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Abstract
First-generation blockchains provide probabilistic finality: a block can be revoked, albeit the
probability decreases as the block “sinks” deeper into the chain. Recent proposals revisited committee-
based BFT consensus to provide deterministic finality: as soon as a block is validated, it is never
revoked. A distinguishing characteristic of these second-generation blockchains over classical BFT
protocols is that committees change over time as the participation and the blockchain state evolve. In
this paper, we push forward in this direction by proposing a formalization of the Dynamic Repeated
Consensus problem and by providing generic procedures to solve it in the context of blockchains.

Our approach is modular in that one can plug in different synchronizers and single-shot consensus.
To offer a complete solution, we provide a concrete instantiation, called Tenderbake, and present a
blockchain synchronizer and a single-shot consensus algorithm, working in a Byzantine and partially
synchronous system model with eventually synchronous clocks. In contrast to recent proposals, our
methodology is driven by the need to bound the message buffers. This is essential in preventing
spamming and run-time memory errors. Moreover, Tenderbake processes can synchronize with each
other without exchanging messages, leveraging instead the information stored in the blockchain.
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1 Introduction

Besides raising public interest, blockchains have also recently gained traction in the scientific
community. The underlying technology combines advances in several domains, most notably
from distributed computing, cryptography, and economics, in order to provide novel solutions
for achieving trust in decentralized and dynamic environments.

Our work has been initially motivated by Tezos [18, 1], a blockchain platform that
distinguishes itself through its self-amendment mechanism: protocol changes are proposed
and voted upon. This feature makes Tezos especially appealing as a testbed for experimenting
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with different consensus algorithms to understand their strengths and suitability in the
blockchain context. Tezos relies upon a consensus mechanism build on top of a liquid proof-
of-stake system, meaning that block production and voting rights are given to participants
in proportion to their stake and that participants can delegate their rights to other stake-
holders. As Nakamoto consensus [21, 17], Tezos’ current consensus algorithm [24] achieves
only probabilistic finality assuming an attacker with at most half of the total stake, and
relying on a synchrony assumption.

The initial goal of this work was to strengthen the resilience of Tezos through a BFT
consensus protocol to achieve deterministic finality while relaxing the synchrony assumption.
We had two general requirements that we found were missing in the existing BFT consensus
protocols. First, for security reasons, message buffers need to be bounded: assuming
unbounded buffers may lead to memory errors, which can be caused either accidentally or
maliciously, through spamming for instance. Second, as previously observed [2], plugging a
classical BFT consensus protocol in a blockchain setting with a proof-of-stake boils down to
solve a form of repeated consensus [13], where each consensus instance (i) produces a block,
i.e., the decided value, and (ii) runs among a committee of processes which are selected based
on their stake. To be applicable to open blockchains, committees need to be dynamic and
change frequently. Frequent committee changes is fundamental in blockchains for mainly two
reasons: (i) it is not desirable to let a committee be responsible for producing blocks for too
long, for neither fairness nor security; (ii) participants’ stake may change frequently.

Dynamic Repeated Consensus. Typically, repeated consensus is solved with state machine
replication (SMR) implementations. We, instead, propose to use a novel formalism, dynamic
repeated consensus (DRC) to take into account that, in the context of open blockchains,
participants in consensus change. To this end, we propose that the selection of participants
is based upon information readily available in the blockchains.

To solve DRC, we follow the methodology initially presented in [14] and revived more
recently in [29, 22, 23]: we decouple the logic for synchronizing the processes in consensus
instances from the consensus logic itself. Thus, our solution uses two main generic ingredients:
a synchronizer and a single-shot consensus skeleton. Our approach is modular in that one
can plug in different synchronizers and single-shot consensus algorithms. Our solution works
in a partially synchronous model where the bound on the message delay is unknown, and
the communication is lossy before the global stabilization time (GST). We note that losing
messages is a consequence of processes having bounded memory: if a message is received
when the buffers are full, then it is dropped.

Blockchain-based Synchronizer. The need for and the benefits of decoupling the synchron-
izer from the consensus logic have already been pointed out in [29, 22, 23, 6]. Indeed, such
separation of concerns allows reusability and simpler proofs. We continue this line of work
and propose a synchronizer for DRC which does not exchange messages. Instead, it relies
upon local clocks while leveraging information already stored in the blockchain. Our solution
allows buffers to be bounded and guarantees that correct processes in the synchronous period
are always in the same round, except for negligeable periods of time due to clock drifts. Thus,
processes can discard all the messages not associated with their current or next round. This
is similar to the communication-closed round model [10, 16] and in contrast to most existing
solutions, which, in principle, need to store messages for an unbounded number of rounds.
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Consensus algorithm. To complete our DRC solution, Tenderbake, we also present a single-
shot consensus algorithm. Single-shot Tenderbake is inspired by Tendermint [7, 3], in turn
inspired by PBFT [8] and DLS [14]. We improve Tendermint in two aspects: i) we remove
the reliable broadcast requirement during the asynchronous period, and ii) we provide faster
termination. Tendermint terminates once processes synchronize in the same round after GST,
in the worst case, in n rounds, where n is the size of the committee. Single-shot Tenderbake
terminates in f +2 rounds, where f is the upper bound on the number of Byzantine processes.
Tenderbake departs from its closest relatives Tendermint and HotStuff [29] in that it is driven
by a bounded-buffers design leveraging a synchronizer that paces protocol phases on timeouts
only. However, the price for this is that Tenderbake is not optimistic responsive as HotStuff,
which makes progress at the speed of the network and terminates in f + 1 rounds, at the
cost of an additional phase. As a last difference, we note that, contrary to recent pipelined
algorithms [29, 9], Tenderbake lends itself better to open blockchains. Pipelined algorithms
focus more on performance, however pipelining imposes restrictions on how much and how
frequently committees can change [9].

We are not aware of any existing approach providing a complete, generic DRC formal-
ization. However, several references exist for particular aspects which we touch upon. For
instance, repeated consensus with bounded buffers has been studied in [13, 27] but in system
models which assume crash failures only. Working solutions for implementing dynamic
committees are (mostly partially) documented in [11, 20, 19, 26, 28, 25, 5]. The differences
with respect to the closest relatives of single-shot Tenderbake have been discussed above.

Outline. The paper is organized as follows: Section 2 defines the system model; Section 3
formalizes the DRC problem and proposes a generic solution; Section 4 proposes a synchronizer
leveraging blockchain’s immutability; Sections 5 - 6 present the single-shot consensus skeleton
and respectively single-shot Tenderbake, as an example of an instantiation; Section 7 discusses
message complexity and gives some intuition on the upper bound on the recovery time after
GST; Section 8 concludes. Appendix B contains the detailed correctness proofs of Tenderbake.

2 System Model

We consider a message-passing distributed system composed of a possibly infinite set Π of
processes. Processes have access to digital signing and hashing algorithms. We assume that
cryptography is perfect: digital signatures cannot be forged, and there are no hash collisions.
Each process has an associated public/private key pair for signing and processes can be
identified by their public keys.

Execution model. Processes repeatedly run consensus instances to decide output values.
New output values are appended to a chain that processes maintain locally. Consensus
instances run in phases. The execution of a phase consists in broadcasting some messages
(possibly none), retrieving messages, and updating the process state. At the end of a phase a
correct process exits the current phase and starts the next phase. We consider that message
sending and state updating are instantaneous, because their execution times are negligible
in comparison to message transmission delays. This means that the duration of a phase is
given by the amount of time dedicated to message retrieval.

Partial synchrony. We assume a partially synchronous system, where after some unknown
time τ (the global stabilization time, GST) the system becomes synchronous and channels
reliable, that is, there is a finite unknown bound δ on the message transfer delay. Before τ

the system is asynchronous and channels are lossy.
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We assume that processes have access to local clocks and that after τ these clocks are
loosely synchronized: at any time after τ , the difference between the real time and the local
clock of a process is bounded by some constant ρ, which, as δ, is a priori unknown.

Fault model. Processes can be correct or faulty. Correct processes follow the protocol,
while faulty ones exhibit Byzantine behavior by arbitrarily deviating from the protocol.

Communication primitives. We assume the presence of two communication primitives built
on top of point-to-point channels, where exchanged messages are authenticated. The first
primitive is a best-effort broadcast primitive used by processes participating in a consensus
instance and the second is a pull primitive which can be used by any process.

Broadcasting messages is done by invoking the primitive broadcast. This primitive
provides the following guarantees: (i) integrity, meaning that each message is delivered at
most once and only if some process previously broadcast it; (ii) validity, meaning that after τ

if a correct process broadcasts a message m at time t, then every correct process receives m

by time t + δ. For simplicity, we assume that processes also send messages to themselves.
Processes are notified of the reception of a message with a NewMessage event.

The pullChain primitive is used by a process to retrieve output values from other processes.
This primitive guarantees that, if invoked by a process p at some time t > τ , then p will
eventually receive all the output values that correct processes had before t. We note that the
pull primitive can be implemented in such a way that the caller does not need to pull all
output values, but only the ones that it misses. Furthermore, output values can be grouped
and thus received as a chain of values. Processes are notified of the reception of a chain with
a NewChain event.

3 Dynamic Repeated Consensus

3.1 Problem definition
Originally, repeated consensus was defined as an infinite sequence of consensus instances
executed by the same set of processes, with processes having to agree on an infinitely growing
sequence of decision values [13]. Dynamic repeated consensus, instead, considers that each
consensus instance is executed by a potentially different set of n processes where n is a
parameter of the problem. More precisely, given the i-th consensus instance, only n processes
Πi ⊆ Π participate in the consensus instance proposing values and deciding a unique value vi.
Processes in Π − Πi can only adopt vi. Therefore output values can be either directly decided
or adopted. We assume that every correct process agrees a priori on a value v0.

To know the committee, each process has access to a deterministic selection function
committee that returns a sequence of processes based on previous output values. More
precisely, the committee Πi is given by committee([v0]) for i ≤ k and by committee(v̄p[..(i−k)])
for i > k, where k > 0 is a problem parameter, v̄p denotes the sequence of output values
of process p, and s̄[..j] denotes the prefix of length j + 1 of the sequence s̄. Each process
calls committee with its own decided values; however since decided values are agreed upon,
committee returns the same sequence when called by different correct processes. We note that
the sets Πi are potentially unrelated to each other, and any pair of subsequent committees
may differ. However, we assume that in each committee, less than a third of the members
are faulty. For convenience, we consider the worst case: n = 3f + 1, and each committee
contains exactly f faulty processes.
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Dynamic repeated consensus, as repeated consensus, needs to satisfy three properties:
agreement, validity, and progress. Agreement and progress have the same formulation for
both problems. However, validity needs to reflect the dynamic aspect of committees. To this
end, we define validity employing two predicates. The first one is isLegitimateValue. When
given as input a value vi, isLegitimateValue(vi) returns true if the value has been proposed by
a legitimate process, e.g., a process in Πi. The second predicate is isConsistentValue. When
given as input two consecutive output values vi, vi−1, isConsistentValue(vi, vi−1) returns true
if vi is consistent with vi−1. This predicate takes into account the fact that an output value
depends on the previous one, as commonly assumed in blockchains. For instance, when
output values are blocks containing transactions, a valid block must include the identifier or
hash of the previous block, and transactions must not conflict with those already decided.
For conciseness, we define isValidValue(vi, vi−1) as a predicate that returns true if both
isLegitimateValue(vi) and isConsistentValue(vi, vi−1) return true for i > 0. Note that the use
of an application-defined predicate for stating validity already appears in [2, 12].

An algorithm that solves the Dynamic Repeated Consensus problem must satisfy the
following three properties:

(agreement) At any time, if v̄p and v̄q are the sequences of output values of two correct
processes p and q, then v̄p is a prefix of v̄q or v̄q is a prefix of v̄p.
(validity) At any time, if v̄p is the sequence of output values of a correct process p, then
the predicate isValidValue(v̄p[i],v̄p[i − 1]) is satisfied for any i > 0.
(progress) For any time t, there is a later t′ > t such that the sequence of output values
of a correct process at time t is a strict prefix of the sequence of output values at time t′.

We use s̄[i] to denote the (i + 1)-th element of the sequence s̄.

3.2 A DRC solution for blockchains

3.2.1 Preliminaries

A blockchain is a sequence of linked blocks. The head of a blockchain is the last block in
the sequence. The block level is its position in the sequence, with the first block having
level 0. We call this block genesis. A block has a header and a content. The content typically
consists of a sequence of transactions; it is application-specific and therefore we do not model
it further. The block header includes the level of the block and the hash of the previous
block, among other fields detailed later.

In a nutshell, the proposed DRC algorithm works as follows. At each level, for a block b

which is proposed to be appended to the blockchain, processes run a single-shot consensus
algorithm to agree on the tuple (u, h), where u is the content of b and h is the hash of the
predecessor of b. Therefore, we consider that the output values in v̄ from the DRC definition
in Section 3.1 are the agreed upon tuples (u, h).

Intuitively, the block content is what needs to be agreed upon at a given level. Thanks
to block hashes, the agreement obtained during a single-shot consensus instance implies
agreement on the whole blockchain, except for its head, for which there might not yet be
agreement on the other fields of the header besides the predecessor hash. The possible
“disagreement” comes from processes taking a decision at possibly different times and thus on
different proposed blocks which, however, share the same content. Agreement on the head is
obtained implicitly at the next level. For clarity, we refer to a block as being committed if it
is not the head of the blockchain of a correct process.

FAB 2021
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1 proc runDRC()
2 schedule onTimeoutPull() to be executed after I
3 updateState([genesis], ∅)
4 while true
5 initConsensusInstance()
6 (chain, certificate) := runConsensusInstance()
7 updateState(chain, certificate)

8 proc updateState(chain, certificate)
9 # NB: tail of blockchainp is a prefix of chain

10 blockchainp := chain
11 headCertificatep := certificate
12 ℓp := length(chain)
13 hp := hash(blockchainp[ℓp − 1])

14 proc onTimeoutPull()
15 pullChain
16 schedule onTimeoutPull() to be executed after I

17 proc handleEvents()
18 while not stopEventHandler() do
19 upon NewMessage(msg)
20 handleConsensusMessage(msg)
21 upon NewChain(chain, proposalOrCertificate)
22 certificate := getCertificate(proposalOrCertificate)
23 if validChain(chain, certificate) then
24 if length(chain) > ℓp then
25 return (chain, certificate)
26 else if length(chain) = ℓp ∧ betterHead(chain, proposalOrCertificate) then
27 updateState(chain, certificate)

Figure 1 DRC entry point and auxiliary procedures.

In order for processes to validate a chain independently of the current consensus instance,
a certificate is included in the block header to justify the decision on the previous block. A
certificate is a quorum of signatures which serves as a justification that the content of the
predecessor block was agreed upon by the “right” committee. To effectively check certificates,
the public keys of committee members are stored in the blockchain.

3.2.2 A DRC algorithm
Fig. 1 presents the pseudocode of a generic procedure to solve DRC in the context of
blockchains. It is generic in that it can run with any single-shot consensus algorithm.
We first enumerate the state variables at any correct process p. Namely, the state of p:

blockchainp, its local copy of the blockchain;
ℓp, the level at which p runs a consensus instance, which equals the blockchain’s length;
hp, the hash of the head of blockchainp, that is, of the block at level ℓp − 1;
headCertificatep, the certificate which justifies the head of blockchainp.

In the pseudocode, all these state variables are considered global, while variables local to a
procedure are those that do not have a subscript.

Next, we refine the answer to pullChain requests, in that we consider that the pullChain
primitive retrieves more than just output values. Concretely, when a correct process p at
level ℓp answers a pullChain request, it returns a tuple (blockchainp, proposalOrCertificate)
where blockchainp is its local chain and proposalOrCertificate is either: (1) the block that p

considers as the current proposal at level ℓp or; (2) in absence of a proposal, headCertificatep.
Here, by proposal we mean a proposed block.

We now proceed to describing the entry point of the DRC algorithm, that is, the
procedure runDRC in Fig. 1. Processes need not start DRC at the same time. When
executing runDRC, a process starts by scheduling calls to pullChain. Then, using updateState,
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it initializes its local variables, namely the state variables already presented and the variables
specific to the single-shot algorithm. We use the function hash to compute the hash of some
input. The function length returns the length of an input sequence.

After updating its state, the process iteratively runs consensus instances and once an
instance has finished, it updates its state accordingly. Normally, a consensus instance simply
decides on a value, and the corresponding block is appended to the blockchain. However, a
process might also be behind other processes which have already taken decisions for more
than one level. In this case, as soon as the process invokes the pullChain primitive, it retrieves
missed decisions and thus possibly more blocks are appended to the blockchain.

In the presence of dynamic committees, it is not enough that processes call pullChain
punctually when they are behind. Indeed, assume that a process p decides at level ℓ but the
others are not aware of this and have not decided, because the relevant messages were lost;
also assume that p is no longer a member of the committee at level ℓ + 1, consequently, it no
longer broadcasts messages and thus the other processes cannot progress. To solve this, each
process invokes pullChain regularly, every I time units, where I > 0 is some constant.

During the execution of a consensus instance, processes continuously handle events to
update their state. The event processing loop is implemented by the handleEvents procedure in
Fig. 1. The termination of the event handler is controlled by the stopEventHandler procedure,
which is specific to the single-shot consensus algorithm. There are two kinds of events:
message receipts, represented by the NewMessage event, and chain receipts, represented by
the NewChain event. Upon receiving a new message msg, a process p dispatches it to the
consensus instance. Upon the receipt of a new chain, p updates its state accordingly:

If the new chain is longer, and is valid, p starts a new consensus instance for a higher level;
this is because the return on line 25 passes the control back to the runDRC procedure in
line 6.

If the new chain has the same length but a head which is “better”, in some sense that
specific to the single-shot consensus algorithm, then this signals to p that it is “behind”,
and in this case p only updates its state while remaining at the same level. In particular,
only the DRC-related state is updated, while the single-shot instance remains unchanged.
A specific betterHead procedure in given in Section 6. For the moment, we note that by
means of betterHead, all processes have the same reference point for synchronization.

The NewChain event has, in addition to the chain parameter, the proposalOrCertificate
parameter, which serves as a justification that the head’s value has indeed been agreed upon.
The role of validChain(chain) is two-fold:

1. to check whether chain’s head and the certificate from proposalOrCertificate match;
for this to be possible, we assume access to a procedure getCertificate provided at the
single-shot consensus level (see Section 6.5);

2. to check whether for any level ℓ the predicate isValidValue(chain[ℓ], chain[ℓ−1]) is satisfied;
this means that the hash field in the header of the block chain[ℓ] equals hash(chain[ℓ − 1])
(so that the predicate isConsistentValue is satisfied), and that the value in each block is
proposed by the right committee (so that the predicate isLegitimateValue is satisfied); for
the latter to be possible, certificates are stored in blocks as single-shot consensus specific
elements (see Section 6.2).

The DRC solution we presented is generic, one can instantiate it by providing imple-
mentations to initConsensusInstance, startConsensusInstance, getCertificate, betterHead, and
stopEventHandler. We show how to concretely implement them in Sections 5 and 6.

FAB 2021
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4 A synchronizer for blockchains

We describe a synchronizer for round-based consensus algorithms. Round-based consensus
algorithms progress in rounds, where, at each round, processes attempt to reach a decision,
and if they fail, they advance to the next round to make another attempt.

In the context of round-based consensus algorithms, a standard way to achieve termination
of a single consensus instance is to ensure that processes remain at the same round for a
sufficiently long period of time [14, 8, 16, 10]. The synchronizer we propose realizes this by
leveraging the immutability of the blockchain. One feature of our synchronizer is that it
does not exchange any message, thus, it does not increase the communication complexity.
Instead, it relies on rounds having the same duration for all processes. We require that
rounds duration are increasing and unbounded. Concretely, the duration of a round r > 0 is
given by ∆(r), where ∆ is a function with domain N \ {0} such that, for any duration d ∈ N,
there is a round r with ∆(r) ≥ d. Furthermore, we assume that rounds duration are larger
than the clock skew, so that rounds are not skipped in the synchrony period. Note that by
using round durations, Tenderbake cannot be optimistic responsive like, for instance, [29].

▶ Remark 1. In practice, given estimates δreal of the real message delay and δmax of the
maximum message delay δ, we would choose ∆ such that: (i) ∆(1) is slightly bigger than δreal ,
(ii) ∆ increases rapidly (e.g. exponentially) till it reaches δmax , and (iii) then it increases
slowly (e.g. linearly) afterwards.

To determine at which round the process should be, the synchronizer relies on local clocks.
Therefore, when clocks are synchronized, all processes will be at the same round. However, a
prerequisite is that processes agree on the starting time of the current instance. As different
processes may decide at different rounds, and therefore at different times, there is a priori no
consensus about the start time of an instance. We adopt a solution based on the following
observation: if the round at which a decision is taken is eventually known by all processes,
then they can agree on a common global round at which a consensus instance is considered
to have terminated. Indeed, a process considers that the consensus instance has ended at
the smallest round at which some process has decided.

The above solution can be implemented by (1) considering that a block header stores
the round at which the block is produced, and (2) using the betterHead procedure, which is
called by a process p at line 27 upon receiving a new chain in response to a pullChain request.
This procedure checks if some other process has already taken a decision sooner, in terms
of rounds. If this is the case, betterHead signals to its caller that it is “behind” and thus
that it needs to resynchronize. We postpone the concrete implementation of betterHead to
Section 6.4 because it is specific to the single-shot consensus algorithm. For the moment,
to illustrate the role of betterHead, Fig. 2 shows an update of the head of a process p’s
blockchain. Initially, the head of p’s local chain is b′. Then, p sees the block b′′ at level ℓ

with a smaller round than b′ and therefore updates the head of its local chain to b′′.
Finally, we present the synchronization procedure in Fig. 3. We assume that the genesis

block contains the time t0 of its creation. To synchronize, p uses its local clock, whose value
is obtained by calling now(), and the rounds of the blocks in its blockchain to find out what
its current round and the time position within this round should be. Process p determines
first the starting time of the current level and stores it in t. To do this, p adds the durations
of all rounds for all previous levels. Once p has determined t, it finds the current round by
checking incrementally, starting from round r = 1 whether the round r is the current round:
r is the current round if there is no time left to execute a higher round. The variable t is
updated to represent the time at which round r started. The difference t′ − t represents the
offset between the beginning of the round r and the current time.
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0 1

.....

ℓp − 2

b (u, h)
r = 2

b′′

(u, h)
r = 3

ℓp − 1

b′

committed blocks

q’s local chain

p’s local chain

Figure 2 An update of the head of p’s chain. Solid boxes represent blocks in p’s chain before the
update, while the dashed box represents the block that triggers the update. Block levels and labels
are given above and respectively below the corresponding boxes. The hash h is that of block b.

28 proc synchronize()
29 t′ := now()
30 t := t0 +

∑ℓp−1
ℓ=0

∑round(ℓ)
j=1

∆(j) +
∑r′

j=1
∆(j)

31 r := 1
32 while t + ∆(r) ≤ t′ do
33 t := t + ∆(r)
34 r := r + 1
35 return (r, t′ − t)

· · · t1
ℓp−1 t2

ℓp−1 · · · tr′

ℓp−1 t1
ℓp

· · · tr
ℓp

now()

offset∆(1) ∆(r′)∑r′

j=1 ∆(j)

Figure 3 A round-based synchronizer and a timeline. Small/large vertical lines represent
round/level boundaries, respectively.

Fig. 3 also illustrates the timeline of a process that increments its rounds using the
procedure synchronize, where tr

ℓp
represents the starting time of the round r of level ℓp and

r′ stands for the last round of level ℓp − 1. The figure also illustrates the offset t′ − t.

5 A Single-Shot Consensus Skeleton

In this section we give a generic implementation for the procedure runConsensusInstance from
Section 3.2.2. Here we make another standard assumption on the structure of the single-shot
consensus algorithm, namely that each round evolves in sequential phases. For instance,
PBFT in normal mode has 3 phases (named pre-prepare, prepare, and commit), Tendermint
as well, DLS and Hotstuff have 4 phases, etc.

We let m denote the number of phases. As for rounds, we assume that each phase has a
predetermined duration. The duration is given by the round r it belongs to, and it is denoted
∆′(r). For simplicity, we assume that ∆(r) = m · ∆′(r). We also refine the assumption on
round durations, and also require that phase durations are larger than the clock skew, so
that phases are not skipped in the synchrony period, i.e. ∆′(1) > 2ρ.

To synchronize correctly, a process also needs to update its phase (not only its round)
and to know its time position within a phase. These can be readily determined from the
round and the round offset returned by synchronize. The procedure getNextPhase, presented
in Fig. 4, performs this task. For the pseudocode, we consider that each phase has a label
identifying it and we use phases to denote the sequence of phase labels.

The entry point of a single-shot consensus instance is runConsensusInstance, given in
Fig. 4. As part of its state, a process p also maintains its current round rp. A process p starts
by calling synchronize in an attempt to (re)synchronize with other processes. We recall that
this is just an attempt and not a guarantee because clocks are not necessarily synchronized
before τ . If synchronize returns that p should be at a round in the past with respect to p’s
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36 proc runConsensusInstance()
37 (round, roundOffset) = synchronize()
38 if rp > round then # p is ‘‘ahead’’
39 runConsensusInstance()
40 else # p is ‘‘behind’’
41 (phase, phaseOffset) :=
42 getNextPhase(round, roundOffset)
43 rp := round
44 set runEventHandler timer to
45 ∆′(rp) − phaseOffset
46 if p ∈ committeeAtLevel(ℓp) then
47 goto phase
48 else
49 goto phase-observer

50 proc getNextPhase(round, roundOffset)
51 i := roundOffset / ∆′(round)
52 phase := phases[i]
53 phaseOffset := roundOffset − i · ∆′(round)
54 return (phase, phaseOffset)

55 proc advance(decisionOption)
56 match decisionOption with
57 | Some (block, blockCertificate) →
58 c := blockchainp ++ block
59 return (c, blockCertificate)
60 | None → # no decision
61 rp := rp + 1
62 filterMessages()
63 runConsensusInstance()

Figure 4 Entry point and progress procedures for generic single-shot consensus.

current round, then p invokes (indirectly) the synchronizer again. This active waiting loop
ensures that p is ready to continue its execution as soon as it is not “ahead” anymore. We
note that a jump backward to a previous round or phase may jeopardize safety. When p is
“behind”, it first uses the procedure getNextPhase to obtain the phase at which it should be.
Next, it updates its round and the timer used to time the execution of the event handler. Con-
cretely, through this timer, the generic procedure stopEventHandler is implemented as follows:

64 proc stopEventHandler()
65 return true iff timer runEventHandler expired

We recall this procedure is used by handleEvents at line 18 in Fig. 1.
After setting runEventHandler , p checks whether it is part of the committee for level ℓp.

To this end, we assume having access to a committeeAtLevel function, which returns the
committee at some given level ℓ. This function corresponds to committee(v̄p[..(ℓ − k)])
(Section 3.1), where v̄p is the sequence of output values of the caller process p. Finally, p

executes the single-shot consensus algorithm according to its role and to the phase returned
by getNextPhase. The determined phase is executed by means of an unconditional jump to
corresponding phase label. The two goto statements in Fig. 4 are intentionally symmetric for
committee and non-committee members to keep all processes in sync. This has the advantage
of not introducing delays when they eventually become part of the committee.

Fig. 4 also shows the advance procedure, which is used by processes to handle the progress
of the current consensus instance by either returning the control to runDRC when a decision
can been taken; or otherwise increasing the round. In this former case, advance first prepares
the updated blockchain, appending the block corresponding to the decision to its current
blockchain; runDRC will then update the state accordingly, for instance increasing the level.
The procedure advance has one parameter, which is optional, represented in the pseudocode
as a value of an optional type (with values of the form Some x if the parameter is present or
None if it is not). The parameter is present when the current consensus instance has taken a
decision. In this case, the parameter is a tuple consisting of a block containing the decided
value and of a certificate justifying the decision. Otherwise, when no decision is taken, the
process increases its round and filters its message buffer by removing messages no longer
necessary. The filtering procedure filterMessages is specific to the consensus instance.

We conclude by presenting in Fig. 5 the pseudocode capturing the behavior of the processes
which are not part of a committee for a given level. We call such processes observers. Contrary
to committee members, observers are passive in the sense that they only receive (but not
send) messages and update their state accordingly.
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66 phases[1]-observer phase:
67 handleEvents()
68 ...
69 phases[m − 1]-observer phase:
70 handleEvents()

71 phases[m]-observer phase:
72 handleEvents()
73 advance(getDecision())

Figure 5 Generic single-shot algorithm for an observer.

This observer behavior serves two purposes:
i) to keep the blockchain at each observer up to date;
ii) to check at the end of the round whether a decision was taken, and if so, whether the

observer becomes a committee member at the next level.
To achieve i), the observer checks if it can adopt a proposed value. It does so by invoking the
handleEvents and advance procedures, where the parameter to advance is obtained using the
procedure getDecision, which is specific to the single-shot consensus algorithm. Concerning
ii), when the corresponding check (line 46) is successful, the observer switches roles and acts
as a committee member. We note that line 46 is reached when the observer end its round
and calls advance, which in turn calls runConsensusInstance at the end.

As for the DRC solution in Section 3.2.2, the methods presented in this section are generic.
One can instantiate them by providing implementations to the filterMessages and getDecision
procedures. We show such concrete implementations in the next section.

6 Single-shot Tenderbake

To show the specific phase behavior of a committee member, we first introduce some
terminology inspired by Tezos. Tenderbake committee members are called bakers. At each
round, a value is proposed by the proposer whose turn comes in a round-robin fashion.
Tenderbake has three types of phases: PROPOSE, PREENDORSE, and ENDORSE, each with
a corresponding type of message: Propose for proposals, Preendorse for preendorsements,
and Endorse for endorsements. A fourth type of message, Preendorsements, is for the re-
transmission of preendorsements. A baker proposes, preendorses, and endorses a value v (at
some level and with some round) when the baker broadcasts a message of the corresponding
type. Only one value per round can be proposed or (pre)endorsed. A set of at least
2f + 1 (pre)endorsements with the same level and round and for the same value is called a
(pre)endorsement quorum certificate (QC).

We consider that Propose messages are blocks. This is a design choice that has the
advantage that values do not have to be sent again once decided.

Within a consensus instance, if a baker p receives a preendorsement QC for a value v

and round r, then p keeps track of v as an endorsable value and of r as an endorsable round.
Similarly, if a baker p receives a preendorsement QC for a value v and round r during the
ENDORSE phase of the round r, then p locks on the value v, and it keeps track of v as a
locked value and of r as a locked round. Note that the locked round stores the most recent
round at which p endorsed a value, while the endorsable round stores the most recent round
that p is aware of at which bakers may have endorsed a value.

The execution of a round works as follows. During the PROPOSE phase, the designated
proposer proposes a value v, which can be newly generated or an endorsable value from a
previous round r. During the PREENDORSE phase, a baker preendorses v if it is not locked
or if it is locked on a value at a previous round than r; in particular, it does not preendorse
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v if it is locked and v is newly generated. If a baker does not preendorse v, then it sends a
Preendorsements message with the preendorsement QC that justifies its more recent locked
round. During the ENDORSE phase, if bakers receive a preendorsement QC for v, they lock
on it and endorse it. If bakers receive an endorsement QC for v, they decide v.

Tenderbake inherits from classical BFT solutions the two voting phases per round and the
locking mechanism. Tracking endorsable values is inherited from [7]. Tenderbake distinguishes
itself in a few aspects which we detail next.

Preendorsement QCs. For safety, bakers accept endorsable values only from higher rounds
than their locked round. Assume a correct baker p locks and all other correct bakers locked
at smaller rounds. Assume also that the messages from p are lost. To prevent p from not
making progress, it is enough to include the preendorsement QC that made p lock in Endorse
and Propose messages. In this way, bakers can update their endorsable values and rounds
accordingly and propose values that can be accepted by any correct locked baker. Tendermint
does not need such QCs as it assumes reliable communication in the asynchronous period.

The Preendorsements message. For faster termination of a consensus instance, when a
baker refuses a proposal because it is locked on a higher round than the endorsable round
of the proposed value, it broadcasts a Preendorsements message. This message contains a
preendorsement QC justifying its higher locked round. During the next round, bakers use this
QC to set their endorsable value to the one with the highest round. The consensus instance
terminates with the first correct proposer. Thus, in the worst-case scenario, when the first f

bakers are Byzantine, Tenderbake terminates in f +2 rounds after τ , assuming that processes
have achieved round synchronization and that the round durations are sufficiently large.

Endorsement QCs. For processes to be able to check that blocks received by calling pullChain
are already agreed upon, each block comes with an endorsement QC for the block at the
previous level. Furthermore, for the same reason, in response to a pull request, a process
also attaches the endorsement QC that justifies the value in the head of the blockchain.

6.1 Process state and initialization
In addition to the variables mentioned in Section 3.2.2, a process p running Tenderbake
maintains its current round rp as well as:

lockedValuep and lockedRoundp to keep track respectively of the value on which p is
locked and the round during which p locked on it,
endorsableValuep to keep track of the proposed value with a preendorsement QC (with
the highest round), which can therefore be considered endorsable,
endorsableRoundp and preendorsementQC p to store the round and the preendorsement
QC corresponding to an endorsable value;
headCertificatep to store the endorsement QC for p’s last decided value.

The variable headCertificatep (introduced in Section 3) is empty at level 1 (Fig. 1, line 3).
The state of a process is initialized by the procedure initConsensusInstance:

74 proc initConsensusInstance()
75 rp := 1
76 lockedValuep := ⊥; lockedRoundp := 0
77 endorsableValuep := ⊥; endorsableRoundp := 0
78 preendorsementQCp := ∅
79 messagesp := ∅

where, by abuse of notation, we use x := ⊥ to denote that x has become undefined.
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6.2 Messages and blocks
We write messages using the following syntax: typep(ℓ, r, h, payload), where type is Propose,
Preendorse, Endorse, or Preendorsements, p is the process that sent the message, ℓ and r

are the level and the round during which the message is generated, h is the block hash at
level ℓ − 1, and payload is the type specific content of the message.

The payload (eQC , u, eR, pQC ) of a Propose message contains the endorsement
quorum eQC that justifies the block at the previous level and the proposed value u to
be agreed on. The payload also contains, in case u is a previously proposed value, the
corresponding endorsable round and the preendorsement QC that justifies u. If the proposed
value is new, then eR is 0 and pQC is the empty set.

Given a Propose(ℓ, r, h, (eQC , u, eR, pQC )) message, the corresponding block has con-
tents u, while the remaining fields, notably the hash h, are part of the block header.

The payload of a Preendorse message consists of the value to be agreed upon while the pay-
load of an Endorse message consists of an endorsed value. The payload of a Preendorsements
message consists of a preendorsement QC justifying some endorsable value and round.

6.3 Message management
The message management is designed such that message buffers are bounded. We prove this in
Lemma 3 and we give some more intuition in Appendix A. In this section, we only focus on the
elements needed to understand single-shot Tenderbake, namely the handleConsensusMessage
and some helper procedures. The procedure handleConsensusMessage is depicted in Fig. 6.
A process p adds (line 84) to its message buffer valid messages msg but only from the
current and next round. Messages from the next round are needed in order to cater for
the possible clock drift. Moreover, if a preendorsement QC is observed for a higher round
than the current endorsableRoundp, then p updates endorsableValuep, endorsableRoundp,
and preendorsementQC p using the procedure updateEndorsable (line 85). Finally, as an
optimization, if the received message is from either a higher level or from the same level but
with a different hash, then p attempts to resynchronize by calling pullChain (line 87).

The procedure filterMessages() removes messages not for the current round (see Ap-
pendix A). The helper procedures used in Fig. 6 are described as follows:

proposedValue() returns the current proposed value of the block at level ℓ;
valueQC(qc) and roundQC(qc) return the value and respectively the round from a qc;
pQC(msg) returns the preendorsement QC from a Propose or Preendorsements mes-
sage msg; if the Propose message does not contain a preendorsement QC (because what
is proposed is a new value), then pQC returns the empty set;
proposal(), preendorsements(), and endorsements() return the proposal, preendorsements,
and respectively the endorsements contained in messages.

6.4 Tenderbake main loop
Fig. 7 gives the execution of one round of Tenderbake by baker p, when the round’s three
phases are executed in sequence. We recall that the pseudocode has the same structure as
that for observers, as described in Section 5. Each phase consists of a conditional broadcast
followed by a call to handleEvents (described in Section 3.2.2). In addition, the ENDORSE
phase calls advance (described in Section 3.2.2). In the PROPOSE phase, p checks if it is the
proposer for the current level ℓp and round rp (line 102). If so, p proposes:
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80 proc handleConsensusMessage(msg)
81 let typeq(ℓ, r, h, payload) = msg
82 if ℓ = ℓp ∧ h = hp ∧ (r = rp ∨ r = rp + 1) then
83 if isValidMessage(msg)
84 messagesp := messagesp ∪ {msg}
85 updateEndorsable(msg)
86 if (ℓ = ℓp ∧ h ̸= hp) ∨ ℓ > ℓp then
87 pullChain

88 proc updateEndorsable(msg)
89 if |preendorsements()| ≥ 2f + 1 then
90 endorsableValuep := proposedValue()
91 endorsableRoundp := rp

92 preendorsementQCp := preendorsements()
93 else if type(msg) ∈ {Propose, Preendorsements} then
94 pQC := pQC(msg)
95 if pQC ̸= ∅ ∧ roundQC(pQC) > endorsableRoundp then
96 endorsableValuep := valueQC(pQC)
97 endorsableRoundp := roundQC(pQC)
98 preendorsementQCp := pQC

99 proc filterMessages()
100 messagesp := messagesp\ {type(ℓ, r, h, payload) ∈ messagesp | r ̸= rp}

Figure 6 Message management in Tenderbrake.

either a new value u, returned by the procedure newValue; here it is assumed that u is
consistent with respect to the value u′ contained in the last block of the blockchain of the
process that calls this procedure; that is, isConsistentValue(v, v′) holds (see Section 3.1),
where v, v′ are the output values corresponding to u, u′;
or its endorsableValuep if defined; in this case, p includes in the payload of its proposal
the corresponding endorsable round and the preendorsement QC that justifies it.

The payload also includes the endorsement QC to justify the decision for the previous level.
In the PREENDORSE phase, p checks if the value u from the Propose message received

from the current proposer is preendorsable (lines 110-111). Namely, it checks whether one of
the following conditions are satisfied:

p is unlocked (lockedRoundp = 0, thus the second disjunction at line 111 is true); or
p is locked (i.e. lockedRoundp > 0), u was already proposed during some previous round
(i.e. 0 < eR < rp), and:

p is already locked on u itself (thus the first disjunction at line 111 is true); or
p is locked on u′ ≠ u and its locked round is smaller than the endorsable round
associated to u.

In the second case, there is a preendorsement QC for u and round eR, thanks to the validity
check on the Propose message. If the condition holds, then p preendorses u. If p cannot
preendorse u as it is locked on some value u′ ̸= u with a higher locked round than eR, then
p broadcasts the preendorsement QC that justifies v′. If received on time, this information
allows the next proposer to choose a value that passes the checks at all correct bakers.

In the ENDORSE phase, p checks if it received a preendorsement QC for the proposed
value u. If yes, p updates its lockedValue and endorsableValue and broadcasts its Endorse
message, along with all the Preendorse messages for u (lines 117-120). Note also that in this
case p has already updated its endorsable value to u and its endorsable round to rp while
executing handleEvents.

Finally, at the end of this last phase, which is also the end of the round, bakers call
advance with a parameter that signals whether a decision can be taken or not. This parameter
is obtained using getDecision, implemented is as follows:
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101 PROPOSE phase:
102 if proposer(ℓp, rp) = p then
103 u := if endorsableValuep ̸= ⊥ then endorsableValuep

104 else newValue()
105 payload := (headCertificatep, u, endorsableRoundp, preendorsementQCp)
106 broadcast Proposep(ℓp, rp, hp, payload)
107 handleEvents()

108 PREENDORSE phase:
109 if ∃q, eQC , u, eR, pQC :
110 Proposeq(ℓp, rp, hp, (eQC , u, eR, pQC)) ∈ messagesp ∧
111 (lockedValuep = u ∨ lockedRoundp < eR < rp) then
112 broadcast Preendorsep(ℓp, rp, hp, hash(u))
113 else if lockedValuep ̸= ⊥ then
114 broadcast Preendorsements(ℓp, rp, hp, preendorsementQCp)
115 handleEvents()

116 ENDORSE phase:
117 if |preendorsements()| ≥ 2f + 1 then
118 u := proposedValue()
119 lockedValuep := u; lockedRoundp := rp

120 broadcast Endorsep(ℓp, rp, hp, hash(u))
121 broadcast preendorsementQCp

122 handleEvents()
123 advance(getDecision())

Figure 7 Single-shot Tenderbake for baker p.

124 proc getDecision()
125 if |endorsements()| ≥ 2f + 1 then
126 return Some (proposal(), endorsements())
127 else
128 return None

6.5 The betterHead procedure

The role of betterHead is to make processes agree on the same blockchain head; recall that
they already agree on the head contents, but not necessarily on the head’s header. Agreeing
on the same blockchain head has in turn two roles:

allowing agreement on the round at which a decision was taken at the previous level, which
is one of the ingredients for processes to synchronize at the current level, as explained in
Section 4.

allowing agreement to take place at the current level; recall that at the current level
agreement needs to be reached also on the hash of the block at the predecessor level, that
is, on the hash of the head of a process’ blockchain.

To reach these two goals, as suggested in Section 4, processes adopt the head with the smallest
round. However, there is a caveat: if this would be the only check done by betterHead,
processes might end up with a head on top of which no proposal will be accepted in case
they have seen an endorsable value: indeed, the hash component of such a value may not
match the new head. To avoid this situation, a process first performs an additional check
in case they have seen an endorsable value. When proposalOrCertificate is a proposal, the
check is similar to the check for preendorsing (line 111): the endorsable round of process p

is smaller than the one in the received proposal (line 133). When proposalOrCertificate is
a certificate we simply required that the process has not seen an endorsable value. The
betterHead procedure implementing these checks is given next.
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129 proc betterHead(chain, proposalOrCertificate)
130 let ⟨_, r, . . . ; ·⟩ = head(chain)
131 match proposalOrCertificate with
132 | Propose(_, _, _, (_, _, eR, _)) →
133 return endorsableRoundp < eR ∨

(
endorsableRoundp = eR ∧ r < round(ℓp − 1)

)
134 | _ → # proposalOrCertificate is a certificate
135 return endorsableRoundp = 0 ∧ r < round(ℓp − 1)

In the pseudocode, ⟨. . . ; . . . ⟩ denotes a block, with the part before the semicolon representing
the block’s header and the part after it its contents. The procedure head(chain) returns the
head of chain. Also, recall that round(ℓ) returns the round contained in the header of the
block at level ℓ in the caller’s blockchain.
As for the implementation of getCertificate, it is a simple match on proposalOrCertificate:

136 proc getCertificate(proposalOrCertificate)
137 match proposalOrCertificate with
138 | Proposeq(_, _, _, (eQC , _, _, _)) → return eQC
139 | eQC → return eQC

7 Correctness and Complexity

The following theorem states that Tenderbake provides a solution to DRC. Its proof can be
found in Appendix B.

▶ Theorem 2. Tenderbake satisfies validity, agreement, and progress.

Bounded memory. We assume that all values referred to by global or local variables of a
process p are stored in volatile memory, except for the variable blockchainp whose value is
stored on disk. We recall that the message buffer is represented by the messagesp variable.
The following lemma shows that a process can use fixed-sized buffers, namely of size 4n.

▶ Lemma 3. For any correct process p, at any time, |messagesp| ≤ 4n + 2.

Proof. Let p be some correct process. Given that in messagesp only messages from the
current and next round are added (line 84), and that with each new round messages from
the previous round are filtered out (line 100), messagesp contains at most 2 proposals, at
most 2n preendorsements, and at most 2n endorsements. ◀

The following result states that a process only uses bounded memory. We assume here
that the underlying implementation of the pullChain primitive does not count towards the
memory usage of a process.

▶ Theorem 4. At any time, the size of the volatile memory of any correct process is in O(n).

Proof. A correct process maintains a constant number of variables, and except messages,
each variable stores a primitive value or a QC. A QC contains at most n messages and
each message has a constant size. The O(n) bound follows from these observations, and the
observation concerning the messages variable from the proof of Lemma 3. ◀
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Message and round complexity. Each round has a message complexity of O(nm) due to
the n-to-m broadcast, where m is the current number of processes in the system.

Concerning round complexity, it is known that consensus, in the worst case scenario,
cannot be reached in less than f + 1 rounds [15]. In Tenderbake, after bakers synchronize
and the round durations are sufficiently long (namely, at least δ + 2ρ), a decision is taken in
at most f + 2 rounds, as already mentioned in Section 6. See Lemma 15 in Appendix B for
a proof. Intuitively, f rounds are needed in case the proposers of these rounds are Byzantine.
Another round is needed if there is a correct process locked on a higher round than the
endorsable round of the proposed value. However, in this case, the next proposer is correct
and will have updated its endorsable round, and therefore its proposed value will be accepted
and decided by all correct processes.

Recovery time. Finally, we discuss the time required for bakers to synchronize after τ . A
worst-case scenario analysis is in our technical report [4]. Roughly, the recovery time is the
maximum time between the error that the clock can experience and the time necessary for a
process to fetch the missing blocks, which is at least one round-trip time: the time to ask for
the current blockchain and to get the reply. We believe that in practice the time to pull a
new chain (and even to pull just the last block) is considerably bigger than the maximum
error clock that a process can experience during the asynchronous period. Finally, if all
processes are at the same level but not at the same round, then, as the synchronizer is called
at the end of every round, all processes synchronize in at most one round.

8 Conclusion

In this paper, we proposed a formalization of dynamic repeated consensus, a general approach
to solve it, and a BFT solution working with bounded buffers by leveraging a blockchain-based
synchronizer. We have implemented the proposed solution in a prototype1. A full-fledged
(based on proof-of-stake and with smart contracts) implementation is being developed2.
Experiments with running a Tenderbake testnet are underway. A Tenderbake simulator has
already been implemented3.

Besides practical aspects such as experimenting with the testnet and the simulator,
as future work, we see the following exciting directions: explore the relationship between
achieving asynchronous responsiveness and providing bounded buffers; improve message size
and complexity by means of aggregated or threshold signatures; mechanize the proofs; and
analyze Tenderbake from an economic perspective when considering rational agents.
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A Valid messages and bounded buffers

Recall handleConsensusMessage in Section 6.3. As a necessary check for message buffers to
be bounded, upon the retrieval of a new message msg, a process p first checks if the level,
round, and hash in msg’s header match respectively p’s current level, either the current
round or the next round, and the hash of the block at the previous level. If yes, p then checks
that the message is valid, with the procedure isValidMessage (line 83). Proposeq(ℓ,r,h,(eQC ,
u,eR,pQC )) is valid if q is the proposer for level ℓ and round r and if eQC is an endorsement
QC for level ℓ − 1 with the round, hash, and value matching those in p’s blockchain. In
addition, either pQC is empty and eR is 0 (i.e. u is newly proposed), or the round, value, and
hash from pQC match eR, u, and hp, respectively. Messages in eQC and pQC must be valid
themselves, in particular they must be generated by bakers at levels ℓ − 1 and ℓ, respectively.
These validity checks ensure that the value (u, h) satisfies the isLegitimateValue predicate
from Section 3.1. The validity conditions for the other types of messages are similar, and
thus omitted. We note, however, that for preendorsements and endorsements it is required
that the corresponding proposal has been already received, so that it can be checked that
the hash included in the payload matches the proposed value.

There are three additional aspects of handleConsensusMessage in Section 6.3 that together
with the validity check, ensure that buffers are bounded: (1) only valid messages are added
(line 83); (2) messages for the next round are kept (line 84) to cater for the possible clock
drift; (3) messages from higher levels trigger p to ask for the sender’s blockchain (line 87),
because such messages “from the future” suggest that p is behind; however, the sender might
be lying about being ahead. Recall that the procedure advance only calls filterMessages after
a round increment (line 62). Recall also that filterMessages removes messages not matching
the current round (line 100). Together with the above elements, the filtering ensures that
message buffers are bounded (Lemma 3).

B Correctness proof

B.1 Validity and Agreement
▶ Theorem 5. Tenderbake satisfies validity.

Proof. The local chain of a correct process p is formed by proposals and/or chains ob-
tained by p calling pullChain. In either case, the content of each block satisfies the predic-
ate isValidValue by the definition of either isValidMessage or validChain. ◀

▶ Lemma 6. Correct bakers preendorse and endorse at most once per round at a given level.

Proof. Preendorse and Endorse messages are sent only during the corresponding phase
(line 112 and line 120, respectively). To show that there is at most one Preendorse (resp.
Endorse) per round it suffices to show that a phase is executed only once per round. Firstly,
phases are executed sequentially. Secondly, non-sequential jumps happen only at line 47
(resp. at line 49) in runConsensusInstance; in turn, runConsensusInstance is called by either
advance (line 63), after increasing the round; or runDRC (line 6), after increasing the level
(line 7) once a decision is taken (line 59) or a longer chain is received (line 25). ◀

▶ Lemma 7. At most one value can have a (pre)endorsement QC per round.

Proof. By contraction, using Lemma 6. ◀
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We say a baker p is locked on a tuple (u, h) if lockedValuep = u and hp = h. We define
Lu,h

ℓ,r as the set of correct bakers locked on the tuple (u, h) at level ℓ and at the end of
round r. We also define preendos(ℓ, r, u, h) as the set of preendorsements generated by correct
processes for some level ℓ, some round r, some value u, and some hash h.

▶ Lemma 8. Let ℓ be a level, r a round, u a value, and h a block hash. For any round r′ ≥ r

and any tuple (u′, h′) ̸= (u, h), if |Lu,h
ℓ,r | ≥ f + 1, then |preendosp(ℓ, r′, u′, h′)| ≤ f .

Proof. We reason by contradiction. Suppose that |Lu,h
ℓ,r | ≥ f +1, and let r′ ≥ r be the smallest

round for which there exists a tuple (u′, h′) ̸= (u, h) such that |preendos(ℓ, r′, u′, h′)| ≥ f + 1.
As |Lu,h

ℓ,r | ≥ f + 1 and |preendos(ℓ, r′, u′, h′)| ≥ f + 1, there is at least one correct process p

such that p ∈ Lu,h
ℓ,r and p preendorsed (u′, h′) at round r′. As p ∈ Lu,h

ℓ,r , we have that p is
locked on (u, h) at round r. Since p preendorsed (line 112) at round r′, it means that one of
the two disjunctions at line 111 holds. Note that the value of rp at line 111 is r′ in this case.

Suppose the first disjunction holds, i.e., lockedValuep = u′. As a process can re-lock
only in the phase ENDORSE, under the condition at line 117, this means that there is
a round r′′ with r ≤ r′′ < r′ and at which |preendorsements()| ≥ 2f + 1. Therefore
|preendos(ℓ, r′′, u′, h′)| ≥ f + 1. This contradicts the minimality of r′.

Suppose now that the second disjunction holds, that is, lockedRoundp < r′′ < r′ where
the round r′′ is the endorsable round of the proposer of u′. We note that a process cannot
unlock (i.e. unset lockedRound), but only re-lock (i.e. set lockedRound to a different value).
Therefore lockedRoundp ≥ r at round r′ and from this, we obtain that r′′ > r > 0. From the
validity requirements of a propose message, we obtain that it contains a preendorsement
QC for (u′, h′). Thus we have that |preendos(ℓ, r′′, u′, h′)| ≥ f + 1. This contradicts the
minimality of r′, since r′′ < r′. ◀

▶ Lemma 9. No two correct processes have two different committed blocks at the same level
in their blockchain.

Proof. We reason by contradiction. Let ℓ be some level. Assume that two different correct
processes p, p′ have respectively two different committed blocks b, b′ at level ℓ in their
blockchain, with b ̸= b′.

By the definition of committed blocks (Section 3), as b is a committed block at ℓ, the
level of the head of p’s blockchain is at least ℓ + 1. Then, as p has a block at level ℓ + 1 in
his blockchain, p has observed an endorsement QC for (ℓ + 1, r, h, u) for some value u and
some round r, where h is the hash of block b. Similarly, p′ has observed an endorsement QC
for (ℓ + 1, r′, h′, u′) for some value u′ and some round r′, where h′ is the hash of block b′.
As b ̸= b′, we have that h ̸= h′, therefore (u, h) ̸= (u′, h′). We assume without loss of
generality that r ≤ r′. Since there are at most f Byzantine processes, and by Lemma 6
correct bakers can only endorse once per round, it follows that at least f + 1 correct bakers
endorsed (u, h) during round r at level ℓ. Before broadcasting an endorsement for (u, h)
at round r (line 120) any correct process sets its lockedValue to u and its lockedRound
to r (line 119), thus |Lu,h

ℓ,r | ≥ f + 1. By Lemma 8, since |Lu,h
ℓ,r | ≥ f + 1, we also have

|preendos(ℓ, r′′, u′′, h′′)| ≤ f , for any round r′′ ≥ r, and any value u′′ with (u′′, h′′) ̸= (u, h).
This means that a correct process cannot endorse some (u′′, h′′) ̸= (u, h) at a round r′′ ≥ r.
This in turn means that there cannot be 2f + 1 endorsements for (u′′, h′′) ̸= (u, h) with
round r′′ ≥ r. This contradicts the fact that there is a QC for (ℓ + 1, r′, u′, h′). ◀

▶ Theorem 10. Tenderbake satisfies agreement.

Proof. By contradiction, using Lemma 9. ◀
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B.2 Progress

Let Phases be the set of labels PROPOSE, PREENDORSE, and ENDORSE. Let Sp : N∗ ×
N∗ × Phases → R be the function such that Sp(ℓ, r, phase) gives the starting time of the
phase phase of round r of process p at level ℓ. We consider that the function Sp returns
the real time, not the local time of process p. Note that for different processes p and q, the
function Sp and Sq may return different times for the same input, because p and q determine
the starting time of their phases based on their local clocks, which may be different before τ .

We say that two correct processes p and p′ are synchronized if ℓp = ℓp′ , |rp − rp′ | ≤ 1, and
|Sp(ℓq, rq, phaseq)−Sp′(ℓq, rq, phaseq)| ≤ 2ρ, where q ∈ {p, p′} is the process which is “ahead”.
We say that q is ahead of q′ (or that q′ is behind q) if Sq(ℓq, rq, phaseq) ≤ Sq′(ℓq, rq, phaseq).
We say that p and q are synchronized at level ℓ and round r if p and q are synchronized and
ℓ = ℓp = ℓq and r = max(rp, rq). At the beginning of r one of the processes might be at
round r − 1. However, for at least ∆′(r) − 2ρ time, the two processes are at the same round.

Let t be the last time p called getNextPhase. We denote by levelOffsetp = now−levelStart,
where now is the value returned by now when called by p at t, and levelStart is the sum
at line 30. The next lemma states that we can use level offsets to characterize process
synchronization. We omit its proof, which follows from an analysis of the synchronize and
getNextPhase functions.

▶ Lemma 11. After τ , two correct processes p and q are synchronized iff |levelOffsetp −
levelOffsetq| ≤ 2ρ.

▶ Lemma 12. Let p and q be two correct processes. If, after τ , they remain at the same level
and the head of their blockchain has the same round, then they are eventually synchronized.

Proof. Suppose that p and q are both at the same level ℓ and that their heads have the same
round. p and q have already decided at ℓ − 1. From the agreement property, p and q agree
on the output value at level ℓ − 1, thus they agree on all blocks up to level ℓ − 2, and on their
rounds as well. Thus, the block rounds in p’s and q’s blockchain are respectively the same.

Next, both p and q eventually call synchronize and getNextPhase. The round returned
by synchronize is eventually larger than the current round of the process, so the process
eventually exits the recursion at line 39 and calls getNextPhase.

Let p be the first to call getNextPhase and let t be the time of the call. Let t′ ≥ t be the time
when q first calls getNextPhase. We first note that levelStart in the definition of levelOffset
is the same for both p and q, at both times t and t′. Let levelOffset∗

t = t − levelStart and
levelOffset∗

t′ = t′ − levelStart. We consider the values of the variable levelOffsetp at t and t′

and denote these by (simply) levelOffsetp and levelOffset′
p, respectively. 4 Given the bound

on clock skews, |levelOffsetp − levelOffset∗
t | ≤ ρ and |levelOffsetq − levelOffset∗

t′ | ≤ ρ. By
using the inequality |a−b| ≤ |a|+|b|, we obtain that |levelOffsetq −levelOffsetp −(t′ −t)| ≤ 2ρ,
that is, |levelOffsetq − levelOffset′

p| ≤ 2ρ. By Lemma 11, p and q are synchronized at t′. ◀

▶ Lemma 13. If P is a set of correct processes that are synchronized after τ at a level ℓ

and a round r with ∆′(r) > δ + 2ρ, and a process p ∈ P sends a message at the beginning of
its current phase ph, then this message is received by all processes in P by the end of their
phase ph.

4 We note that levelOffset′
p − levelOffsetp = t′ − t, because we assume that a process measures intervals

of time precisely.
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Proof. Assume that p sends its message m at time tp = Sp(ℓ, r, ph). Consider a process q ∈ P ,
and let tq = Sq(ℓ, r, ph). Process q receives m at most at time tp + δ. By the synchronization
hypothesis, we have that tp − tq ≤ 2ρ. Then we obtain that tp + δ ≤ tq + 2ρ + δ < tq + ∆′(r),
as tq + ∆′(r) is the time of the end of the phase ph for q. If tp < tq, then q might receive
m while it is still at round r − 1. The message m is still available to q at round r because
processes keep messages from a round one unit higher than their current round. ◀

▶ Lemma 14. Let ℓ be a level and r a round with ∆′(r) > δ + 2ρ. Consider that all correct
bakers are synchronized at level ℓ and round r at a time after τ . Let p be the proposer at
round r. If p is correct and endorsableRoundp ≥ lockedRoundq for any correct baker q, then
all correct bakers decide at level ℓ at the end of round r.

Proof. From Lemma 13, we obtain that the Propose message of process p is received by
all correct bakers by the beginning of their phase PREENDORSE. Let eR be the value
of the endorsable round field of the Propose message. Note that eR = endorsableRoundp.
We prove next that each correct baker sends the message Preendorse(ℓ, r, h, u), where u, h

are the value and the predecessor hash proposed by p. Let q be a correct baker. If q

is either unlocked or locked on u, then the condition in line 111 holds, and therefore
q sends its preendorsement for (u, h). If q is locked on a value different from u then
by hypothesis lockedRoundq ≤ endorsableRoundp, therefore lockedRoundq ≤ eR. Also,
endorsableRoundp < r, since endorsableRoundp is set during the execution of handleEvents
before sending the Propose message in round r. Hence, lockedRoundq ≤ eR < r. If
lockedRoundq = eR then, by quorum intersection, lockedValueq = u thus the first disjunction
in line 111 holds for q. If lockedRoundq < eR < r then the second disjunction in line 111
holds for q (note that r = rp = rq). Thus q sends the corresponding Preendorse message. So,
we have proved that all correct bakers broadcast the Preendorse(ℓ, r, h, u) messages (line 112).
By Lemma 13 all these Preendorse(ℓ, r, h, u) messages are received by all correct bakers by
the beginning of the phase ENDORSE. Thus, for all of them, the condition in line 117 is true,
thus all correct bakers broadcast the Endorse message for (u, h) (line 120). In the next phase,
for all them, the quorum condition (line 126) holds for (u, h) so they decide (u, h). ◀

▶ Lemma 15. If at some time after τ all correct bakers are synchronized at some level ℓ

and round r with ∆′(r) > δ + 2ρ, then all correct bakers decide at level ℓ by the end of
round r + f + 1.

Proof. We first remark that, after τ , thanks to synchrony, a correct baker never skips a
round, and in particular never skips its turn when it is time to propose. Let p0, p1, . . . be the
sequence of bakers in the order in which they propose starting with round r. That is, pi is the
proposer at round r+i, for i ≥ 0. Let j, k be the indexes of the first and second correct bakers
in this sequence. As there are at most f Byzantine processes among {p0, . . . , pk} \ {pj}, we
have j < k ≤ f + 1. We show next that all correct bakers decide by the end of round r + k.

Suppose first that pj is such that endorsableRoundpj ≥ lockedRoundq, for any correct
baker q. By Lemma 14, all correct bakers decide at the end of round r + j.

Suppose that there is a correct baker with a locked round higher than endorsableRoundpj .
Let q be the baker with the highest locked round among all correct bakers. In the round at
which pj proposes, that is, in round r + j, q sends a preendorsement QC that justifies its
locked round in the PREENDORSE phase (line 114). By Lemma 13, this preendorsement QC
is received by all correct bakers, who update in the ENDORSE phase of round r + j + 1 their
endorsable round to q’s locked round at line 97. If between rounds r + j + 1 and r + k − 1 no
correct baker updates its locked round then the proposer pk will have at round r + k that
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endorsableRoundpk
≥ lockedRoundq, for any correct baker q. By Lemma 14, at the end of

round r+k all correct bakers decide. If instead there is a correct baker that updated its locked
round before round r + k, then let q be the baker which updates it last, at some round r + j′

with j′ < k. When q changes its locked round, q has seen a prendorsement QC for round r+j′.
This QC is sent together with the Endorse message in the phase ENDORSE, and therefore it
will be received by all correct bakers at the beginning of the next phase PROPOSE. Thus
every correct baker, including pk, sets its endorsableRound to r + j′. Because j′ is maximal,
no correct baker changes its locked round between rounds r + j′ + 1 and r + k − 1. Therefore,
at round r + k, for any baker q, we have that lockedRoundq ≤ r + j′ = endorsableRoundpk

.
Again, by Lemma 14 we conclude that at the end of round r + k all correct bakers decide. ◀

▶ Theorem 16. Tenderbake satisfies progress.

Proof. We reason by contradiction. Suppose first there is a level ℓ ≥ 1 such that no correct
process decides at ℓ. Clearly, ℓ is minimal with this property. We first show that eventually
all correct processes are synchronized. As ℓ is minimal, we have that there is at least one
correct process that has decided at ℓ − 1.

As processes invoke pullChain at regular intervals, all correct process will eventually be at
level ℓ (that is, they will have decided at ℓ − 1). We show next that all correct processes have
the same blockchain head. Let p be a correct process that has its headCertificatep for the block
with the lowest round at level ℓ − 1. Process p eventually receives a pullChain request at some
point after τ and it answers. If each correct process q has endorsableRoundq = 0 at the time
of the receipt of p’s answer, then every correct process accepts p’s branch, by the definition of
betterHead. Suppose however that there is a process q that has endorsableRoundq > 0 when
it receives p’s answer. In this case consider a time when round durations are so big that I

and ∆ are very small in comparison. More precisely, there is a time period when all pullChain
requests and their answers happen during a period when correct processes update their states
only in response to a NewChain event, but not in response to NewMessage events. Such a
period exists because regular messages are sent only at phase boundaries. This means that
the chain ending with the proposal with the highest endorsable round r will be seen by all
correct processes, and these processes will have their endorsable round smaller or equal to r.
They will update their blockchains to this chain (if they were on a different one). Note that
if two processes have the same endorsable round then they also have the same blockchain.
We have this obtained that eventually all correct processes have the same blockchain (head).
We can therefore apply Lemma 12 to obtain that there is a time after τ at which all correct
processes are synchronized.

Now, recall that the function ∆′ has the property that there is a round r such that
∆′(r) > δ + 2ρ. As ∆′ is increasing, this property holds for all subsequent rounds as well.
And, given that all processes are synchronized from some time on, as proved in the previous
paragraph, we obtain that the hypothesis of Lemma 15 is satisfied. Therefore all correct
processes decide at ℓ, which contradicts the assumption that no correct process decides at ℓ.
In other words, we have proved that, for any level ℓ, there is at least one correct process that
decides at ℓ.

Finally, we show that for any level ℓ, any correct process eventually decides at ℓ. Suppose
that there is a correct process p that does not decide at some level ℓ ≥ 1. From the first
part of the proof we obtain that there is at least one other correct process q that eventually
decides at ℓ. Process q will eventually receive p’s pull request, will reply, and p will therefore
receive an endorsement QC for level ℓ which enables it to decide at ℓ. This contradicts the
assumption, and allows us to conclude. ◀
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