS (SW)

CC4CS =

(Executed C Statements)

[ Program Profiling

Figure 2 CC4CS Evaluation Methodology.

For a specific processor p;, each C function is taken from the benchmark. Random input
data Dy ; is generated and uniformly distributed within a set range. Two parallel processes
then determine the clock cycles required by the target HW or SW processor to execute the

function (C’CJ?TVVVV) and the number of C statements executed (Ng'), which depends only
on the input data and function, not on the processor. To evaluate CC4CS across HW/SW
processors, the process involves: (a) selecting target processors p;; (b) choosing benchmark
C functions; (c) generating input data sets Dy; (d) profiling C functions to find the number
of executed statements N;* (using tools like Geov); (e) compiling/synthesizing C functions
for each processor; (f) performing cycle-accurate simulations to extract the real execution
time £(ST}). This is done through ISS or HDL simulations. Each processor p; will then have
a Cumulative Distribution Function (CDF) of CC4C'S;. Different compiler optimization
flags can be applied, though in this work, the -O0 flag is used as proof of concept, leaving
other flags for future exploration.

3.4 Performance Estimation Approach

This work addresses the challenge of determining an estimator, TSJC, for the actual (real)
execution time of a given C function z, implemented or synthesized through both HW/SW
processor technologies. The total actual (real) estimation time of a generic C function is
expressed as follows:

1,5t
Tk = ZNfi,tk . t(STh,k) ~ f(Nljtﬂ?(STk)) = Tk (10)
h=1

where £(STy) is the estimated average time to execute a statement ST}, in a generic C
function. The error to be minimized over functions and input data sets is:
. 2 . ™\ 2
min €, = min (T — T; 11
S, € V{Dk}( k= T) (11)
According to Eq. 10, our proposed solution uses the Least Absolute Shrinkage and
Selection Operator (LASSO) [7] to exploit an approach called the CC4CS LASSO Regression
Approach (CLRA), as follows:

T = fo+ Ni* - #(STh) - B+ - |B]

t(STy, zs) = 1(STy) + 6 (12)

t(STy) = g(CC4CS;, ;) AND 6 = h(0,CC4CS;, 7))
where 6 depends on correction functions like, e.g., the affinity value defined in [4]. LASSO
regression performs an L1 regularization that adds a penalty equal to the absolute value of
the magnitude of the coefficients. LASSO solutions are quadratic programming problems

best solved with dedicated software tools (e.g., Matlab). According to Eq. 11 and Eq. 12,
we define the final estimation problem as follows:
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d P N R
min 1/2d) [T = fo = Ni* - HSTh) - B + A- 18] (13)
0, -
where d is the number of observations (i.e., number of C function executions), T\ is the
execution time with input data set Dy, Ng* is the number of executed C statements with
input data set Dy, A is a non-negative regularization parameter. The parameters 5y and
are scalar values.

4 Experimental Activities

This section outlines the experimental activities used to validate the proposed processor
characterization and performance estimation approach. Based on Eq. 9 and Figure 2, we
developed the SLIDE-x (System-Level Infrastructure for HW/SW Dataset E-xtraction)
framework to evaluate CC4CS across various processors. While implementation details
are beyond the scope of this paper, the source code is freely available on GitHub!. All
experiments were performed on a PC with an Intel® Xeon CPU E3-1225 v5 @ 3.30 GHz, 32
GB memory, and 128KB L1, 1 MB L2, and 8 MB L3 caches.

The benchmark includes 15 control- and data-dominated C functions from well-established
HW/SW benchmarks [27]. Each function was tested with various data types (namely: int8,
int16, int32, int64 from stdint library, single precision IEEE 754 floating point data types)
and randomly generated input files. A total of 6 * 10* inputs were generated via uniform
random distribution, with additional tests using 6 * 105 and 6 * 10% inputs showing no
significant difference. The benchmark avoids function calls, recursion, external files, or library
routines, and input ranges were set to prevent overflows.

CC4CS was evaluated for specific HW /SW processor technologies. For GPPs, we con-
sidered: (1) Intel 8051 CISC microcontroller?; (2) Microchip ATmega328/P3, a low-power
CMOS 8-bit microcontroller; and (3) LEON36, a 32-bit SPARC V8-compatible soft pro-
cessor. The 8051 was simulated using Dalton ISS*, Atmega328/P with SimulAVR ISS7, and
LEON3 with Cobham Gaisler TSIM ISS6. For SPPs, FPGA synthesis for the Xilinx Artix7
XC7A35T-1CPG236C was done using Bambu HLS?.

4.1 Processor Characterization Results

In our work, we aimed to identify which classical probability distribution best fits the
empirical cumulative CC4CS; distributions obtained via the SLIDE-x framework (e.g.,
Normal Gaussian, Lognormal, Beta, Weibull). These distributions were evaluated using
Goodness-Of-Fit (GOF) metrics, including NLogN, BIC, AIC, and AICc. The analysis
revealed that the Lognormal distribution is best for GPPs, while the Normal distribution
suits SPPs, as shown in Figure 3.

We then outlined an approach to characterize GPPs and SPPs, focusing on estimating
distribution parameters (mean p, standard deviation o) for specific processors. To derive
the values for GPPs, it has been applied the Moment Matching Approzimation (MMA)
method [33], which approximates the statistics of an empirical distribution function, with mean
ft and square mean fiz, with a Lognormal random variable Z = e such that X ~ N (., 02).

U. of California, Dalton Project: https://newit.gsu.by

M. Technology, ATMega328/P: https://www.microchip.com
Gaisler Website: https://www.gaisler.com/

SimulAVR: http://savannah.nongnu.org

N o g
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2
N = N . o2 \
fiz £ E[Z?] = E[e*] fig = e*Haton o; = logks

The p and o parameters for SPPs were set to the arithmetic mean /i and standard deviation
& of the empirical distribution, with the fitted distribution being the Normal distribution
N (f1,62). These parameters are shown in Figure 3. This approach allows for the performance
characterization of any processor technology using CC4C'S;. Such characterizations can be
included in datasheets or other relevant materials and made available for further analysis.

x10

12000 : 0.2 2 0.35
10000 | 03
0.15 15 0.25
> 8000 - > > >
) £ ) £
5 = 02 2
S 6000 - 0.1 s s> 1 E
g S g 0.153
S S S S
L 4000/ a T a
0.05 05 0-1
0 0 0 0
0 200 400 0 50 100 150 200 250
cc4acs ccacs
(a) 8051 (Lognormal parameters: p = 5.29784, (b) ATmega (Lognormal parameters: p =

o = 0.649823). 3.13073, o = 0.714748).

10000 0.2 14000
12000 |
8000 o
ke 10000 -
g 6000 g g £
g 3 § 8000 5
> 01 s T 8
@ 4000 o @ 6000 o
w o ('S o
lo.0s 4000
2000
2000
0 0 0
0 500 1000 1500 2000 o 2 4 6 8 10
ccacs ccacs

(c) LEON3 (Lognormal parameters:
5.42068, o = 1.21775).

(d) Bambu (Normal parameters: p = 1.7326,
o = 1.4489).

Figure 3 CC4C'S; sampling distribution and fitted probability density function.

4.2 CLRA Performance Prediction Results

The predictive equations are given in Eq. 12, where 7; represents the clock period of the
HW/SW processor. We use the cumulative distribution function from Section 4.1 to estimate
each function’s execution time as follows:

t(STs k) = Q2-7j AND 6(z5) =0 for GPPs
t(STs k) =p-17; AND 6(z5) =0 for SPPs

(15)
(16)

Q2 represents the median of the lognormal distribution for the 8051, Atmega328/P, and
LEONS processors, while p is the mean of the normal distribution for the Bambu SPP. To
build the CLRA model, the dataset was split into 80% for training (48 x 10 inputs) and 20%
for testing (12 * 103 inputs). We then used Matlab R2022b’s LASSO function with 10-fold
cross-validation and the elastic net method, with alpha = 1.0.
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Defining the estimation error as €5 = T ; — T, we finally evaluate the errors for the
different processors p; using Percentage Error (PE) and Mean Absolute Percentage Error
(MAPE) defined as follows [7]:

1 & e 1 O el
PE; = <n*dZZTS’k> 100, MAPE; = <n*d;k§ Ty

i=1 k=1

) -100 (17)

In this work, we have used the R? measure of goodness of fit metric and defined an additional
reliability metric as follows:

0 if (T > Tr and Ty < T})
, where ps k,r = or if (Tk < T, and Tp > T)

d d
EDINED D ET-:kH Hs,ke,r

n-d-(d—1)

REL; =

1 otherwise

Table 2 shows Pearson correlation and slope values between clock cycles and executed
C statements. Correlations for 8051 and ATmega328/P are lower (< 0.9), while LEON3
is close to 1. The slope indicates estimation uncertainty increases with input data bits for
Atmega and 8051 but remains stable for LEON3 and Artix-7. The table also shows that
8051 performs worst with float data types due to the lack of an FPU, while Bambu has the
lowest correlation (< 50%).

Table 2 CC4CS HW/SW Statistical Analysis results (p-value < 0.001 for every value).

Data Type Corr.! Data Type Slope?
int8 | int16 [ int32 | float | int8 [ intl6 | int32 | float
LEON3 0.993 | 0.919 | 0.9280 | 0.973 || 341.086 | 335.759 | 343.400 | 335.705
ATmega || 0.849 | 0.905 0.976 | 0.934 8.633 10.755 14.582 24.624
8051 0.994 | 0.987 0.928 | 0.747 85.829 106.111 | 129.371 | 247.771
Artix7 0.424 | 0.372 0.362 | 0.408 2.250 2.300 2.289 3.273

pPj

a) ' Corr.: Pearson Correlation; ? Slope: Regression Slope Parameter;

Table 3 shows the results from the CLRA approach. Generally, the table reports high
reliability and R? values for most input types, with some exceptions due to underfitting
caused by data inconsistency or imbalance (e.g., Atmega int32 or Bambu int8). Despite lower
reliability and R? compared to other SW processors, LEON3 has the lowest mean error in
PE (from —1.37% to 6.08%) and MAPE (from 0.34% to 2.58%) due to caches and pipelines
creating a stronger linear link between executed statements and clock cycles. Atmega shows
the largest errors and p-values, while 8051 has smaller errors due to its CISC architecture,
which has a more linear dependency between statements and clock cycles. Artix 7 shows
a smaller PE range (from —2.12% to 0.36%) but higher MAPE (from 6.54% to 11.84%)
and stronger R? and reliability compared to SW processors. This is because synthesis in
HW depends on data size rather than input values. Despite Bambu’s low correlation and
higher errors for 8-bit types, the approach performs well for HW processors, with errors
consistently below 10% for data types larger than 8 bits. Based on the works listed in Table 1,
our approach consistently outperforms other works for SW processors like the 8051 and
LEON3. For HW processors, other techniques may give better results but at the cost of
longer execution times and greater resource demands [17]. Our approach, leveraging the
CC4CS metric, provides accurate estimations for both HW and SW technologies at the
system level. Errors are always below 10% for 8-bit CISC and 32-bit RISC processors with
caches and pipelines (e.g., 67% more accurate than [14] for LEON3 with -O0 flag). Our
approach also eliminates the need to compile/run target code for each architecture, using
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a linear LASSO model to represent processor behavior. Although computing the CC4CS
metric for new processors can take hours, once completed, estimation time for new data
is minimal. Solving the CLRA optimization takes around 1 minute, with execution time
estimation negligible.

Table 3 CLRA Performance results across various data type sizes and architectural targets.

Hy : MAPE > 10%.

Target Intel MCS51 AVR Atmega328/P
Metrics int8 int16 int32 float AVG int8 int16 int32 float AVG
PE (%) | -16.03 6.06 8.16 -6.10 -1.98 -2.97 -1.39 -14.04 -2.82 -5.30
MAPE (%) 5.13 6.53 6.88 4.26 5.70 9.10 12.15 22.04 6.99 12.57
p-value | 0.0211 0.0397 0.0161 2.7E-04 2.7E-06 | 0.9041 0.9622 0.9889  0.8598  0.9994
Rel 0.925 0.924 0.931 0.925 0.926 0.929 0.930 0.935 0.937 0.933
R? 0.969 0.963 0.981 0.982 0.974 0.975 0.980 0.986 0.989 0.982
Target Sparc-V8 LEON3 Xilinx Artix7 (XC7A35T)
Metrics int8 int16 int32 float AVG int8 int16 int32 float AVG
PE (%) 6.08 0.18 3.90 -1.37 2.20 -2.12 -0.15 -0.19 0.36 -0.52
MAPE (%) 1.40 2.34 2.58 0.34 1.66 11.84 6.54 7.09 6.65 8.03
p-value | 7.2E-07 1.6E-05 2.1E-05 8.9E-20 1.1E-22 | 0.727 8.6E-04 0.001 9.3E-04 0.0033
Rel 0.922 0.923 0.919 0.935 0.925 0.939 0.937 0.940 0.946 0.940
R? 0.892 0.906 0.930 0.960 0.922 0.985 0.999 0.999 0.999 0.996

While extracting the initial dataset is time-consuming, our approach greatly reduces
prediction times compared to Bambu, lowering prediction errors after data collection and
training. The overall speed-up reaches up to 32x (=~ 97%). In comparison, state of the
art report a 17% reduction using NNs [15] and 43.78% with RFs [28], both lower than the
LASSO model’s speed-up. Thus, our approach offers a significant speed-up over traditional
HLS methods. For SW processors, the key advantage is model portability and the ability to
evaluate performance across various inputs and code complexities.

5 Threats to validity

The internal validity may be influenced by how the CLRA model is trained, as MAPE values
in Table 3 are based on a dataset where 80% was used for training and 20% for testing. This
could reduce the observed error. In the future, we plan to introduce a control group for
training. For external validity, the main concern is generalizability. Results may vary with
different HW/SW environments or workloads outside the training set. To address this, we
validated the approach using well-known benchmarks, though future work may need to include
more diverse inputs and benchmarks. Construct validity may be affected by the characteristics
of the selected processors and FPGA (Intel 8051, Atmega328p, LEON3, Artix7). Factors
like cache, virtual memory, and external memory could influence performance, and our small
set of simple HW limits the generalization of our claims. Additionally, our assumption that
CC4CS values follow lognormal and normal distributions may not hold for more complex
platforms. Conclusion validity concerns the reliability of our findings. We used appropriate
statistical tests to avoid biases and errors, and we have made our repository available to
reproduce and validate our work®.
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6 Conclusion and Future Work

This work presents a system-level performance estimation approach using the CC4CS, a
unified HW/SW metric for early performance estimations. The paper formalizes this metric
and proposes an estimator based on statistical analysis. Experiments validate the approach,
showing effectiveness with an estimation error below 10% and an estimation time close to 0.
As shown in Table 1, our method enables system-level estimation without compiling and
running the code on each architecture. It uses statistical analysis and linear regression to
model different HW/SW processors. While calculating the CC4CS metric for a new processor
may take hours, the subsequent estimates for new C functions are immediate. Furthermore,
the estimator provides reliable predictions of execution times with limited error. Future work
will (1) increase the amount of data extracted through also the usage of advanced observability
mechanisms [32] and generate models for common compiler configurations; (2) integrate more
HLS tools and ISSs (e.g., RISC-V, ARM, Vitis HLS), targeting various FPGA families [23],
heterogeneous targets [31], and SW processors with advanced micro-architectural features
(e.g., pipelines); (3) enrich the reference benchmark by considering different sources [9] across
various application domains [12,30]; (4) improving the exploitation of non-linear ML models
(e.g., SVM, Regression Trees, Random Forest, Neural Networks) [19]; (5) extend the approach
with additional statistics (e.g., Kolmogorov-Smirnov tests, ANOVA, t-tests) [18].
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—— Abstract

The evolution of Graphics Processing Unit (GPU) compilers has facilitated the support for general-
purpose programming languages across various architectures. The NVIDIA CUDA Compiler
(NVCC) employs multiple compilation levels prior to generating machine code, implementing
intricate optimizations to enhance performance. These optimizations influence the manner in which
software is mapped to the underlying hardware, which can also impact GPU reliability.

TASA is a source-to-source code randomization tool designed to alter the mapping of software
onto the underlying hardware. It achieves this by generating random permutations of variable and
function declarations, thereby introducing random padding between declarations of different types
and modifying the program memory layout. Since this modifies their location in the memory, it also
modifies their cache placement, affecting both their execution time (due to the different conflicts
between them, which result in a different amount of cache misses in every execution), as well as
their lifetime in the cache.

In this work, which is part of the HIPEAC Student Challenge 2025, we first examine the
reproducibility of a subset of data presented in the ACM TACO paper “Assessing the Impact of
Compiler Optimizations on GPU Reliability” [10], and second we extend it by combining it with our
proposal of software randomization. The paper indicates that the -O3 optimization flag facilitates an
increased workload before failures occur within the application. By employing TASA, we investigate
the impact of GPU randomization on reliability and performance metrics.

By reproducing the results of the paper on a different GPU platform, we observe the same trend
as reported in the original publication. Moreover, our preliminary results with the application of
software randomization show in several cases an improved Mean Waiting Before Failure (MWBF)
compared to the original source code.
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1 Introduction

With the latest advancements in GPU architectures and their compilers, there are many
optimization opportunities, which allow the mapping of complex general purpose GPU
(GPGPU) code on these architectures in a significantly different manner. This results not
only in a performance difference, but also in different reliability properties [10].

Fernando Fernandes Dos Santo et al. in their ACM TACO article “Assessing the Impact
of Compiler Optimizations on GPUs Reliability” [10] demonstrated how different compiler
optimization flags impact the final reliability of GPU applications and used GPU fault
injection to estimate the MWBF (Mean Work Between Failures) value.

Despite knowing that applications compiled with -O3 may have an elevated risk of
encountering critical errors due to the higher optimization levels that eliminate redundant
or non-executed code, the substantial reduction in execution time — resulting in enhanced
performance — allows for a greater volume of work to be accomplished prior to such errors
occurring.

On the other hand, TASA [5] is a source-to-source code randomization compiler designed
to alter the mapping of software to the underlying hardware without altering its functionality.
However, unlike compiler optimizations, TASA preserves the same number of instructions.
The primary goal of TASA’s development was to streamline the Worst Case Execution
Time (WCET) computation for Critical Real Time Embedded Systems. This analysis is
often resource-intensive, particularly when performed in a static manner through abstract
interpretation and cache analysis, in which all possible execution paths are considered in
order to determine whether each memory access will hit, miss or may miss in the cache.
Such analysis is very sensitive to the memory layout and in fact requires knowing the exact
memory layout of the program.

Instead, TASA randomizes the memory layout for each execution, allowing the use of
Measurement Based Probabilistic Timing analysis for the probabilistic WCET (pWCET)
estimation. In particular, TASA facilitates the computation of the pWCET by collecting
a series of execution times, which are then processed with a statistical method known as
Extreme Value Theory (EVT), which can estimate the maximum of a probability distribution.

The randomization of the memory layout creates different mappings in the cache with
different conflicts among the contents of the cache lines, which subsequently randomizes the
program’s execution time.

This is the main reason why analyzing the conclusions presented in the original paper [10],
we wondered how applying TASA to the original source code would impact the reliability
metrics and how they would be related with the ones presented in [10].

This work has been performed in the context of the HIPEAC Student Challenge 2025.
The purpose of this competition is to reproduce the experiments of a recent paper published
in the ACM Transactions on Architecture and Code Optimization (TACO) journal on a
different platform, and optionally improve or optimize the proposed solution of the paper.

In summary, the contributions of this work-in-progress paper is the following: a) we
reproduce a subset of the GPU fault injection experiments of [10] in a different GPU platform,
namely an NVIDIA 1080Ti GPU based on the Pascal architecture which was not included
in the original publication. Our results follow the same trend reported in the original
publication, which is that the -O3 optimization level is beneficial for GPU reliability. b) we
extend the original work by repeating the same experiments under software randomization.
Our preliminary results show an improved average MWBF (Mean Work Between Failures)
compared to the original source code.
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The mean work between failures, as its name indicates, is the total amount of work done
by the executable before an error occurs. It is defined with the following equation:

MW BF = total time/errors (1)

2 Background and Related Works

This section presents the previous works in the literature on which our proposal is based, as
well as similar works.

2.1 Radiation benchmark

In Fernando Fernandez et al. [10], the authors evaluate the likelihood of encountering neutron
beam radiation produced errors during the execution of a kernel on a GPU. More concretely,
the study aimed on analyzing how this radiation beam would affect the final output of the
application running when errors are appearing and which is the impact on the final output
of the application, generating one of the following 3 outcomes: a) correct output (masked
error), b) wrong output (silent data corruption) and ¢) critical error that makes the machine
halting (Detected Unrecoverable Error).

The authors investigate this issue using two distinct methodologies: the first one involves
employing a fault injection framework to simulate radiation generated errors during kernel
execution, while the other one entails deploying a GPU server that is exposed to a radiation
machine during kernel execution in order to obtain real life values for this radiation impact
on GPU'’s reliability.

In order to do this, they studied the error propagation caused by radiation in multiple
well-known benchmarks using different optimization flags. To achieve this, two different
methodologies were used.

The fault injection experiments involved using Nvidia’s NVBItFI tool [12] to inject bit flip
errors into the GPU application, in order to observe how these errors affected the application’s
execution depending randomly on which instruction they were injected. Specifically, this
examined how many functional units (FUs) were used by the instruction, how a random
error affected the output, and how different optimization flags generated varying levels of
error criticality. These variations made it more likely for errors to manifest as Silent Data
Corruption (SDC) or Detected Unrecoverable Errors (DUE) rather than being masked,
depending on the optimization flag used or the number of FUs utilized by the GPU.

Once the impact of random bit flip on instructions was analyzed, they also evaluated it
using a neutron ray beam machine that generates actual radiation-induced bit flips. This
allowed to obtain the bit flip error rate in real-world scenario, by merging these results
with the ones obtained previously. The paper concluded that less optimized code fail less
than optimized code, but if we take into account the time spending calculating the results,
optimized code tends to fail less per time unit.

With respect to the original paper, we reproduced the experiments on a Nvidia’s GTX
1080 Ti card, which uses the Pascal microarchitecture as opposed to the the Kepler and
Volta architecture used in [10]. Moreover, our card does not have ECC recovery errors, so
we omitted the analysis of that part.

For obvious budgetary reasons, we were unable to replicate the beam experiments either,
limiting our analysis exclusively to NVBitFI fault injection analysis.
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2.2 Radiation Evaluation of Automotive GPUs

In addition to high performance desktop and server GPUs, a series of works from Ivan
Fernandez et al. has studied the radiation performance of embedded GPUs, particularly
targeting the automotive domain, such as NVIDIA Xavier and NVIDIA Orin.

Given the safety critical nature of the automotive sector, automotive products require
compliance with high quality manufacturing standards such as AEC-Q100 as well as functional
safety standards such as ISO 26262.

Both NVIDIA Xavier and NVIDIA Orin have been certified for ISO 26262 safety standards
from TUV SUD for the highest automotive assurance level (ASIL D).

In order to achieve these certification, these architectures include several reliability
features such as ECC protection not only in the DRAM, as it is the case of GPUs targeting
the supercomputer market, but also in almost any hardware structure, e.g. in the caches,
communication interfaces etc.

In [9] the authors have evaluated the NVIDIA Xavier under a proton beam, using the
matrix multiplication benchmark from the GPU4S Bench [6] / OBPMark Kernels [11, 3]
Benchmarking suite. Consistently with the safety oriented design of the NVIDIA Xavier,
the authors were not able to identify any wrong output during the irradiation experiments.
Therefore, the errors either were corrected by the hardware or the resulted in DUE which
caused a system restart.

By exploiting the RAS (reliability and serviceability) feature of the System-on-Chip (SoC)
they were able to identify for the first time in the literature the source of DUEs in the
radiation testing of such complex architectures, which in this case was the tags of the cache,
which were not protected with ECC.

The authors made similar observations in [8], in which the same experiments were
performed in the NVIDIA Orin. Given the introduction of ECC in the tag array of the Orin,
its reliability was higher.

The main difference between [10] and [9, 8] is that the first one focused on the evaluation
on high performance, less reliable GPUs, using a software solution. On the other hand, [9, 8]
focused on highly reliable automotive products, in which the hardware provides protection.

2.3 TASA

Kosmidis et al. [5] introduced TASA, which stands for “Toolchain-Agnostic Static Software
Randomization”. TASA is a source-code level static software randomization tool. This
means that it works at the application source code level. It adds a random padding among
memory objects and reorders them from run to run resulting in a randomized memory layout
and subsequently random execution time. The original purpose of TASA was to enable a
measurement based method for assessing the Worst Case Execution Time (WCET)[13] of
programs for Critical Real Time Embedded Systems called Measurement Based Probabilistic
Timing Analysis (MBPTA) [2].

TASA was first prototyped in a custom compiler parser as a proof of concept [5]. Later,
it was re-implemented in the CIL framework[7] adding support for CUDA, but only for its
C subset. Currently, TASA is being re-implemented from scratch in the Clang compiler
framework within the European Space Agency (ESA) funded project “Open source software
randomization framework for probabilistic WCET prediction and security on (multicore)
CPUs, GPUs and Accelerators” [4].

In order to randomomize the placement of the program memory objects, instead of
doing it in a low level randomization within the compiler banckend, TASA performs the
randomization at source code level, by randomizing the placement of their declarations.
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This is because, as we know, executables are stored in ELF (executable and linkable)
format files. These files distribute code and data declarations across different program
sections, which are mapped to the process memory when it is executed. This means that, by
grouping these high-level declarations in the source code and distributing them based on
their section in the ELF file, randomizing their order within the same section would introduce
different memory placements depending on the permutations generated for each section. The
reason for this is that as observed by [5], compilers place by default the program elements in
the order of their declaration.

In this work in progress, we extended TASA to work with CUDA code instead of C which

is supported by [5] and we support at least the constructs found in the benchmarks we use.

Then we applied software randomization to the original source files in order to randomize
their memory layout and be able to assess the impact of randomization on the program
reliability.

3 Reliability Metrics And Evaluation Methodology

In this Section, we outline the evaluation methodology we employed, as well as the tools
utilized throughout the process. As already mentioned, our primary objective was to
replicate a subset of the data collected from the compiler’s optimization reliability on
radiation study [10] and compare it with the new data obtained from the execution of the
randomization framework. The motivation for reproducing prior data stems from the use of
a different GPU, which is discussed in the following section.

3.1 Devices

To conduct these experiments, we used an Nvidia GTX 1080Ti GPU, which is a desktop/server
GPU. As a result, this device does not have support for ECC. Moreover, this GPU has a
Pascal GPU microarchitecture and compute capability 6.1.

Moreover, as explained in Section 2.2, automotive grade GPUs like NVIDIA Xavier and
Orin could not be used, since they don’t exhibit the same behavior thanks to their hardware
protection.

3.2 Benchmarks, compilers and flags

The GPU applications utilized for testing are a reduced subset from the original paper, due
to the massive number of executions required. This decision is primarily influenced by time
constraints affecting our ability to execute all benchmarks. We have chosen to evaluate the
following compiler optimization flags: -O0, -O1, -O3 and -use_ fast_ math.

The compiler version we used is NVCC 11.3, which is the same with [10].

The selected benchmarks for execution are BFS from the Rodinia Benchmarking suite [1]
and GEMM from the CUDA Toolkit. This choice is based on their fundamentally different
behaviors, which allows for a more insightful comparison. One kernel is primarily memory
access-bound, while the other is compute-bound, making their contrasting characteristics
particularly interesting for analysis.

3.3 Fault Injection Framework

For the fault injection framework, we utilize the same one employed in [10]: NVBitFI. This
framework allowed us to gather data regarding execution performance, including instances of
successful execution, situations where errors occurred but the execution completed without
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terminating, and cases where the kernel encountered an exception and was subsequently
terminated by the system. Additionally, this framework enables us to ascertain the failure
rate associated with different types of instructions.

3.4 Randomization Framework

As previously discussed, we utilized a software randomization tool to randomize the memory
layout. Specifically, we employed TASA [5], which has been previously demonstrated mainly
for CPU code and with a GPU application [7]. We used the Clang TASA implementation
which is under development in an ESA-funded project [4]. This tool supports C and C++
code, and part of our current work involved adding support for CUDA code. It is worth
noting that our current TASA Clang support for CUDA is still work in progress. As such,
it is not a complete implementation, but rather an update to enable the execution of the
aformentioned programs associated with the experiments. Our objective is to determine
whether generating these software randomized binaries yields different results compared to
those compiled using only nvcc.

3.5 Methodology Challenges

During the experimentation process, we realized that due to the timing constraints related
to the deadline of the HIPEAC challenge’s student competition, we could not conduct a
more exhaustive experiment of TASA in the context of reliability. This limitation was
primarily because the use of NVBitFI introduces a significant execution time overhead for
obtaining results, which varied between 2-5 seconds per iteration. While this overhead might
be considered acceptable for a 1000-iteration analysis of the original benchmarks from [10], it
becomes unacceptable for TASA. Given that we applied 100 different randomizations (which
is not a high number of randomizations) and 100 iterations per randomization, analyzing
the 7 flags of the original study with 7 benchmarks would result in a computation time
much longer than the 3 months of the Student Challenge duration. Nonetheless, we have
approached this study as a demonstration of the potential for a more comprehensive analysis
that could cover the entirety of the original study. Still, the results obtained meet our
expectations and allow us to remain optimistic about a larger-scale study.

3.6 Methodology

In the study, two distinct experiments have been carried out. First, we decided to check
whether the error rate with the error injection of NVBitFI from the original paper was
correctly replicated in our architecture. To do this, we performed an error injection identical
to [10], with 1000 errors per iteration and 1000 iterations. The final results show the average
of these 1000 iterations.

As for TASA, with the objective described earlier of presenting the results on time, we
performed 100 randomizations on the original source code, and an error injection identical
to the one in the original paper, but limited to 100 iterations per randomized source code.
Note that performing the original 1000 iterations would increase the total time by a factor of
10, taking 2-3 days per benchmark and flag. Once these results were obtained, we observed
the average error rate of each of the TASA randomizations compared to the original source
code, as well as the average MWBF compared to the original code.

The compiler version has been the same as the original paper NVCC 11.3 and we generated
code for the SM 6.1 compute capability of our GPU.
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Figure 1 Plot comparing masked, SDC and DUE errors between regularly compiled code and
TASA code for BFS using different compiler flags.
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Figure 2 Plot comparing masked, SDC and DUE errors between regularly compiled code and
TASA code for GEMM using different compiler flags.

4 Reliability results

Our reproduced results, shown in the left part of Figures 1 and 2 do not differ to much with
the presented data from the original paper [10]. The results share a similar pattern and the
slight difference could be driven by the use of the different GPU we used.

As illustrated in Figures 1 and 2, the error patterns for BF'S and GEMM differ significantly.

GEMM, which is more computationally intensive, tends to experience a higher incidence of
Silent Data Corruption (SDC) errors, while the occurrence of Detected Unrecoverable Errors
(DUE) is comparatively lower. Conversely, BFS is characterized by a greater number of DUE
failures, a trend that may be attributed to its memory-bound nature.

This difference can also be observed in Figures 3 and 4, where the MWBF metric
is presented (higher is better). In the memory bound benchmark (BFS), in which most
of the time is spent in memory transfers, the -O0 flag provides better results, because
of the redundant memory accesses of the non optimized code. On the other hand, in the
computationally intensive benchmark (GEMM), the highest optimization level (-O3), achieves
the best performance, therefore increasing the amount of work performed without an error
per time unit.
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Figure 3 Difference in MWBF between regularly compiled code and TASA code for BFS using
different compiler flags.
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5 Evaluation of TASA results

Figures 1 and 2 show the TASA results on the right bar of each compiler flag. Software
randomized code experiences slightly less SDCs and a higher percentage of DUEs. A possible
reason for this is that software randomization can expose errors that due to the memory
layout were masked.

Moreover, as it can be seen in the Figures 3 and 4, the mean of the TASA results could
improve the default result. We observe that the obtained results with different flags are
correlated with the ones obtained with TASA. An interesting observation is that TASA
executions have better or similar results for MWBF in some configurations. This could be
due to the fact that, within the normal distribution of executions produced by TASA, the
average execution time is lower than that of the original source code. An increase in the
number of randomizations in TASA would be necessary to justify this.
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6 Conclusion

In this paper, we partially reproduced the results of [10] in a different GPU architecture, and
we observed the same trends, i.e. that the -O3 compiler flag increases the MWBF metric,
that is the useful work performed on average before an fault occurs.

Moreover, by introducing software randomization, our preliminary results show that the
same trend is observed, and in several cases the MWBF is improved.

7 Future Work

We have to highlight that our conclusions are not decisive, as in this time-limited exercise
performed in the HIPEAC Student Challenge 2025 we lacked the resources to conduct an
extensive analysis with a larger dataset. As previously mentioned, we have only executed a
total of 100 different seeds of the same program. This sample size may not be sufficient to
assure the validity of the presented results. Also the original paper uses bigger code samples.
The choice of BFS and GEMM is justified for their different behavior. Despite this, the
results are pretty optimistic, so as this previous analysis has given us a good tendency, we
will increase the total amount of randomizations of the original source code and the iterations
per each one, and make an exhaustive analysis including all flags and benchmarks.
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—— Abstract

The rise in complexity of the algorithms run on space systems, largely attributable to higher

resolution instruments which generate a large amount of the data to be processed, as well as to the
need for increased autonomy, which relies on Neural Network inference systems in future missions,
demand the adoption of more powerful on-board hardware, such as multicores.

At the same time, the correctness and reliability of critical on-board software is of paramount
importance for the success of space missions. However, developing such complex software in low-level
languages can have a negative impact on these aspects.

For this reason, this paper evaluates the role that the Rust programming language can have in
this change, given its memory safety and built in support for parallelism, which allows to better utilise
more powerful hardware, in particular multicore cpus, without compromising the programmability
and safety of the code.

To this end, the GPU4S benchmarking suite, part of the open source OBPMark benchmarking
suite of the European Space Agency (ESA), is ported to Rust, with sequential and parallel imple-
mentations. The performance of the ported benchmarks is compared to the existing sequential and
parallel implementations in low-level languages to evaluate the trade-offs of the different solutions,
and it is evaluated on several multicore platforms which are candidates for future on-board processing
systems. A particular focus is put on parallel versions of the benchmarks, where Rust offers solid
native support, as well as library support for fast parallelization similar to OpenMP. Finally, in
terms of correctness, the Rust implementations are free of recently detected defects in the low-level
implementations of the GPU4S benchmarks.
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1 Introduction

The development of more powerful applications for safety critical missions, together with
the growth in the number of cores in commercial processors, requires the software to adapt
to use more efficiently the newer platforms. Although in the past Ada — a safe language —
dominated the space domain, C/C++ have taken their place, but they are older languages
which lack more modern features and in particular safety. Memory safety becomes even
more relevant in parallel applications, as it is easier to make mistakes in this context. Other
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programming languages such as Java and Go, offer better programmability particularly in
parallel code, however they are not usable in safety critical systems due to the fact that the
garbage collector can cause big latency spikes, and does not allow for Worst Case Ezecution
Time calculations.

In this niche domain, the Rust programming language has a real chance of being the
best option. It is a memory safe language without garbage collection, which gets rid of
latency spikes [9]. Instead of garbage collection, it uses the RAII (Resource Acquisition
Is Initialization) paradigm [6] to insure that memory is freed. It offers modern tools and
features, and has native parallelism support within the language. Performance is also one of
the biggest focuses of Rust, which is important to compete with C and C++.

In this paper we analyse if the potential that Rust has in theory is carried out in practice,
by porting the GPU4S benchmarks [16, 14]. These benchmarks, while they will be useful for
platform performance evaluation, in the context of this paper are used instead to show a
performance and programmability comparison between Rust and C, both in sequential and
parallel code. Our code developed is released as open source at [15] and will be included in
the next OBPMark release from ESA.

The paper is divided in 6 sections: Section 2 serves as an introduction to the GPU4S
benchmarks. Section 3 presents the hosted (i.e. running on an operating system) version
of the benchmarks, both in their sequential and parallel versions. Section 4 discusses the
platforms on which the code was evaluated, as well as the performance comparisons and
finally Section 5 presents the conclusions and future work.

2 The GPU4S benchmarks

In this section we introduce the GPU4S benchmarks suite [14, 16], also known as OBPMark
Kernels, part of the open source OBPMark benchmarking suite [18] of the European Space
Agency (ESA) hosted at [12], which are the applications we ported from C to Rust in this
work. Next we describe their purpose, design and delve into the benchmarks functionality
and relevance.

As the amount of data to be processed on board of spacecraft increases and the type of
algorithms to be run expand to allow autonomous operation, the need for performance in the
embedded system employed is growing significantly. The GPU4S Bench suite was developed
to improve the performance testing capabilities of such systems, with a particular focus on
Embedded Graphics Processing Units (GPUs) for satellite on-board processing and other
safety critical systems, where existing benchmarks were particularly inadequate.

The complete list of the benchmarks available in the suite is: CIFAR 10, Convolution,
Correlation, Fast fourier transform, Fast fourier transform window, Finite impulse response
filter, LRN, Matrix multiplication, Max pooling, Memory bandwidth, Relu, Softmax, Wavelet
transform.

The benchmarks were chosen as representative algorithms used in space-relevant applica-
tions from a survey performed among on-board software divisions of Airbus Defence and
Space, Toulouse, France [16], with a look also at applications that will become important in
the future, such as Computer Vision and Neural Networks. Although initially focusing on
GPU benchmarking, GPU4S Bench has been later ported to several programming models
including OpenMP for CPUs (used for comparison in this paper), GPUs and FPGAs, CUDA,
OpenCL, HIP, Ada and others and it is used by ESA to drive the selection of hardware
platforms for future space missions. To signify this platform independence, it is renamed
as OBPMark Kernels, and it is used together with OBPMark applications as contractual
requirement for reproducible use cases in ESA- funded projects.
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Listing 1 Matrix struct in its 1D and 2D version.

pub struct Matrix1d<T: Number> {

data: Vec<T>,
rows: usize,
cols: usize,
}
pub struct Matrix2d<T: Number> {
data: Vec<Vec<T>>,
rows: usize,
cols: usize,
}

3 Hosted Benchmarks

This section presents the implementation of the hosted version of the benchmarks, which
means that they run on top of an OS. First we define the data structures, traits and method
implementations of the code to be benchmarked, defined in the obpmark_library crate,
before delving in the code of the benchmarks executables.

3.1 Data Structures

The benchmarks from the GPU4S Bench project operate on vectors and matrices, in most
cases 2D matrices. As a consequence, the main data structure required is a matrix data
structure. While the C version of the benchmarks employs a dynamically allocated one-
dimensional buffer for this purpose, we decide to develop two distinct versions of the data
structures, to compare performance and ease of use of the two approaches: Matrix1d, that
stores the data in a 1D Vector, and Matrix2d, that stores the data in a 2D Vector.

The difference in the memory disposition of the two version depends on the platform and
allocator on which the code will run. As the structure will be allocated at the start of the
executable, we suspect that the memory will look very similar amongst the different versions.
This could make the 2D vector solution preferable, as it will be less bug prone than the 1D
version, by allowing an easier use of iterators. We will look further into this when analysing
the results of the benchmarks. Listing 1 shows the struct code.

Both structures are generic, so that they can contain any type that implements the trait
Number, which we will discuss in detail in the following section.

When analysing the benchmark executables we will see how the Matrix methods will
be called from the benchmarks; to allow the benchmark code to not be specialized for the
different matrix types, all operations on them are defined in traits. The BaseMatrix trait
defines basic operations on matrices:

Initialization of a new matrix from a 2D vector representation.

Retrieval of a 2D vector representation of the data.

Initialization of a new matrix populated with zeroes.

Initialization of a new matrix with random contents based on a seed.

Input and output operations on files.

Conversion to a 1D vector data representation, which is needed for verification.

Reshaping the matrix by adjusting its row and column counts.

5:3

PARMA-DITAM 2025



5:4 Evaluation of the Parallel Features of Rust for Space Systems

Listing 2 The base matrix trait (some code excluded).

pub trait BaseMatrix<T: Number> {
fn new(data: Vec<Vec<T>>, rows: usize, cols: usize)
-> Self;

fn get_data(&self) -> Vec<Vec<T>>;
fn zeroes(rows: usize, cols: usize) -> Self;

fn from_random_seed (
seed: u64, rows: usize, cols: usize, min: T, max: T
) -> Self;

fn from_file(path: &Path, rows: usize, cols: usize)
-> Result<Self, FileError>;

fn to_file(&self, path: &Path)
-> Result<(), std::io::Error>;

fn reshape (&mut self, new_rows: usize, new_cols: usize)
-> Result<(), Error>;

fn to_c_format (self) -> Vec<T>;

3.2 The Number trait

The original C code provides the benchmarks with different data types that are selected
at compile time. We decided that the library should not need to be compiled to a specific
numeric type, but rather should be generic over the content of the matrix. This allows the
user of the library to easily have matrices that contain different types in the same context,
and makes the library useful also outside of the benchmarks code.

There are four types that we will need to support for the various benchmarks (not all the
types are supported for all benchmarks, we will later show how to deal with this):

The integer type i32.

The single precision floating point type £32.

The double precision floating point type £64.

The half precision floating point type £16; this is not available in the standard library,

so we used the crate half [2]. The inclusion of the f16 version of the benchmarks is for

consistency with the C version, however at the moment the support for intrinsics is very

limited making the code very slow. This is an area in which Rust is rapidly moving

forward and we should expect the situation to be quite different in a short time after

the publication of this paper. During the time of writing of this document the hardware

support on x86 has changed already. For this reason we will not discuss further this

feature, as it is subject to rapid change.

3.2.1 The num_traits crate

The num_traits[3] crate is used to help with definitions of common numerical behaviour in
Rust programs. While external to the standard library, it enjoys widespread adoption, and
many external numeric types implement the crate’s traits.
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Listing 3 Fundamental trait from funty crate.

pub trait Fundamental:
’static
+ Sized
Send
Sync
Unpin
Clone
Copy
Default
std::str::FromStr
PartialEq<Self >
PartialOrd<Self >
std::fmt::Debug
std::fmt::Display

+ o+ o+ o+ o+ o+ + o+ o+ o+

The

defining our own traits:

num__traits crate offers many useful traits; here we describe the ones we used in

NumRef: Encompasses basic numeric operations like addition, subtraction, multiplication,
and division, both for a type and its reference.

NumAssignRef: Adds assignment-based operations to NumRef (e.g. +=, *=).

AsPrimitive<f64>: Allows casting to f64,serving as a superset of all types to be imple-
mented.

PrimInt: Contains common operations on integer types.

Float: Contains common operations on floating point types.

3.2.2 Limitations of num_traits

While the traits discussed are useful to define common behaviour, not all the operations that
someone might want to do on a number are covered by the num_ traits crate. The crate
funty [1] was inspiration for some of the missing traits, in particular for its Fundamental one,
that enforces basic behaviour such as Copy, Display and Debug.

Until now we described behaviour that we could anticipate we would need even before
writing a single benchmark function, also because they are bundled in existing traits. The
additional behaviour we describe from here on was mostly added while developing some
specific benchmark. The typical process would be: 1. Do some operation you know you
can do on a numeric type, 2. Have the compiler complain that it is not possible for the
given bounds, 3. Add a new bound to the existing trait. This can be somewhat frustrating,
especially when this is not straight forward, as in some of the cases we will describe later.

The ability to obtain a Number from an iterator of T: Number and &T: Number also needs
to be specified as a trait bound. At this point two missing behaviours still remain:

Obtain a Number from a sum operation on an iterator of elements of type T where T:
Number or &T: Number. This is done with the following trait bounds:
std::iter::Sum<Self>

for<’a> std::iter::Sum<&’a Self>.
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Listing 4 Fundamental trait from funty crate.
macro_rules! impl_serialize {
($type: ty) => {
impl Serialize for $type {
type Bytes = [u8; core::mem::size_of::<$type>()1];

fn to_ne_bytes(self) -> Self::Bytes {
self.to_ne_bytes ()

}

fn from_ne_bytes(bytes: Self::Bytes) -> Self {
<$type>::from_ne_bytes (bytes)

3

Listing 5 Integer and Float traits.

pub trait Float: Number + num_traits::Float {}
pub trait Integer: Number + num_traits::PrimInt {}

Serialize: A way to serialize the numbers to their bytes representation and back;
fundamental numeric types all have this behaviour available but it is not behind a trait,
as such we need to implement the trait to call the method defined in the standard library.
Since the method name is the same for all types, we can achieve this through a macro
rule (Listing 4).

RngRange: A way to generate numbers in a given range. In this case a trait does exist
(SampleUniform from the rand crate), with some complications for the £16 type.

3.2.3 More specific bounds

The Number trait is designed to work with all the types supported by the benchmarks.
However not all benchmarks support all the different types: as an example the Softmax
benchmark only works on floating point types. Another situation that sometimes happens
is that the implementation is very different amongst different types. To allow for this, two
more specific traits are defined, to differentiate between integer and floating point types.
Listing 5 shows how this was easily achieved thanks to the num_traits crate.

3.3 Sequential traits

In this section, we will go through the steps required to implement the library code of a
benchmark function, and we will analyze a few examples of benchmark traits.

As discussed previously, the matrix methods are defined inside traits, so that the same
function can be called on different implementations of the matrix structure from the bench-
mark code. Each benchmark trait consists of two member functions:

The main benchmark function, that is called from the executable and is timed to assess

the performance of the hardware.

A function that operates on a subsection of the matrix. This often is an extraction of an

internal loop of the algorithm.
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Listing 6 Matrix multiplication trait.

pub trait MatMul<T> {
fn multiply_row (&self,
other: &Self, result_row: &mut [T], row_idx: usize);
fn multiply(&self, other: &Self, result: &mut Self)
-> Result<(), Error>;

Listing 7 multiply_row implementation.

fn multiply_row (&self,
other: &Self, result_row: &mut [T], row_idx: usize) {

let i = row_idx;
for j in 0..other.cols {
let mut sum = T::zero();

for k in 0..self.cols {
sum += self.datal[i * self.cols + k] x
other.datal[k * other.cols + jl;
}

result_row[j] = sum;

This code separation does it a little bit less readable, but it allows to reduce code duplication
when other implementations, in particular the parallel versions, are coded.

For example, Listing 6 shows the trait for the matrix multiplication operation. In this case
the function multiply_row calculates one row of the output given the two input matrices
and the index of the row to calculate. The multiply function, on the other hand, is the one
that will be benchmarked, that deals with calling multiply_row for each row of the result
matrix.

Listing 7 shows the implementation of the multiply_row function for the 1D version of
the matrix structure. The code is really straight forward, being the inner two loops of a
matrix multiplication function, with the value of the outer loop index being passed as the
argument row_idx.

The multiply function then is very easy, since all it has to do is implement the outer
loop and call the multiply_row function with the correct arguments. We will discuss this
further when analysing the parallel implementations, where the design of the functions will
become more relevant.

The matrix multiplication example was chosen because representative of most of the
benchmarks available, where the inner function operates on a row of the result and the
calculation of each row of the output is completely independent of the others. In benchmarks
such as the finite impulse response filter, where the input and output are one-dimensional,
the inner loop operates on a single element of the output rather than a row, as we can see
from the trait definition in Listing 9.

Another case where the design is somewhat different is where, instead of having only
operations that can happen in any order, we have the need to enforce some kind of order
amongst operations: this is the case for example in the softmax and the wavelet transform
benchmarks, and it will become more relevant in the parallel versions of the benchmarks.
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Listing 8 multiply implementation for Matrix1d.

fn multiply(&self, other: &Self, result: &mut Self)
-> Result<(), Error> {

result
.data
.chunks_exact_mut (self.cols)
.enumerate ()
.for_each (| (i, result_row)|
self .multiply_row (other, result_row, i)
s
0k ()

Listing 9 Finite impulse response filter trait.

pub trait FirFilter<T> {
fn fir_filter_element (&self, kernel: &Self, element_idx: usize)
-> T;
fn fir_filter (&self, kernel: &Self, result: &mut Self)
-> Result<(), Error>;

3.4 Parallel versions

The parallel version of the benchmarks comes in two flavours: one that uses only the standard
library, and one that uses the Rayon crate [7], which allows Rust to operate in parallel in
array elements, with minor code modifications, similar to OpenMP. This way we can assess
if the added complexity of dealing with data parallelism ourselves is worth it in some metric,
such as performance, code maintenance, etc.

3.4.1 Using the standard library

The easiest way to parallelize the code, is to iterate over the result matrix, and spawn a
thread for each row to do the computation. This would look something like the code in
Listing 10. The advantages of this approach is the readability and simplicity of the code,
which becomes even more evident when comparing it with the one in Listing 8; aside from
the thread scope and calling the spawn() method, the code is identical to the sequential
version.

We did not comment the chunks_exact_mut () method in the sequential version, because
the reason for it being there is the design of the row calculation function, which is suited to
parallel code. In the matrix multiplication example in Listing 7, the function modifies the
result by receiving mutable slices of its rows, rather than through a mutable reference to
the whole result matrix. This is not strictly necessary in the sequential version, as the calls
do not overlap with each other. However it is crucial in the parallel versions, because each
thread needs a mutable reference to part of the matrix simultaneously: chunks_exact_mut ()
does exactly this while making sure that there is no overlap amongst the different chunks,
which makes sure that to avoid any data race between threads.

The disadvantage of the solution presented is that the number of threads spawned is
not constant, rather it grows with the size of the matrix, which significantly degrades the
performance of this solution if the number of rows is large.
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Listing 10 Template for naive parallel implementation.

thread::scope(ls| {

result
.data
.chunks_exact_mut (result.cols)
.for_each (| chunk| {
s.spawn (move || {
// Do the row calculation here
+
1);
1}

B

Listing 11 Template for parallel implementation.

let rows_per_thread = (self.rows - 1) / n_threads + 1;

thread::scope(ls| {
result
.data
.chunks_mut (result.cols * rows_per_thread)
.for_each (| chunk| {

let start_row = chunk_idx * rows_per_thread;
s.spawn (move || {
chunk.

chunks_exact_mut (result.cols).
for_each (|rowl| {
// Do the row calculation here

}

B
B
P

To improve on this, what we need to do is spawn a proper number of threads, which is
usually equal to the number of cores, or hardware threads, available on the platform, and
assign multiple rows to each thread. This makes the code only slightly more complicated
than the previous case, but improves significantly the performance. As shown in Listing 11,
each thread has an internal loop (chunk.chunks_exact_mut(result.cols), so that it can
call the row function on each row of the chunk. The use of the method chunks_mut instead
of the exact version in the outside loop, allows us to run the code regardless of the number
of rows of the matrix, as it does not need to be a multiple of the number of threads.

3.4.2 The Softmax Benchmark

The softmax benchmark, as mentioned before, has a slightly different design than the one
presented with the matrix multiplication case. This is because, before we can calculate the
element of the final matrix, we need to now the sum of the exponentials of the whole matrix.
For this reason the code has two parallel sections, with a synchronization in the middle so
that the sum is available to the second parallel section. As shown in Listing 12, this only
requires us to have two threads scopes rather than one, so that the threads are joined and
the sum is calculated before the start of the second scope.
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Listing 12 Parallel implementation of Softmax benchmark.

fn parallel_softmax (&self, result: &mut Self, n_threads: usize)
-> Result<(), Error> {

let rows_per_thread = (self.rows - 1) / n_threads + 1;

let mut total_sum = T::zero();
thread::scope(l|s| {
result
.data

.chunks_mut (result.cols * rows_per_thread)
.enumerate ()
.map (| (chunk_idx, chunk)| {

let start_row = chunk_idx * rows_per_thread;
s.spawn (move || {
let mut sum = T::zero();

chunk.chunks_mut (self.cols).enumerate ()
.for_each (| (i, result_row)| {
sum += self.softmax_row(result_row,
start_row + 1i);

});
sum
i)
i)
.for_each(|handle| total_sum += handle. join().unwrap());
B;
thread::scope(ls| {
result
.data
.chunks_exact_mut (result.cols * rows_per_thread)
.for_each (| chunk| {
s.spawn (|| {
chunk.iter_mut ().for_each(lel| {
*el /= total_sum;
P
1)
i)
B);
0k (())
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Listing 13 Parallel matrix multiplication using Rayon.

fn rayon_multiply (&self, other: &Self, result: &mut Self)
-> Result<(), Error> {

result
.data
.par_chunks_exact_mut (other.cols)
.enumerate ()
.for_each (| (i, chunk)| {
self .multiply_row (other, chunk, i);
1}
0k ()

While the code presented is long, especially when compared to the rayon version as we
will see, if we consider only the code specific to the benchmark, without the part to spin the
threads presented in the previous section, which is the same in all benchmarks, we can see
that the code is indeed very straight forward.

3.4.3 Using Rayon

Rayon is a great tool for dealing with the kind of problems we are working on. This becomes
evident when comparing the rayon code with the sequential code, for example for the matrix

multiplication function (Listing 13), which we included in its sequential version in Listing 8.

The only modification necessary to the code is using Rayon’s parallel version of the
chunks_exact_mut () method from standard library.

The softmax benchmark presented when discussing the standard library versions, is
a good example both to show the compactness that Rayon can achieve compared to the
standard library code, and to showcase some case where the parallel code is not just adding
a par_ in front of the standard library iterator. The Rayon version of the code is available
in Listing 14. The second loop is the same as in the sequential version, while the first needs
to use the reduce() method for calculating the sum. The syntax of reduce is the typical
functional syntax of the method, and allows for the reduction operation itself to be performed
in parallel as well, which will not be a major consideration on our target platforms, since
they will have relatively few cores (4-8), but could be relevant if we had a very large number
of threads. It should be noted that the order in which the reductions will happen is not
specified, which means the result could be not exactly the same due to the non-associativity
of floating point operations [8], which is why we should use a tolerance when validating the
results.

3.4.4 Parallel traits

Just like in the sequential case, the parallel versions of the benchmarks are defined inside
traits. The parallel traits are defined inside two modules: rayon_traits for the Rayon
versions and parallel_traits for the standard library versions. In this case the traits only
require one member, that being the function to be benchmarked, and the naming scheme used
is the following: The traits have the same name as their sequential counter-part, preceded
by Rayon or Parallel depending on the version. The method defined inside the trait has
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Listing 14 Parallel softmax using Rayon.

fn rayon_softmax (&self, result: &mut Self) ->
Result<(), Error> {

let sum = result
.data
.par_chunks_mut (self.cols)
.enumerate ()
.map (| (i, row)| self.softmax_row(row, i))
.reduce (|| T::zero(), |partial_sum, next_sum| partial_sum
+ next_sum);
result.data.par_iter_mut().for_each(lel| {
*el /= sum;
B
0k (())

Listing 15 Parallel traits.

pub trait RayonRelu {
fn rayon_relu(&self, result: &mut Self) -> Result<(), Error>;
+
pub trait ParallelRelu {
fn parallel_relu(&self, result: &mut Self, n_threads: usize) ->
Result<(), Error>;

the same name as the sequential version preceded by rayon_ or parallel_ depending on
the version. An example of parallel traits for the rectified linear unit benchmark is shown in
Listing 15.

3.5 The Benchmark Code

This section deals with the benchmarks crate, that contains the binaries’ code and utilities
used by them. Each benchmark in the project has its own executable that deals with
argument parsing, initialization, timing, input/output and validation of the result. Besides
the executable, in the benchmarks crate, there is a 1ib.rs file that defines some common
functionalities and helper functions.

3.5.1 Type aliasing

The benchmark utils module defined in the crate deals with some useful code for the
benchmarks. Amongst its functionalities, it deals with defining some types based on arguments
passed at compile time, in particular a Number type that is going to be the content of the
matrices, and a type Matrix, which is the specific matrix implementation to be used. This
is done using #[cfg(feature = ...)] directives, that work similarly to #ifdef directives
in C.

Listing 16 shows the code needed to define the correct type for the Number alias. In order to
pass the flag using cargo, all it takes is to pass to cargo the flag -features "feature_name",
and cargo will then pass the flag to rustc. There is no way yet [5] to have mutually exclusive
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Listing 16 Type aliasing based on compile flag.

#[cfg(feature = "float")]
pub type Number = £32;
#[cfg(feature = "double")]
pub type Number = £64;
#[cfg(feature = "int")]
pub type Number = i32;
#[cfg(feature = "half")]

pub type Number = half::f16;
#[cfg(not (any(

feature = "float",
feature = "double",
feature = "int",
feature = "half"

)]
pub type Number = £32;

features, however, if more than one datatype is set we will get a compile error for trying
to set a type alias already defined. With the last cfg command, if no type is specified at
compilation, we default to £32.

4 Results

4.1 Experimental Setup

The evaluation of the code performance has been carried out on both ARM and x86 hosted
platforms. All the evaluated platforms are considered good candidates for upcoming high
performance aerospace and avionics systems [17]. This section describes the different platforms
characteristics. The platforms selection has been made to add to the evaluations of the
existing implementations, however since our code does not make use of GPUs, we only use
the multicore CPU on each of the selected platforms.

4.1.1 NVIDIA Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier [4] is an embedded platform from NVIDIA which has 8
CPU cores as well as a GPU. The board has different power-modes (Table 1), that affect
both the CPU and GPU. In particular we used power-mode 1 and power-mode 2, which
maximises the multicore performance of the platform which keeps the board consumption
under 15W which has been identified a thermal limit of on-board processing platforms in the
GPU4S ESA-funded project [14]. The selected power modes have respectively 2 and 4 CPU
cores active and they are same used in similar multicore performance evaluations [17]. The
version of the platform we are using has 32 GB of LPDDR4 shared between the CPU and
GPU.

The software on the platform is based on Linux Kernel version: 4.9.140 / L4T 32.3.1,

Ubuntu version: Ubuntu 18.04 LTS aarch64 and GCC version: 7.5.0 (Ubuntu/Linaro
7.5.0-3ubuntul 18.04).
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Table 1 NVIDIA Jetson AGX Xavier Power Modes.

Mode
Property MAXN | 10W | 15W
Power budget n/a 10W | 15W
Mode ID 0 1 2
Online CPU 8 2 4
CPU maximal frequency (MHz) | 2265.6 | 1200 | 1200
GPU TPC 4 2 4
GPU maximal frequency (MHz) 1377 520 | 670

4.1.2 AMD Ryzen V1605B

The AMD Ryzen V1605B is part of the Ryzen Embedded V1000 family, which offers high
performance platforms with a CPU and a Vega GPU in an SoC.

The V1605B has 4 cores, each with 2 hardware threads each, however in our case we did
not see improvements by using 8 threads, so we report our results using 4 threads.

The software used on the platform is: Linux kernel: 5.4.0-42-generic, Ubuntu version:
Ubuntu 18.04.5 LTS x86_ 64, GCC version: 7.5.0 (Ubuntu 7.5.0-3ubuntul 18.04).

4.2 Performance Results

In this subsection we present the performance results of the Rust code compared to the
C implementations. We report the result on the AMD Ryzen V1605B and the NVIDIA
Jetson AGX Xavier, so that we have two different architectures. All the benchmarks in
this subsection, unless differently specified, use a 4096 size and a single precision floating
point type, which means that for benchmarks that operate on vectors rather than matrices
(FFT, FIR FFT windowed) the number of elements is very small. The decision on which
size and datatype to use is for consistency with the standard sizes defined for the GPU4S
Bench/OBPMark Kernels Benchmarking Suite [12], which mainly targets existing space
processors which have significantly lower performance and memory. Moreover, the same sizes
have been used in multicore evaluation of the same platforms using the same benchmarks
presented in [17] under the RTEMS SMP space qualified operating system in sequential
C and OpenMP, which are used for comparison with our sequential and parallel Rust
implementations.

The result on the Xavier in power-mode 2 (so using 4 cores in the parallel benchmarks)
are shown in the graphs in Figure 1. If we compare the performance of the sequential versions
in C and Rust, we see a few different cases:

In FFT and Matrix Multiplication the performance of the two implementations is very

close, in the case of Matrix Multiplication almost identical. The small differences are

probably attributable to slightly different optimization between LLVM, which is used by

Rust and GCC, which is used by RTEMS or different memory arrangements between the

different allocators.

In Convolution, LRN, Max Pooling, Relu and Softmax the performance of the Rust

sequential versions is from 10% all the way to 130% better than that of the C version.

This clearly cannot be just slight differences in the compiled code, but requires the

code to use significantly different calculations. A few hints have led us to believe that

the difference has to be due to the introduction of more vector operations in the Rust
compiled code. In particular, while we were not able to identify the specific functionalities
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Figure 1 Performance comparison on the Xavier in power-mode 2 of the implementations of the
algorithms. The results are normalised to the sequential version, which is shown as 1x.

of the instructions in the disassembled code, we saw an increase in the number of such
operations in the code, as well as in some cases we see the verification to have to be with
a tolerance to pass, which suggests that the floating point operations are carried out in
some different order compared to the C version.
While in the case of Convolution and Softmax the performance difference is not that
large, we are convinced there is a real difference in performance due to the difference
in the results for the 2 different parallel implementations. We will discuss this in more
detail when analysing the parallel versions.

= In FIR (and perhaps FFT) the performance difference measured is hard to quantify with
confidence given the very short execution time of the benchmarks, which is in the 0.5 ms
range.

If we now look at the parallel implementations, we see some interesting differences in
performance. First, let’s look at the short execution time benchmarks, FIR and FFT: the
parallel versions in this case are slower than the sequential version, and this is true both for
the Rust and the OpenMP code. This is likely due to the overhead of spinning up the different
threads which is not worth the small improvement in execution time. In FFT in particular,
we are not actually able to parallelize the code due to complex task dependencies which
are not supported in Rayon. Similarly, the OpenMP version of the code uses homogeneous
parallelism (i.e. using parallel for) instead of the OpenMP tasking model, because it provides
easier certification for multicore contention in aerospace systems [17].

This means that for the parallel code we use the windowed version of the FFT benchmark
as in [17], which is much easier to parallelise with homogeneous parallelism, and offers a way
to get to an approximated result. This however shows promise for larger vectors, where we
can see an actual speedup. The reason for the choice of the sizes is to use the same values
from the testing that has been done on the C versions. It should also be noted that the
windowed algorithm cannot compete with the library implementation in FFTW, which is
highly optimised, making it perhaps not a good candidate for parallelization.
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For Matrix Multiplication, we can see that, as in the sequential case, both Rust par-
allel implementations have extremely similar performance to the OpenMP version, which
makes Matrix Multiplication the most consistent benchmarks between the C and Rust
implementations, with a very good 3.8x speedup on 4 cores.
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Figure 2 Performance comparison on the AMD V1605B of the implementations of the algorithms.
The results are normalised to the sequential version, which is shown as 1x.

Looking at the AMD platform results we can see that in some cases the results are quite
similar to the Xavier platform, while in some other we have very different relative performance.
Since we are not particularly interested in the performance difference amongst the platforms
we do not report the execution times. However it should be noted that the V1605B has
much higher performance, with the benchmark taking usually anywhere from half to 1/5
to complete execution compared to the Xavier. The behaviour of Matrix multiplication is
still very consistent amongst the different implementations, with speedups that approach
the linear case both for OpenMP and the parallel Rust implementations. Similar to the
Xavier, LRN, Max Pooling and Softmax show much higher sequential performance compared
to the C version, in this case performing even better than the OpenMP version, once again
thanks to a higher use of vector instructions. Relu, on the other hand, is quite close to the C
versions in this case, both in the sequential and parallel execution, with a slight upper hand
of the Rayon code. FFT is significantly slower in the parallel versions on the AMD platform
too, for the same reasons discussed above, while FIR manages to have better sequential
performance compared to the C code, but the parallel code is still slower than the sequential
version due to the small sizes on the input.

4.2.1 Taking a closer look to the parallel implementations

As mentioned in the previous section, the two different parallel implementations of the Rust
code can have quite different performance depending on the benchmark.
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Figure 3 Comparison of the speedup of the parallel Rust implementations on the NVIDIA Xavier.

In Figure 3 we see the speedup over the sequential code of the rayon and std-parallel
implementations, which seems to favor significantly Rayon, in particular where the vector
instructions made the sequential code faster. Our guess to the cause of this behaviour, is that
Rayon does a better job keeping the vector operations, as the library can decide, knowing the
hardware features available, if it makes sense to make something parallel and to which thread
assign each part of the matrix, while in the std-parallel the programmer takes this decision,
which can result in suboptimal performance. This is true in particular in the Convolution and
Softmax benchmarks, where the std-parallel code has similar performance to the OpenMP
one, even though the Rust sequential version is faster. In LRN and Relu this is not the case,
with both the std-parallel and Rayon version showing very impressive speed-ups compared
to the sequential C version.

In the AMD results shown in Figure 4, we can see somewhat similar results, but here the
std-parallel version of Softmax is slower than the sequential code and in Max Pooling it has
a very similar performance, while on the ARM platform we could still see a speedup over the
sequential code. As mentioned before, this is likely because the manual subdivision of the
input and output matrices to make the parallelization possible interferes with the ability of
the compiler to introduce vector instructions, while the more complex Rayon runtime is able
to still utilize them. On the other hand, both Rayon and std-parallel manage to perform
very well in the LRN benchmark, on both architectures.

Another difference with the performance on the Xavier is that on the V1605B the speedup
does not go much higher than three, while in the Xavier case we had some cases, like LRN
and Matrix Multiplication, where the performance was close to the theoretical maximum.
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Figure 4 Comparison of the speedup of the parallel Rust implementations on the V1605B.

4.2.2 2D matrices

Until now we mostly considered the 1D version of the Matrix structure to have a better
comparison with the C code, however as we mentioned, we developed also a 2D version which
improves on programmability and decreases bugs when manually dealing with identifying
TOWS.

Figure 5 shows the speedup of some 2D Matrix algorithms over their 1D counterparts,
and as we can see in general there is a performance deficit by having the rows allocated
independently from each other. It seems to be the case that this deficit is not the same
for all benchmarks, with Softmax actually showing an improvement, though perhaps not
statistically significant. In our results the difference is usually pretty small, making the 2D
matrix probably preferable in situations where we don’t care about very small performance
differences. It should be noted though that the difference in the real world could be higher,
if the structures are allocated during the execution rather than at the start of the program,
or with more programs running at the same time, as the OS could place the different rows
far away from each other, increasing the cache misses.

5 Conclusions and Future Work

The results presented in the previous section show that the performance of sequential Rust
is similar to C in our space-relevant applications. The same holds for the parallel versions,
with Rayon showing some of the most promising results both in terms of ease of use and
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Figure 5 Speedup of the 2D matrix over the 1D version on the AMD V1605B.

performance. These findings together with the memory safety and easier development of
Rust make it a promising technology in the space and other safety critical domains, as well
as in embedded systems in general.

Another take away comes from the 2D version of the algorithms, that perform only
slightly worse but help a lot with programmability. Throughout the development we caught
bugs on the 1D version that stemmed from inadequate testing, as the benchmarks only use
square matrices, due to the use of the incorrect dimension in iterators; these bugs did not
happen in the 2D versions as the there is no need to manually divide the structure in rows.

Similarly, it is worth noting that during the multicore evaluation performed in our group
for the [17] publication, a couple of software defects (out of bounds accesses and incomplete
initialisation) were found in the C and OpenMP implementations of the FIR, GPUA4S benchark,
which manifested with a crash only on the GR740 space processor under the RTEMS SMP
real-time operating system. These latent defects were masked in all other hardware platforms
and operating systems combinations. After investigating and correcting these defects in the
GPU4S Bench official repository, we checked whether these defects were also present in our
Rust port, as well as in the Ada SPARK versions performed in [10]. Interestingly, these
defects were not present in the GPU4S Bench ports in these two safe languages [13, 11], since
both languages prevent uninitialised memory and out-of-bound accesses.

Rust has a reputation of being a hard language: we would agree that the learning curve
can be somewhat steep in the beginning, but in our opinion the very thing that makes Rust
hard, i.e. the compile time checks, is what can make the programmer a lot more confident in
the resulting code, since once it compiles we know we are not going to get any segmentation
faults. This is even more the case in parallel code, where there is much lower risk of forgetting
to release a lock, introducing very hard to debug errors and race conditions.

When compared with OpenMP the comparison in ease of parallel code development is
less one sided, especially with the wide use of OpenMP in many applications and the larger
feature set compared to Rayon. Still, as we saw in Section 3, the parallel code is very easy to
obtain from the sequential one and the results are very good, making Rust a viable option.
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Evaluation of the Parallel Features of Rust for Space Systems

Another area where we would like to see further development is in libraries for mathem-

atical abstraction: we considered using some crates for mathematical operations, but did
not find one that satisfied our requirements, partly due to limited support. We created the
Number trait to deal with some of these problems, and we think a package that can help with

this would be instrumental for the use of Rust in high performance parallel applications.
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—— Abstract

Cyber-physical systems (CPS) attempt to meet real-time and safety requirements by using hy-
pervisors that provide isolation via virtualisation and Real-Time Operating Systems that manage
the concurrency of system tasks. However, the operating system’s (OS) decisions may hinder the
efficiency of tasks because it needs more awareness of their specific intricacies. Hence, one critical
limitation to efficiently developing CPSs is the lack of tailored parallel programming models that
can harness the capabilities of advanced heterogeneous architectures while meeting the requirements
integral to CPSs, such as real-time behaviour and safety requirements. While conventional HPC
languages, like OpenMP and CUDA, cannot accommodate critical non-functional properties, safety
languages, like Rust and Ada, are limited in their capabilities to exploit complex systems efficiently.
On top of that, accessibility to the programming task is essential to making the system usable to
different domain experts. HiPART tackles these challenges by developing a comprehensive frame-
work holistically addressing efficiency, interoperability, reliability, and sustainability. The HiPART
framework, based on OpenMP, provides tailored support for (1) real-time behaviour and safety
requirements and (2) the efficient exploitation of advanced parallel and heterogeneous processor
architectures. This support is exposed to users through extensions to the OpenMP specification and
its implementation in the LLVM framework, including the compiler and the OpenMP runtime library.
With this framework, HIPART will contribute to realising more capable and reliable autonomous
systems across various domains, from autonomous mobility to space exploration.
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1 Introduction

The demands of our rapidly evolving society and the ever-expanding scope of industrial
applications urge a substantial leap forward in the autonomy and intelligence of complex
Cyber-Physical Systems (CPSs), like those used in autonomous mobility and space exploration.
The increasing need for High-Performance Computing (HPC) capabilities coupled with the
requirements regarding Real-Time (RT) behaviour exacerbates two critical challenges in CPS’
development: (1) the coordination of a potentially extensive set of tasks that often require
real-time execution and significant computational resources, and (2) the complexities entailed
by the parallel and heterogeneous platforms upon which CPS are commonly deployed.

Nowadays, CPSs attempt to meet real-time and safety requirements through hyper-
visors [13] that provide isolation via virtualisation and Real-Time Operating Systems
(RTOS) [11] that manage the concurrency of tasks that increasingly encompass dynamic
and resource-intensive computations (e.g., Al flows). However, current software development
environments fail to enable a comprehensive analysis of the entire system, impeding the
efficient utilisation of highly parallel and heterogeneous architectures.

There is an urgent need in CPS development for parallel programming models tailored
to harness the parallel capabilities of advanced processors efficiently while fulfilling the
non-functional requirements (NFR) that are integral to CPSs. Unfortunately, conventional
programming models, like OpenMP and CUDA, do not support essential NFRs, such as real-
time behaviour (e.g., task deadlines and periods, predictability, and event-based execution)
and safety requirements (e.g., functional correctness and resilience).

HiPART, depicted in Figure 1, originates in the limitations of current programming
systems to provide an unified computing framework equipped with mechanisms for devel-
oping, deploying, and executing complex CPSs on parallel and heterogeneous architectures.
HiPART considers a holistic approach that integrates primary requirements in CPS [10]:
(1) efficiency, optimising the amount of resources (e.g., energy and time) required to de-
liver the expected functionalities; (2) interoperability, ensuring seamless compatibility and
scalability, and support heterogeneity to compose various components into a cohesive system;
(3) reliability, operating as expected, even under challenging conditions, providing robustness,
availability, and predictability; and (4) sustainability, enabling adaptability, resilience, and
reconfigurability. The HiPART framework is based on OpenMP and its implementation in
the LLVM compilation framework, integrating extensions at the levels of the programming
model, the compiler and the runtime system to meet real-time constraints, event-based
execution, resilience, efficiency and adaptability.

2  State of the art (SoA)

HiPART builds upon three main pillars: parallel programming models for critical real-time
computation, mechanisms to boost the performance and adaptability of the evolving CPS,
and mechanisms to meet reliability and resilience expectations.
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Figure 1 HiPART’s overview and intended application.

Parallel programming models and real-time. A programming language is selected based
on factors like the system’s requirements, performance constraints, and the desired level
of control. Languages like Ada prioritise safety, with Ada Ravenscar for determinism and
SPARK for formal verification. Despite their merits, these languages, except for the young
Rust, fail to achieve popularity. Conversely, widely used languages like C/C++, with fine-
grained control for performance-critical applications, and Python, offering a high level of
abstraction that simplifies task development, are embraced for their versatility. Despite their
popularity and support for parallelism, these languages are either inaccessible to non-expert
programmers or cannot provide the required efficiency. Contrarily, models like OpenMP
and SYCL are well-adopted for their efficiency but exhibit shortcomings in supporting NFR.
Nonetheless, aspects such as real-time behaviour [28, 26, 5, 14] and correctness are already
considered [33, 23, 22] for extensions to the OpenMP tasking model (see Section 3).

Efficiency and adaptability in heterogeneous systems. Over the past decade, GPUs have
become popular in fields like scientific computing and machine learning, where parallel
tasks are frequent. Although parallel programming models like OpenMP offer high-level
interfaces with competitive productivity in heterogeneous platforms [7], they may fall short

in performance compared to hand-tuned applications using low-level models like CUDA [3].

Challenges arise in achieving performance portability, scalability, and adaptability. New
techniques, like highly dynamic task-based parallelism and asynchronous programming, aim
to streamline the development process. However, the overhead introduced by the parallel
orchestrator [9, 12, 34] and the lack of features to describe adaptability opportunities may
impede optimal execution in evolving environments. This is critical in rapidly evolving
heterogeneous architectures where specific devices might not be available or even present
failures, and the overall conditions of the system constantly vary.
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Reliability and resiliency. The development of trustworthy CPSs is challenged by the
intricate interaction between the computational and physical realms. Schedulability [27]
and fault-tolerance are integral in CPSs, given that missing deadlines and processing errors
can potentially lead to catastrophic consequences. Techniques for space redundancy, like
N-modular redundancy [30] and task replication [6], and time redundancy, like application-
level checkpointing [31] may enhance fault-tolerance but also compromise the schedulability
of the system [1] if tasks miss their deadlines due to increased computing requirements.
Furthermore, these mechanisms need to be made aware of the structure of the applications
and either require error-prone processes for manually determining the checkpointed data [29]
or increase overheads and memory footprint due to poorly decided checkpoints.

Considering the limitations mentioned above, HIPART leverages proposals and know-
how from previous projects that have worked towards converging the HPC and the critical
real-time domains using OpenMP, like AMPERE [19], RESPECT |[21], HP4S [32], and the
yet to finish RisingSTARS [24] and LIONESS [25] projects to revolutionize the landscape of
complex CPS. Through extensions to OpenMP and an open-access implementation based
on LLVM, HiPART will facilitate the design, deployment, and execution of real-time HPC
CPS on advanced parallel and heterogeneous architectures, holistically addressing efficiency,
interoperability, reliability, and sustainability.

3 The OpenMP programming model

HiPART builds on OpenMP, the de facto standard for programming shared-memory systems
within the HPC community. The model defines an application programming interface (APT)
with compiler directives to annotate C/C++ and Fortran applications. Figure 2 shows
an OpenMP task-based example, with a code snippet in Figure 2a and an extended task
dependency graph (TDG) in Figure 2b describing the execution constraints among the
different tasks. This example illustrates the most relevant features of OpenMP utilized in
the HiPART project in the following paragraphs.

1 {#ipragma omp parallel num threads(N)

2 {#ipragma omp single

3  {#ipragma omp task // To

4+ A

5 Poo O3

6 #pragma omp task depend(out:x) // T1 @

7 {

8 P10 O); Data dependencies/
9 #pragma omp task // T2 @ Synchronization
10 {p200;r I T (T ] e » Control flow

11 P11 O --—+ TSP (creation)
12 ¥ @
13 po1 O J
14 #pragma omp task // T3
15 {p300; ¥
16 #pragma omp task depend(inout:x) // T4 [ implicit barrier ]
17 { pa0O; ¥
18 } // Implicit barrier

(a) Sample code. (b) Task dependency graph (TDG).

Figure 2 OpenMP tasking example.

OpenMP implements fork-join parallelism, i.e., a program starts sequentially until it
reaches a parallel construct (line 1) and creates a team of threads associated with the
parallel region where different mechanisms can distribute work. The thread model defines an
abstraction of user-level threads that exposes low-level architectural details for exploiting
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loop-intensive applications. The tasking model provides a high-level abstraction to define
independent regions of work, namely tasks. The accelerator model leverages the tasking
model to offload tasks to accelerators and the thread model to exploit parallelism within the
accelerator. Given its programmability and productivity [20] and the extensions proposed to
adapt it to real-time systems (see Section 2), this work builds on the tasking model.

An OpenMP task (lines 3, 6, 9, 14, and 16) is an independent work unit with a block of
executable code and its data environment. Tasks can be synchronized through memory fences,
like the taskwait and barrier constructs, including the implicit barriers like those at the
end of the single and the parallel regions (line 18), or the data-flow synchronizations defined
by the depend clause coupled with the in (line 6), out, and inout modifiers (line 16). Tasks
can also be nested, where each nesting level entails an isolated domain of synchronization.
Task-based program commonly use the single construct to allow only one thread in the
single region to execute the sequential code. Meanwhile, the rest of the threads wait in the
implicit barrier at the end of the region until there is work to do (i.e., tasks are instantiated).

When a thread encounters a task construct at run-time, it creates a task instance that
becomes ready when all its input dependencies are satisfied. In mainstream implementations,
e.g., GCC and LLVM, ready tasks are dynamically scheduled by the runtime system to the
available OpenMP threads. Furthermore, threads use work-stealing when they do not have
work enqueued but other threads in the team still have work in their queues.

4 The HiPART framework: Extended OpenMP for real-time HPC

Building on the OpenMP tasking model (introduced in Section 3) and considering the
limitations described in Section 2, the HIPART framework leverages and introduces extensions
to the OpenMP specification and its implementation in LLVM, including the Clang frontend
for processing new directives and clauses, the LLVM compiler for static analysis and code
generation, and the OpenMP runtime library for runtime support, to address efficiency,
interoperability, reliability, and sustainability. The reminder of this section introduces the
extensions leveraged from previous projects and planned to be refined during the project
(see Sections 4.1, 4.2, and 4.3) and the extensions already prototyped and preliminary tested
since the beginning of the project in September 2024 (see Sections 4.4 and 4.5).

4.1 Graph-based execution

The recently released OpenMP6.0 [2] incorporates the taskgraph directive. This functionality
implements reusable graphs of tasks to reduce the overhead of task orchestration (e.g.,
task creation) and minimise contention on shared resources (e.g., task ready queues). The
functioning of taskgraphs is illustrated in Figure 3, with a sample code showing a taskgraph
directive in Figure 3a and the execution flow depicted in Figure 3b. Overall, the taskgraph
construct encloses a region of code that can be captured as a TDG. Hence, it includes
task-generating constructs (e.g., task and taskloop) that are executed whenever the region
is reached and other statements (e.g., control-flow statements) that will only be executed
when the region is recorded. When a taskgraph region is encountered at runtime, if a graph
of tasks already exists for that region, it is played. Otherwise, or if the user explicitly asks for
regenerating the graph through the additional graph_reset clause (e.g., when the condition
within the clause in line 5 resolves to true), then the system generates the TDG of the region.
How the TDG is generated and executed is implementation-defined, so it can either be
generated statically, at compile-time, or dynamically, at run-time. In the latter case, it can
be created while executing the region or in a preprocessing step to later execute the graph.
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1  #pragma omp parallel @ G

2 {#{pragma omp single

3 { taskgraph QpenMP

4 for (int i = 0; 1 < N; ++i) {

5 #pragma omp taskgraph graph reset(i2==0) e [SE—
6 { y Execute and ;
7 #pragma omp task depend (out:ali]) prmeond - : Yes txecord graph.
8 produce_element (alil); i execlurtsiton’) i

9 #pragma omp task depend (in:al[il) S S Nol oo . Yes

10 consume_element (alil); - \ Re-record?™——  ___________.
11 3 m} No \ Execute !
12 } E i__graph__|
13} - o

(a) Sample code. (b) Workflow.

Figure 3 OpenMP taskgraph example.

The taskgraph framework has already been tested using several HPC benchmarks including
task and taskloop constructs. The results show speedups of up to 6x compared to the LLVM
native implementation of tasking [34]. While upstream LLVM alreay implements a record and
replay mechanism relying on runtime routines, a prototype implementation of the taskgraph
construct including static (compile-time) and dynamic (run-time) recording capabilities is
publicly available in https://gitlab.bsc.es/ppc-bsc/software/1llvm-taskgraph.

Graph-based computation has recently become popular as it allows reducing the overheads
of task orchestration in CPUs [34] and enhancing the performance of CPU-GPU heterogeneous
systems using CUDA graphs (for NVIDIA devices) or HIP graphs (for AMD devices).
Leveraging the similarities between taskgraphs and CUDA and HIP graphs, an extension
of the OpenMP taskgraph framework has been proposed to deploy OpenMP taskgraphs in
GPUs using the GPU native graphs [35], i.e., CUDA or HIP graphs. The results show similar
or better performance compared to original target tasks exploiting the target threading
model due to the reduction of kernel offloads and an optimised orchestration of the tasks.
Furthermore, the framework also shows better scalability with the number of processors.

4.2 Adaptability through function variants

Adaptability and performance portability in complex and changing heterogeneous systems can-
not only be accomplished through compiler optimisations or runtime mechanisms. OpenMP
includes features to define function specialisations. In the standard, different user functions
can be linked together through the declare variant directive, which establishes different
functions to implement a unique functionality and the condition that the compiler must
check to statically decide which implementation is used in each function call. Although this
presents a step forward, adaptability can only be obtained at compilation time. Therefore,
runtime changes (e.g., a permanent failure in a device) cannot be considered.

HiPART relies on an extended interpretation of OpenMP variants that gathers metrics
at run-time to dynamically decide among the set of function specialisations provided by
the user [15]. This procedure allows for considering the system’s dynamic conditions, like
workload and energy consumption. To that end, the compiler follows the flow shown in
Figure 4, producing two distinct binaries: (1) an instrumented version equipped with runtime
calls that collect metrics about resource usage and (2) a version that interprets the metrics
gathered by the instrumented version to guide variant selection. The second binary is
generated only after the instrumented binary runs and collects the metrics.

The metrics captured during warm-up include average and peak CPU usage (%), average
and peak GPU usage (%), thread stack memory consumption (%), heap memory consump-
tion (%), GPU memory consumption (%), and execution time (ms). During the execution of
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Figure 4 Workflow of the extended LLVM to support dynamically selected function variants.

the final binary, users can provide a list of metrics to guide variant selection, represented as a
set of comma separated triplets of the form of metric:threshold:weight, where metric is
cpu, gpu, mem, stack or heap, threashold indicates a percentage that, when reached, forces
the runtime to select the variant that stresses less the corresponding metric, and weight is
an optional parameter that indicates the weight of the metric.

The evaluation of this proposal [15] shows the capability of the system to tune the
optimal number of threads for each parallel region, prevent errors or slowdowns in systems
with limited memory, and effectively swap between CPU and GPU implementations when
one resource is overloaded. However, the method might introduce unbearable overheads in
systems with rapid fluctuations, and decisions might soon be outdated. HiPART plans to
mitigate these effects with mechanisms like splitting functions. Furthermore, other planned
extensions include more refined predictive models that can foresee system state changes and
new metrics like power consumption.

4.3 Predictable execution via task-to-thread mapping heuristics

The dynamic nature of the OpenMP task scheduler and the use of work-stealing to balanc the
workload of all threads introduce uncertainty in the execution and, although good-enough in
general terms, entail certain overheads. Recent works have proposed the use of temporal
conditions to derive a more efficient task-to-thread mapping able to reduce system response
time and running time and providing better predictability [26]. The scheduling mechanism
proposed is depicted in Figure 5. It is split into two phases: (1) allocation, assigning each
task to a thread, and (2) dispatching, selecting a task from the ready task queue. A series of
heuristics are proposed for each of these phases, leveraging information about the number of
tasks in a thread’s ready queue and their execution time, among other aspects.

An evaluation of the proposed heuristics compares to common implementations in
OpenMP runtime, including breadth-first scheduler (BFS) and work-first scheduler (WFS),
regarding response time and running time. The results show that the response time produced
by some heuristics is lower than the default LLVM scheduler in most cases, and the variability
in the results given by the heuristics is lower than that of the default scheduler.

HiPART plans to extend this work by providing a schedulability analysis of state-of-the-art
mapping strategies and the suggested heuristics in relevant applications. Furthermore, the
project considers extending these mechanisms to heterogeneous systems with multiple GPUs.
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Figure 5 Task-to-thread mapping workflow.

4.4 Fault tolerance

Several CPSs are sensible to transient faults due to the harm these may cause to the safety
of people, the environment and the system itself. Unfortunately, models like OpenMP lack
the mechanisms to provide fail-operational behaviour. Accordingly, HIPART is developing
fault-tolerance techniques to enable software-based task-level replication and user-directed
fault detection to mitigate the impact of transient faults.

The proposed fault-tolerance mechanism is based on an extension to OpenMP to define
task replication. Figure 6 shows an example of such an extension. The sample code in
Figure 6a illustrates the syntax proposed (lines 9 to 11) [17], where:

the clause replicated specifies the number of replicas to create through an integer
expression > 1 (3 in the example) that indicates the total number of tasks to be generated
(including the original instance and the replicated instances), and the replication strategy
through the spatial, temporal, or spatial_temporal optional keywords. Spatial rep-
lication forces each task to be executed on a different resource, such as a processor core
or an architecture, allowing them to run in parallel; temporal replication ensures that
tasks execute one after the other, enforcing sequential execution; and spatial _temporal
replication combines both approaches, requiring tasks to run on different resources while
also executing sequentially. If no replication type is specified, the default behaviour allows
the tasks to run in parallel without restrictions, thus favouring performance.

the clause replica_private defines variables that will be replicated for each task replica,
i.e., each task will have its own copy of the variable. By making data private to replicas,
this clause prevents data races and ensures each replica operates independently without
causing inconsistencies in shared data.

the clause replica_firstprivate specifies a list of variables that must be firstprivate to
each replica (i.e., each task will allocate a new space and initialize its value to the value
of the original variable at the time the task is instantiated). The compiler performs a
shallow copy unless a shaping expression (e.g., [size]a, an array a of size elements) is
defined, in which case it performs a deep copy considering the corresponding size. This
clause ensures that the replicas start with a consistent state, improving fault tolerance
while maintaining independent execution for each replica.
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1 wvoid foo() { — .

5 int v = 2; Runtime Application

3 int size = sizeof(int)*10;

4 int *a = (int *) malloc (size); "

5 #pragma omp parallel

6 ﬁpragma omp single Replication set Data copies

7 F : Consolidation

8 #pragma omp task \ . . <> C) () Synchronization
9 replicated(3, spatial) \ -

10 replica private([sizela) \ /’le\ . ongl,naltaSk

11 replica_ firstprivate(v) '\ j O Replicas )
12 { () consensus & voting
13 for (int i=0; i<10; i++) ) " N "

14 alil = v; D O QHD

15 } T )

16 } -

17}

(a) Sample code. (b) Execution flow.

Figure 6 OpenMP task replication proposal example.

The execution flow in Figure 6b illustrates the behaviour of the replication mechanism.
The thread that encounters the task replicated (line 8) creates a replication set with three
tasks: the original and two replicas. Since the spatial constraint is specified, the OpenMP
runtime system prevents threads from executing multiple tasks within the same replication
set. Threads can further be bound to cores through the OMP_PROC_BIND environment variable
for the whole execution or the proc_bind clause, attached to a parallel construct.

Figure 7 shows preliminary results of the impact of using task replication in the Barcelona
OpenMP Task Suite (BOTS) [8], a benchmark suite with eleven benchmarks exposing
different memory profiles and CPU consumption when randomly inserting a single bitflip
per execution in either memory or registers. The result of a bitflip can be a benign fault,
when the application completes with the correct result without detecting any error, an output
error when the application finishes normally but the output is incorrect, a crash, when the
application terminates unexpectedly due to an internal error, or timeout, when the application
hangs and does not complete. The results compare a bitflip in the sequential vanilla version,
namely vanilla, with a bitflip in the replicated version, namely GuOMP. Considering that
bitflips typically occur in the stack in applications with minimal memory usage, examples like
Floorplan, Alignment, Fib, Nqueens, and Knapsack exhibit high tolerance to faults because
the majority of the stack is not actively used. Oppositely, benchmarks like UTS, which uses
about 1.5MB of stack memory, are more prone to crashes. On the other hand, applications
with higher use of dynamic memory see more significant effects from bitflips. Still, this
behaviour depends on the specific algorithms and their memory access patterns. For example,
a single bitflip in the Sort integer array disrupts the output, as sorting algorithms depend on
precise memory operations.

HiPART plans to extend the proposal for fault-tolerance in OpenMP with a user-defined
consensus and voting mechanism that will provide better accuracy when comparing results
from different replicas. Furthermore, replicas will be extended to exploit function variants
to boost resilience in heterogeneous systems. Finally, to provide fault-recovery capabilities,
HiPART plans to enable communication between the runtime system and the application
through runtime routines and OpenMP data structures and offer a checkpointing mechanism
to store selected memory objects. These methods combined will enable users to handle errors
in the most adequate way for each application.
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Figure 7 Comparison of the consequences of memory bitflips in BOTS with sequential vanilla
and task-replicated versions.

1 void tdg_computation() {
2 #pragma omp target nowait \ E2 E1 events
3 depend(out:depl) attach(eventl)
. I v y converyed
5 #ipragma omp target nowait \ ' U from sensors
6 depend(in:depl) depend(out:dep2) . e o
7 {...} y/ 12 ! [ T1) "\ generated
8 #pragma omp target nowait \ ' " Ly tasks
9 depend(out:dep3) attach(event2) i
10 {...} // 13 * 1
11 #pragma omp target nowait \ Py A ' gvent based
12 depend(in:dep2,dep3) 73 ) L T2 ) ,;, synchronization
13 {...} // T4
14}
15 void notify() { data
16 #pragma fulfill event gpu notify(eventl) 1
17 #pragma fulfill event gpu notify(event2) — dependency
18 } TDG basad on data

dependency
(a) Sample code. (b) TDG.

Figure 8 OpenMP event-based synchronization proposal example.

4.5 Real-time event-based execution

The throughput-centric design of GPUs poses challenges when integrating them into time-
sensitive CPS. Modern systems recently evolved to minimize overheads and interference along
the critical path through advanced mechanisms, such as CUDA graphs in NVIDIA devices
and HIP graphs in AMD devices. However, GPU vendors provide ecosystems specific to their
products, preventing code portability. HIPART has integrated event-based synchronizations
into OpenMP and extended the support for OpenMP taskgraph to CUDA/HIP graphs to
notably reduce interference and overheads in time-sensitive applications.

Figure 8 shows an example of the proposal for event-based synchronization in OpenMP.
Figure 8a depicts an example of generating four interdependent target tasks, two synchronized
with events. The corresponding TDG is shown in Figure 8b. Upon the encountering of
an attach clause, the implementation creates a new allow-launch event and connects it to
the beginning of the execution of the associated task region. The generated task can only
start executing its associated structured block when the allow-launch event is fulfilled. This
will happen when another thread encounters the fulfill_event directive with either the
cpu_notify or gpu_notify clauses taking the same event as the argument.

Preliminary experiments measure the response time and time variability of the Adaptive
Optics (AO) real-time controller illustrated in Figure 9. The application combines two
functionalities: (1) a pixel processing method that takes raw data from wavefront sensor
cameras and processes the pixels with a series of arithmetic kernels, and (2) a series of
matrix-vector multiplications that produce a command as a vector sent to the deformable
mirror actuators of the physical component, typically a telescope.
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Figure 9 AO pipeline.

Figure 10 shows the response time of the AO application using CUDA (in Figure 10a)
and HIP (in Figure 10b). In NVIDIA devices, our implementation (OpenMP CUDA Graph
& GPU sync) achieves 16us max. jitter, with 538us mean execution time (MET) and 554us
maximum measured execution time (MMET). Although the response time is slightly higher
in our OpenMP CUDA version than the native solution (Regular CUDA Graph & GPU sync),
the max jitter is identical, showing comparable predictability. In AMD devices, however, the
OpenMP HIP version (OpenMP HIP Graph & GPU sync) achieves a slightly higher max.
jitter of 21us (443us MET and 464pus MMET). As expected, the third method using the
CPU synchronization strategy showed the largest execution times and a max jitter of 28 us
(562us MET and 590us MMET) with CUDA and 33us (478us MET and 511us MMET) with
HIP. All in all, our proposal delivers MET and jitter comparable to the native CUDA /HIP
implementations while maintaining a simple, directive-based programming style.

5 Project plan and next steps

HiPART is organized into three technical Work Packages: (1) WP1 is dedicated to developing
and validating real-time high-performance systems through relevant use cases, (2) WP2
is dedicated to developing extensions for high-performance, including performance and
adaptability, and (3) WPS$ is dedicated to extensions for critical real-time systems, including
resilience and predictability. Additionally, there is a dedicated WP for impact maximization
and project management, ensuring continuous dissemination of key findings' and the smooth
development of HIPART. All WPs span the 4 phases of the project, including (1) phase 1
to define the use cases and the initial design, (2) phase 2 for the development and isolated
testing of software components, ensuring their individual functionality and compatibility
with the targeted platforms, (3) phase 3 for the integration and optimization of the parallel
framework, and (4) phase 4 for the validation and demonstration.

HiPART started in September 2024 and will expand three years of work. It is now in its
initial phase, where use cases and system requirements are being defined. This paper presents
the project and its intended solution for real-time high-performance systems. The project
is developing a unique framework for efficiently deploying advanced CPS in parallel and
heterogeneous processor architectures, holistically addressing real-time and HPC requirements.
The project leverages and extends OpenMP to accommodate requirements from the critical

! Follow HiPART in the LinkedIn profile: https://www.linkedin.com/company/105114452.
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Figure 11 Timeplan of the HiPART project.

real-time domain, including event-based execution, time predictability and resilience, and the
HPC domain, including performance portability and adaptability. The project has preliminary
results for task-based replication, showing enhancements in detecting and bypassing faults,
and event-based execution exploiting heterogeneous OpenMP taskgraphs, showing competitive
performance, equivalent jitter and much better programmability than native solutions. Future
work includes further extensions for fault-recovery based on consensus-and-voting, N-version
programming and checkpointing and scheduling mechanisms to enhance the predictability of
heterogeneous systems, among others.
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