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Preface

It is my great pleasure to present you the proceedings of the 18th International Workshop on
Worst-Case Execution Time Analysis (WCET 2018), which was collocated with the Euromicro
Conference on Real-Time Systems (ECRTS 2018) in Barcelona, Spain. The workshop was
held prior to the main conference on July 3, 2018, and consisted of 8 presentations of regular
papers and an invited keynote talk by Reinhard Wilhelm. Each paper received 5 reviews
from members of the program committee and the final selection was based on a lively online
discussion. The proceedings that you have in front of you here were published only after the
workshop in order to allow authors to integrate feedback from discussions at the workshop.
Workshop participants still had access to preliminary versions of the presented papers roughly
two weeks before the event in order to facilitate these discussions.

Despite the tight schedule – reviewers had less than 3 weeks to complete their work – all
reviews were delivered on-time, which allowed for a lively and insightful online discussion. I
thus would like to say a big thank you to the members of the program committee and the
external reviewers for their great work and effort. I would also like to thank the members of
the steering committee. Most notably, I thank Jan Reineke, who chaired the workshop in
2017, for sharing his past experience and giving me advise. In a similar vein, I would like to
thank Michael Wagner from OASIcs, who helped with the preparations for the proceedings
here. A special thank you goes to Reinhard Wilhelm, who not only gave an excellent keynote
that sparked a vivid debate, but also covered his travel expenses out of his own pocket. Last,
but not least, I would like to thank the authors for their excellent contributions and the
workshop participants for their stimulating questions and comments.

I am also grateful to the organizers of the ECRTS 2018 conference – notably Francisco J.
Cazorla and Gerhard Fohler – for offering me their ideas and help, and quickly responding
to questsions whenever I needed information regarding administrative issues.

It was a great pleasure to organize and chair WCET 2018 and I am looking forward to
upcoming editions of the workshop.

Palaiseau, August 7, 2018
Florian Brandner

18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018).
Editor: Florian Brandner

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de




Committees

Program Chair

Florian Brandner – Télécom ParisTech, Université Paris-Saclay

Program Committee

Armelle Bonenfant – Université Toulouse III – Paul Sabatier, France
Björn Lisper – Mälardalen University, Sweden
Claire Maiza – Grenoble INP/Verimag, France
Clément Ballabriga – Lille 1 University, France
Jan Reineke – Saarland University, Germany
Jakob Zwirchmayr – TTTech Computertechnik AG – Automotive, Austria
Jaume Abella – Barcelona Supercomputing Center, Spain
Jörg Mische – Augsburg University, Germany
Kartik Nagar – Purdue University, United States
Luca Santinelli – ONERA, France
Martin Schoeberl – Technical University of Denmark, Denmark
Peter Ulbrich – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Simon Wegener – AbsInt Angewandte Informatik GmbH, Germany
Tullio Vardanega – University of Padua, Italy
Xenofon Koutsoukos – Vanderbilt University, USA

External Reviewers

Hugues Cassé – Université Toulouse III – Paul Sabatier, France
Luca Pezzarossa – Technical University of Denmark, Denmark
Eleftherios Kyriakakis – Technical University of Denmark, Denmark
Pascal Sotin – Université Toulouse Jean Jaurès, France
Marianne De Michiel – Université Toulouse III – Paul Sabatier, France
Linus Källberg – Mälardalen University, Sweden
Oktay Baris – Technical University of Denmark, Denmark
Tórur Biskopstø Strøm – Technical University of Denmark, Denmark
Peter Wägemann – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Steering Committee

Björn Lisper – Mälardalen University, Sweden
Isabelle Puaut – University of Rennes I/IRISA, France
Jan Reineke – Saarland University, Germany

18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018).
Editor: Florian Brandner

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de




Mixed Feelings About Mixed Criticality
Reinhard Wilhelm
Informatik, Universitaet des Saarlandes, Saarland Informatics Campus
Saarbruecken, Germany
wilhelm@cs.uni-saarland.de

https://orcid.org/0000-0002-1825-0097

Abstract
I point to some challenges for WCET analysis offered in the transition to integrated mixed-
criticality systems (MCSs) and to multi-core platforms, claim that proposed certification stand-
ards are inadequate, show that the MCS model heavily used by the scheduling community is
fraught, and clarify why the traditional abstract interface between WCET analysis and schedulab-
ility analysis is obsolete.

A central point is the insistence on sound approaches. I give a detailed account of how the
most rigid certification procedures, those of the avionics domain, are satisfied, to defend the
validity of my claims.
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1 Introduction

The general setting for WCET analysis is that a set of hard real-time tasks is to be executed
on a given hardware platform. Being hard real-time tasks means having associated deadlines
within which they have to finish their execution. Timing Verification has to verify that
these timing constraints are satisfied. Traditionally Timing Verification is split into a WCET
analysis, which determines upper bounds on the execution times, and a schedulability analysis,
which takes these upper bounds and attempts to verify that the given set of tasks when
executed on the given platform will all respect their deadlines.

There are two strong trends in the embedded-systems industry, the transition from
single-core to multi-core execution platforms and the transition from federated systems to
integrated systems comprising components with different levels of criticality.
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1:2 Mixed Criticality

The criticality level (aka Safety integrity level (SIL)) of a component is derived from
the impact of a failure of the component on the functioning of the system. It determines
the size of the effort to deliver assurance of the correct functioning of the component. A
mixed criticality system (MCS) is one that has two or more distinct criticality levels. Up to
five levels exist in the standards, e.g. the IEC 61508, DO-178B and DO-178C, DO-254 and
ISO 26262.

For architectures with instructions that had constant execution times, WCET analysis
methods using Timing Schemata [14] were the method of choice. Timing schemata describe
how (bounds on) the execution times of a programming-language construct were composed
from the (bounds on) the execution times of its components. These methods would thus do
structural induction over the structure of a program and determine bounds for ever bigger
parts of the program.

Performance-enhancing architectural components such as caches, pipelines, and spec-
ulation made previous methods for WCET analysis using Timing Schemata [14] obsolete.
Execution times do not compose any longer because instruction execution-times are now
dependent on the execution state in which they were executed. In the composition A;B the
execution time of statement B depends on the execution state produced by statement A. The
variability of execution times grew with several architectural parameters, e.g. the cache-miss
penalty and the costs for pipeline stalls and for control-flow mis-predictions.

1.1 The Central Idea – Proving Safety Properties
We started off to solve the WCET problem for architectures with state-dependent execution
times. Let me describe the central idea behind the microarchitectural-analysis phase in our
WCET-analysis method [18], first in a conceptual way, i.e. not quite like it is implemented,
later closer to how it is implemented:

Define any architectural effect that causes an instruction to execute longer than its fastest
execution time as a Timing Accident. Typical such timing accidents are cache misses,
pipeline stalls, bus-access conflicts, or branch mis-predictions. Each timing accident is
associated with a Timing Penalty. Timing penalties may be constant, but may also be
execution-state dependent.
The property that an instruction will not cause a particular timing accident is then a
safety property. The occurrence of a timing accident thus violates a corresponding safety
property.
Use an appropriate method for the verification of safety properties to prove that for the
instructions in the program some of the potential timing accidents will never happen. The
goal is to prove as many of such safety properties as possible. Conceptually, the safety
properties shown to hold could be used to reduce the worst-case execution-time bound
for an instruction, which a naive, sound WCET analysis would have to assume, by the
cost for the excluded timing accidents. In practice, pipeline analysis drives a cycle-wise
transition, which considers the abstract execution state, e.g. makes no transition under a
cache miss if a cache miss can be excluded.
Prove these safety properties by abstract interpretation (AI) [7] in the following way: Use
AI to compute invariants at each program point, in our case an upper approximation
of the set of execution states that are possible when execution reaches this program
point. Derive the above mentioned safety properties, that certain timing accidents will
not happen, from these invariants. For example, AI computes abstract cache states at
each program point, which represent the sets of concrete cache states that may reach this
program point. The abstract cache states are used to classify memory accesses at each



R. Wilhelm 1:3

program point as definite hits or misses. Predicted cache hits are then used to prove that
the timing accident, this memory access will miss the cache, will never happen [10].
This method for the micro-architectural analysis was the main innovation that made our
WCET analysis work for real-life architectures and scale to industrial-size software [9].

Now follows the description of the microarchitectural analysis that is closer to the
implementation. Driver of this analysis is the pipeline analysis [15]. It goes through the
instruction stream, instruction by instruction, and executes the current instruction on the
current abstract execution state. This abstract execution state contains uncertainty, i.e.
misses some components. Transitions to all potential successor states are performed whenever
the transition to the next state depends on such a missing part of the state. The timing
contributions of these transitions are accumulated until an instruction can be retired. In the
end upper bounds on the execution times of basic blocks are obtained that are coefficients in
an Integer Linear Program representing the control flow of the program [18].

We currently experience two significant developments in the safety-critical embedded-
systems industry that are of concern to the WCET-analysis domain, the introduction of
multi-core execution platforms and the integration of applications of different criticalities on
such platforms. As we will later see, the clean interface between schedulability and timing
analyses becomes obsolete as soon as multi-core architectures with shared resources are used
for the implementation of hard real-time systems, and the (extremely productive) scheduling
community has adopted a system model, ignoring fundamentals of WCET analysis.

1.2 Terminology
We consider only sound WCET-analysis methods. Soundness means that a method and
associated tool will always produce conservative WCET estimates, i.e. estimates that will
never be exceeded in any execution. Being conservative is a Boolean property. Unfortunately,
conservative is often used as a metric property, more conservative meaning less precise.
However, calling results of an unsound method conservative is a misnomer. The really meant,
other dimension, in addition to soundness, is accuracy. Accuracy of some WCET estimate,
obtained by a sound method, expresses the degree of over-estimation, the difference between
a WCET estimate and the real WCET. It does not make sense to talk about the accuracy
of an unsafe estimate or an unsound method. In case of an unsound method it is not even
clear whether a ”more conservative” estimate moves towards the real WCET from below or
is larger than the real WCET and moves further away from it.

WCET analysis can be seen as the search for a longest path in the state space spanned
by the program under analysis and by the architectural platform. Most real-time software is
written as to guarantee termination. Its state space can thus be easily abstracted to a finite
abstract state space, which is still too large to be exhaustively explored. We can, therefore,
not expect to identify the real WCET, but only safe upper bounds to all execution times,
which we will call WCET estimates. (Safe) over-approximation is used in several places. In
particular, an abstraction of the execution platform is employed by the WCET analysis. How
to convince oneself (or the certification authorities) of the correctness of this architectural
model is the subject of the next section.

2 Certification

The claim that our WCET-analysis tools produce safe results is a strong one and often
disputed by some proponents of unsound WCET-analysis methods. Their argument is, to
develop an error-free instantiation of the, in principle, sound WCET-analysis technology

WCET 2018



1:4 Mixed Criticality
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Figure 1 The architecture of the aiT tool.

is so difficult, that one might use a simpler unsound method in the first place. The main
complaint is the complexity of the abstract architectural models. So, what is the basis for
our claims?

Tool Qualification according to DO178

Let us start with a description of the safety standards and the tool-qualification processes of
the avionics industry, which are the most rigid of the safety-critical industries. Certification of
avionics systems is regulated by the international standard DO-178C [1]. WCET-analysis tools
fare under verification tools. Verification tools have no overly rigid certification requirements,
unlike development tools. They require a specification of the tool functionality, from which
several levels of requirements are derived. DO-178C exhales a test-based spirit. Most of
the qualification is test based, requiring some coverage criteria to be observed. However,
note that in case of a static verification tool, test coverage means something different from
the usual interpretation as, e.g. coverage of the program control flow. At analysis time, a
static-analysis tool analyses all paths and does not need coverage criteria for its analysis.
It is the ISA and the set of paths through the execution platform that need to be covered.
Huge sets of test traces in qualification suites are used at tool-qualification time to cover the
sets of paths through the execution platform.

Certification becomes more challenging through DO-333, the Formal-Methods Supplement
to DO-178C. It asks for a statement that a formal method including the underlying theory is
adequate for solving the corresponding verification problem. This introduces and enforces
soundness of the methods and tools.

Several component analyses in the tools are instances of abstract interpretation [7], a
scientific method with a strong underlying theory, relating analysis results to semantic
properties of analyzed programs. Value analysis and control-flow analysis, c.f. Figure 1
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Trace Validation5
Whether a static WCET analysis computes safe and precise bounds depends on
the abstract hardware model. In the best-case the abstract model is obtained from
a behavioral processor description, such as a VHDL model [37]. For hardware
architectures where no such model is available, the analysis designer has to rely
on processor manuals and measurements to verify the correctness of the abstract
model. Here, we propose means to automatically compare static analyses with
measurements.

5.1 Methodology
We extend the prediction graph (see Definition 3.12) such that it allows for an
automatic comparison between the prediction and the measured execution behavior.
We annotate the edges in the prediction graph with events that can be measured
on the real device while executing the program. The granularity at which the
comparison takes place depends on the debug facilities provided by the hardware.
Section 5.2 discusses the di↵erent levels of granularity.

Test
Case

Static
Analysis

Board
or VHDL

Prediction
Event Graph

Observed
Trace

Trace
Validation

Validation
Result

Legend:
Data

Tool

Hardware

Figure 5.1: Trace Validation Procedure: A test case is the starting point of the trace
validation. First we obtain the predicted execution behavior by means of
static analysis. Second we measure the execution behavior on the real
device or simulate via an VHDL model. Finally we compare prediction
and measurement.

Figure 5.1 provides a top-level view on the comparison methodology. For a test
case we perform both static WCET analysis and measurement to obtain base data
for trace validation. A graph search then determines whether the measured trace

63

Figure 2 Trace Validation according to [11]. The instruction sequences together with the
generated prediction graphs, annotated by state and timing information are part of the Qualification
Support Kit.

are more or less standard abstract interpretations, the difference is that these analyses
are performed on the binary level and not on the source level. Still, adequacy of these
analyses is easily accepted. The instantiation of the abstract-interpretation framework for
the microarchitectural analysis, however, is far from trivial. In particular, each contains an
abstraction of the execution platform. How does one make sure that such an abstraction is
conservative? The European Aviation Safety Agency (EASA) is strict on this issue. It has
accepted AbsInt’s aiT as a validated WCET-analysis tool for several time-critical subsystems
in the Airbus A380 and A350 planes.

Trace Validation

EASA requires the tool user to perform a tool qualification. As written above, the most
complex part of the WCET-analysis tool is the abstract architectural model. Therefore,
the most complex task in tool qualification is the validation of this abstract architectural
model. It is done by Trace Validation. The tool user may ask the tool provider to support
them by providing a Qualification Support Kit (QSK) containing the abstract architectural
model and sets of test traces, annotated with timing information. The abstract model is
used as a generator of event traces. Typically, only events that can be externally observed
are generated and thus contained in traces in the prediction graph. Several (hand-written)
instruction sequences, test cases according to Figure 2, are run through this abstract model,
each producing a graph of traces, the so-called Prediction Graph [11].

In trace validation, an instruction sequence is executed on the actual hardware. Interrupts
are used to stop execution at each desired execution cycle. This way, the execution of
instruction sequences are extended cycle by cycle to observe actual execution states and
execution times. Whatever machine information can be read out is used. The observed
trace, the reached execution state and the consumed time are checked for containment in the
prediction graph. The predicted execution time may be larger than the observed execution
time, but never smaller. Some interesting components of the architectural state, e.g. the cache
state, are not directly observable. These need to be indirectly observed through executions
that are forced to lead to cache hits and cache misses. A tremendous effort is invested to
cover both all instructions and all architectural components, essentially by triggering many
different initial architectural states.

In the case of the AbsInt static WCET tool, aiT, the validation suite may contain several
thousand event traces, even for a simple DLX-like architecture like the ARM Cortex-M4.

WCET 2018



1:6 Mixed Criticality

Testing in the Operating Environment

In addition, DO-178 asks the user of a tool to be qualified to test the tool in their operating
environment. This includes testing it on on representative user code, besides testing it
possibly on synthetic examples. In model-based design processes, which are quite common
in the safety-critical embedded-systems domain, this is often done by exhaustively testing
patterns used by the code generators.

3 Multi-Core Architectures

WCET analysis for single-core architectures is theoretically understood and practically solved.
The significance of timing-predictability of execution platforms is recognized, but has left
few traces in the architectural domain, a notable exception being the Kalray MPPA [8].
The transition of the embedded systems industry to multi-core platforms presented new
challenges by increasing the complexity of WCET analysis considerably. In general, all
possible interleavings of the concurrently executed tasks have to be analyzed, since different
interleavings may lead to different execution times. The reason was is the interaction on
shared resources of tasks executing on different cores [2].

The interference on shared resources of tasks running on different cores invalidates
the traditional interface between WCET analysis and schedulability analysis, which is the
following: WCET analysis determines an upper bound on the execution times of a task,
and schedulability analysis uses this bound as input. However, different schedules on the
different cores lead to different interactions on the shared resources, and in consequence,
to different execution times of the tasks. So, the WCET estimate determine the schedules,
and the schedules influence the execution times. This fact is ignored by quite a few people
working on multi-core scheduling.

A position paper on the use of multi-core platforms in future avionics systems [6],
written by an international consortium, recognizes that the interference on shared resources
makes the traditional spatial and temporal partitioning methods required by ARINC 653
problematic. They require robust partitioning of the co-executing tasks to allow separate
WCET determination. The relevant necessary condition for robust partitioning reads,
Software partitions cannot consume more than their allocations of shared resources. This
formulation, while applicable to bandwidth resources like buses, ignores the important
differences between storage resources and bandwidth resources. Caches are typical storage
resources. Analyzing shared caches is particularly challenging. It is clear that the cache
state, and therefore also the cache-miss rate and the execution time, depend on the particular
interleaving of the executions of different co-executed tasks. Buses are typical bandwidth
resources. Competition for this resource is resolved by bus protocols, which then influence,
for example, the memory-access time. Bus protocols become part of the WCET analysis.

In case the requirement for robust partitioning is violated the position paper asks for
mitigation by the developer. The only problem is that it remains unclear how such mitigation
could look like. [19] gives a survey of promising approaches for achieving robust partitioning.

4 Mixed Feelings about Mixed Criticality

Steve Vestal [17] has proposed a model of mixed-criticality systems for schedulability analysis.
This model is based on a conjecture that the higher the degree of assurance required that actual
task execution times will never exceed the WCET parameters used for analysis, the larger
and more conservative the latter values become in practice. The survey [5] of mixed-criticality
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systems by Burns and Davis adopts the same assumption, A key aspect of MCS is that
system parameters, such as tasks’ worst-case execution times (WCETs), become dependent
on the criticality level of the tasks. These authors, however, seem to be skeptical about
this assumption: Although it is reasonable to assume confidence increases (i.e. uncertainty
decreases) with larger estimates of worst-case execution time, this may not be universally
true. It would certainly be hard to estimate what increase in confidence would result from,
say, a 10% increase in all Cs. It is illuminating that both articles do not mention soundness.
as if it were of no concern in the safety-critical systems domain.

I see no inherent reason why higher criticality should entail higher WCET estimates. It
seems that this assumption is intuitively based on the assumption that WCET estimates are
determined by measurement; higher criticality levels require higher assurance, and higher
assurance is achieved by performing increasing sets of tests. Since WCETs monotonically
increase with increasing the set of tests – an observed WCET does not disappear, when more
tests are added – more tests can, in fact, not produce lower WCET estimates.

4.1 Exploitation of Hardware Resources
Another motivation is an assumed higher exploitation of the hardware performance: Let us
assume that by extensive measurement the Maximum Observed Execution Time (MOET) of
the high-criticality task Th is found to be substantially less than the WCET estimate, Ch(HI)
provided by a sound tool. This MOET may be considered as an intermediate (low-criticality)
budget, Ch(LO). Some low criticality software, Tl, with no strong guarantees, which will be
run on the same hardware platform, might have a MOET of Cl(LO). The scheduler may
drop or degrade the low-criticality task in the event that either Tl exceeds its MOET of
Cl(LO) or Th exceeds its MOET of Ch(LO). Since the high-criticality task must execute and
must meet its timing constraints, the overall performance required of the system is given by
max(Cl(LO) + Ch(LO), Ch(HI)), which may be substantially less than Cl(LO) + Ch(HI).
The strength of this motivation, of course, depends on the size of Ch(HI)− Ch(LO), i.e. on
the amount of over-estimation. There are a few publications documenting the amount of
over-estimation, see [16]. Between 15 and 25 % over-estimation were observed on real Airbus
code. Of course, the amount of over-estimation depends on many factors, in particular on
the timing predictability of the execution platform [12, 13, 4].

4.2 Schedulability Analysis
Vestal thus starts with the assumption that different WCETs are associated with different
criticality levels of a task, the higher the criticality level, the higher the WCET estimate,
and then proposes to use two different versions of preemptive fixed-priority (PFP) scheduling
with deadline-monotonic priority assignment; tasks with smaller deadlines get higher priority.

The first approach attempts to solve the problem that low-criticality tasks with shorter
deadlines than higher-criticality tasks would receive higher priorities. By cutting the longer
execution times of higher-criticality tasks into short time slices they receive higher priorities.
The scheduling algorithm then is able to use time left over by higher-criticality tasks not
exhausting their WCET estimate for lower-criticality tasks. So far so good! No treatment
is dedicated to the case that the high-criticality task exceeds its WCET estimate and
in consequence its deadline. This is possible since measurement-based analyses are not
guaranteed to produce safe upper bounds.

Vestal’s second approach uses Audsley’s priority-assignment algorithm [3] in a setting
with WCET bounds increasing with criticality level, for which it was not originally described.
I assume that the algorithm can be adapted to work for a setting with different WCET
estimates associated with different criticalities.
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4.3 Consequences of Ignoring Sound Approaches
So, Vestal’s schedulability test is only sound with respect to correct WCET estimates and
will, if given incorrect estimates, accept task sets whose high-criticality tasks may at run
time exceed their deadlines. The scheduling community on the one hand would claim that
their algorithms are sound, but gladly accepts input produced by unsound methods, which
invalidates the overall correctness claim. However, his model has been and still is the
underlying model for most scheduling research on mixed-criticality systems. [5] lists almost
200 publications.
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Abstract
A timing anomaly is a counterintuitive timing behavior in the sense that a local fast execution
slows down an overall global execution. The presence of such behaviors is inconvenient for the
WCET analysis which requires, via abstractions, a certain monotony property to compute safe
bounds. In this paper we explore how to systematically execute a previously proposed formal
definition of timing anomalies. We ground our work on formal designs of architecture models
upon which we employ guided model checking techniques. Our goal is towards the automatic
detection of timing anomalies in given computer architecture designs.
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1 Introduction

Modern computer architectures are designed to alleviate the bottleneck between processors,
and memory systems, leading to utilization of caches, pipelines and speculation mechanisms.
Such architectures are often used in embedded system design and hence required to satisfy, a
posteriori, stringent timing behavior. The alternative is to design predictable systems, which
focus on building systems with a priori guarantees of timing requirements.

The quest for predictability is a complicated endeavor as all components to build and
execute a system, such as processors, high/low-level languages, compilers, operating systems,
communication systems, etc., can impact the definition and verification of timing requirements.
Designs of predictable systems as well as associated timing analyses identify and circumvent
the sources of non-predictability in various ways: disabling the problematic component(s)
(e.g., a particular shared resource), proposing timewise restrictions (e.g., semantics based on
temporal isolation), using predictable components (e.g., LRU caches) or even straightforwardly
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assuming the predictability. Timing analyses need to overcome various challenges: in single-
cores, the worst-case execution time (WCET) analysis is complicated by the presence of
timing anomalies [11] whereas in multi-cores, the worst-case response time (WCRT) analysis
is hampered by timing compositionality issues [5].

The WCET analysis computes sound and (desirably) tight worst-case execution bounds,
exploring, via convenient abstractions, all the execution paths of a program running on a
computer architecture. Typically, the WCET analysis works on the control-flow graph of the
binary code, augmented with semantic information from both the code (e.g., loop bounds)
and the underlying architecture (e.g., cache hits/misses). The WCET analysis workflow
integrates the results of cache analyses with accurate pipeline modeling to safely search
for the longest execution path. This searching process is complicated by the presence of
timing anomalies as these are non-monotonic behaviors. In essence, a timing anomaly is a
counterintuitive behavior in the sense that the local worst-case timing behavior does not
result in the global worst-case performance.

Formal-based methods, e.g., static analysis or model checking, soundly explore all system
behaviors, while mitigating precision and performance arguments. Formal reasoning could
either evaluate predictability issues of existing systems or guide the construction of predictable
systems. Hence the formal, systematic study of timing anomalies becomes essential. In this
direction, the first formal definition of timing anomaly is proposed in [14]. The contribution
of this paper is to execute this formal definition of a timing anomaly, based on model-checking,
towards the automatic detection of timing anomalies. Our method consists of three phases.
First, we consider formal executable models of particular computer architectures, specified
using the TLA+ language [8]. These models are deterministic and tested for conformance
against actual system behaviors. Second, we systematically enable, directly over the concrete
models, non-deterministic choices (i.e., abstract behaviors) as the necessary conditions to
facilitate the study of timing anomalies. Finally, we employ model checking, using the TLC
tool [18] for TLA+ models, to explore the execution paths of the abstract specification. While
our method for automatic detection of timing anomalies is general, our current investigation is
in its incipient stages. However, we evaluate our technique on standard examples of scheduling
timing anomalies while using models of resource contention in superscalar processors.

We organize this paper as follows. In Section 5, we review some related work and in
Section 2, the formal definition of timing anomalies. In Section 3 we briefly introduce the
TLA+ language and present our formal architecture models. In Section 4 we describe the
automatic detection of timing anomalies. We conclude and outline future work in Section 6.

2 Timing Anomalies – Definition and Examples

Essentially, the first formal definition of timing anomalies, in [14], encodes an abstract state
space, constructed with respect to both an architecture and an input program and a property
pattern, expressed with respect to a locality concept. Our proposed method executes this
formal definition, towards an automatic technique for the detection of timing anomalies. Next,
we introduce the ingredients: the running examples and the necessary steps to formalize the
timing anomalies.

We consider as running examples the cases of scheduling timing anomalies introduced
in [16]. The goal is to study policies of resource allocation (e.g., functional units) in superscalar
architectures. Two snapshots of the execution stage of superscalar processors are shown in
Figure 1. On the left side, the resources FU1 and FU2 execute instructions in the program
order, while on the right side, the reservation stations RS11,2 and RS21,2 allow out-of-order
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Dispatch

RS11
RS12

RS21
RS22

FU1 FU2

Figure 1 Snapshot of superscalar processor with: (left) in-order resource allocation for both FUs
and (right), respectively out-of-order resource allocation for both FUs.

execution on both FU1 and FU2. On these platforms we execute program paths of size 4 (i.e.,
instructions A to D with the alphabetical order giving the program order), under certain
allocation constraints, as in Figure 2.

The architecture model in Figure 1 (left) is without reservation stations and the resource
allocation is dynamically decided for instructions like A, based on resource availability. The
resource FU1 is the default execution unit for such instructions in the case when both FUs
are available. Consequently, the program execution is guided by the program order. The
architecture model in Figure 1 (right) imposes different constraints on the set of instructions
with respect to resources. As supported by the constraints in Figure 2 (right), each instruction
could be executed on a single type of resource. The resources FU1 and FU2 can also execute
instructions in out-of-order fashion, based on the content of their respective reservation
stations. Consequently, the program execution is guided by the data dependencies between
instructions. In our example, the instructions B and C are independent and could be executed
in any order, whereas instructions A and B are always executed in the program order.

Examples of scheduling timing anomalies for the architecture models with in-order and
out-of-order resource allocation are shown in Figure 2 (left) and respectively (right). In both
cases, a pivot instruction with variable latency causes a timing anomaly. For example, a
faster execution of instruction B frees FU2 for the execution of instruction C. It further delays
the instruction D whose execution is conditioned by the availability of the same resource
FU2, in Figure 2 (left).

The formal definition of timing anomalies requires the following concepts:
(1) an (abstract) architecture model to provide the settings of the execution environment;
(2) a notion of locality to express local worst-case behaviors;
(3) a path mapping as a labeling function to correlate the program with the architecture.

Each of the three points requires specific assumptions. For example, the key ingredient
towards the construction of a convenient architecture model - point (1) is to enable non-
deterministic choices as a standard method to compactly encode system behaviors. The code
and the related input data are also part of the system (abstract) state. Point (2) defines
the locality as the sequence of abstract system states which satisfies particular constraints
with respect to system behaviors. For example, a system execution path is studied locally –
between two points of interest – (e.g., when instruction A is in a particular pipeline stage)
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Figure 2 Example of scheduling timing anomalies from [16], with out-of-order (left) and in-order
(right) resource allocation, under given allocation constraints for instructions A to D.

with respect to locality constraints (e.g., the interaction between A and all other possible
combinations of instructions). Lastly, point (3) is necessary to interpret the search for timing
anomalies on the specified architecture system. It relates the instruction-level view given by
the program paths with the cycle-level view of the architecture execution paths.

Our approach towards the automatic detection of timing anomalies encodes this formaliz-
ation. Briefly, we address point (1) when we define, using the TLA+ specification language,
a cycle-accurate computer architecture specification; we refer to it as the concrete archi-
tecture model. Furthermore, we abstract this concrete model as we encode the necessary
non-deterministic choices; we refer to the new specification as the abstract architecture
model. Then, we address point (2) when we consider the locality as defined by a particular
pipeline stage, hence the locality is a priori encoded by our abstract/concrete architecture
state. The locality constraints are either directly represented in the model (as constraints on
the input data/program) or computed during the exploration of the state space. Finally, we
directly insert the labeling function, i.e., point (3) in the abstract architecture model, more
specifically in the code component of the abstract model state. We elaborate next on all
these points.

3 Design of Formal Executable Models

Our modeling for automatic detection of timing anomalies fully adheres to the formalization
steps (1) – (3), which are required by the definition of timing anomalies from [14]. Our
concrete and abstract models are TLA+ specifications.

We choose the TLA+ modeling language because of several semantic considerations.
TLA+ features an advanced module system based on interfaces, parameters, local declarations
etc. which allow accurate construction of (concrete and abstract) architecture models from
simpler components. The modeling language also features untyped set theory (and predicate
logic) to specify rich state information. Abstraction in TLA+ is ensured by temporal
existential quantification which hides unnecessary state elements. Refinement in TLA+ is
ensured by supporting stuttering invariance (i.e., execution steps that do not change the
values of state variables of interest) which allows reasoning about system paths on different
levels of granularity. All the aforementioned concepts establish TLA+ as an unified logical
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language designed to specify both systems and their properties, as well as verifying, using the
same specification, both a system and its possible refinements. This latter characteristics of
TLA+ is particularly attractive for our investigation towards automatic detection of timing
anomalies as our framework is based on a single formal specification (i.e., of the concrete
hardware model), which is then systematically refined. We recommend [12] for an in-depth
and comprehensive survey of the TLA+ language semantics and its applications. Next,
we introduce several elements of the TLA+ language and we exemplify their usage with
snapshots of our formal models.

A TLA+ specification is two-tiered. The first level contains state and state transition
formulas (i.e., system specification) and the second level contains temporal formulas evaluated
on sequences of states (i.e., system properties). A particularity of the TLA+ language is the
transition predicate (also called action) which establishes a relation between variable values
in the current and next states. For example, if x is a state variable, the action x’ = x + 1
means that the next value of x (the primed variant) is the current value of x (the unprimed
variant) incremented by 1. Whenever state elements are unmodified by a transition, for
example x’ = x, the TLA+ notation is UNCHANGED x. If x is a record with two fields fst
and snd, an individual field is accessed with “.”, for example x.fst. As such, the TLA+ action
x’ = [ x EXCEPT!.fst = 1 ] means that only the value of fst of x is modified in the next
state. When a TLA+ module X with an internal state variable x and a transition Act is
used in another module, the operator “!” gives access to each, e.g., X!x and respectively
X!Act. Finally, we denote by 〈 S 〉 the state configuration of an TLA+ specification Spec
(i.e., S is the set of semantic entities that are necessary to define the behaviors of Spec).

(1) The hardware model – concrete

We define the two instances of superscalar architectures from [16] and for each instance we
define a concrete model which is then systematically transformed into an abstract model.
The formal computer architecture model is developed in a modular fashion, according to the
principles described in [9], using the TLA+ module system.

The state configuration C of our concrete architecture model consists of two state com-
ponents: the architecture Arch and the input program Code.

C = 〈 Arch, Code 〉 .

The concrete Arch consists of several variables to represent the pipeline stages; these variables
are updated cycle-wise based on the content of their inner states and the necessary signals
from the memory system, as in [16]. Since we aim for the detection of scheduling timing
anomalies, we implicitly represent the signals from the memory system, while fully specifying
the execution pipeline stage and an instruction progress through the pipeline. The Arch

state configuration for the architecture model in Figure 1 (left) is that of a standard 5-stage
pipeline:

Arch = 〈 _IF, _ID, _EX, _MEM, _WB 〉 .

whereas for the architecture model in Figure 1 (right) is a 6-stage pipeline, with an extra
instruction issue stage. The names for the pipeline stages stand for instruction fetch (_IF),
instruction decode (_ID), execute (_EX), memory access (_MEM ) and write-back (_WB).

Both pipeline models are dual-issue. Structurally, our architecture models are increment-
ally built from simple parameterized modules of buffers and functional units, which are
instantiated into pipeline stages. Each functional unit and internal buffers of the pipeline
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AcquireFU1 ,
∧ condAcquireFU1
∧ IF isCurrIns

(1) THEN _IF ′ = [ _IF EXCEPT !.buff = FBUFF !Set(code.currIns)]
ELSE _IF ′ = [ _IF EXCEPT !.buff = FBUFF !Reset]
∧_ID′ = updateID (_ID)
∧_EX ′ = [ _EX EXCEPT !.fu1 = FU1!Acquire(_ID.buff.instr) ]
∧_MEM ′ = updateMEM (_MEM)
∧_WB′ = updateWB (_WB)
∧_code′ = updateCode (code)
∧ cycle′ = updateClk (cycle)

∧ IF isCurrIns
(2) THEN ∃ d ∈ code.currInstr.tvar:

_IF ′ = [ _IF EXCEPT !.buff = FBUFF !Set(code.currIns, d)]
ELSE _IF ′ = [ _IF EXCEPT !.buff = FBUFF !Reset]

Figure 3 The TLA+ rule for acquiring the functional unit FU1. With (1), the rule presents the
concrete architecture behavior. When (1) is replaced by (2), the rule shows the abstract architecture
behavior when exploiting timing variations for the current instruction.

stages provide an interface for theirs operations, accessible via the “!” operators. Semantic-
ally, our architecture model for the out-of-order resource allocation supports the Tomasulo
algorithm, as in [1], whereas the in-order resource allocation is driven by the program order.

Let us briefly explain our concrete architecture model using an excerpt of the TLA+
formal model, in Figure 3. We recall that our objective is to study scheduling timing
anomalies which manifest when instructions are deployed for functional units in the execute
stage of the pipeline. This scheduling mechanism consists of operations of acquire and/or
release of one or both functional units (i.e., in short FUs). Figure 3 presents the specification
of acquiring the functional unit FU1, a rule named AcquireFU1. Other TLA+ rules specify
pipeline stalls, flushes, simultaneous acquires of both FUs, etc. Each rule is guarded by a
predicate (e.g., condAcquireFU1 ) and contains the actions to update the Arch and Code (i.e.,
variable _code) parts of the concrete configuration, as well as the clock variable (i.e., cycle).
In our example, the guard condAcquireFU1 is a predicate which establishes the necessary
conditions to activate the rule AcquireFU1:

condAcquireFU1 , ∧ ¬ emptyID ∧ isAvaiFU(_ID.buff.instr, FU1!fname)
∧ (emptyEX ∨ (emptyFU1 ∧ FU2!inExec(_EX.fu2)))

The first line ensures that there is an instruction in the decode stage which is ready and
needs to be executed by FU1 as isAvaiFU checks whether instruction instr from the decode
stage can be executed over the functional unit FU1. The second line ensures that there is
not another case of acquire or release of either FUs at the same time.

When condAcquireFU1 is true, the new content of the instruction stage (emphasized by
(1)), _IF’, retrieves a new instruction, if it exists (variable isCurrIns), and sets the internal
state of this stage (using the accessor “.buff”) to this instruction. If a new instruction is not
available, the new internal state of the instruction stage is reset, i.e. it is emptied, using
the operation Reset. The new content of the execute stage, _EX’, is modified only for the
first functional unit (using the accessor “.fu1”) with an instruction from the decode stage
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(i.e., _ID.buff.instr). In a similar way, the other pipeline stages (decode, memory access and
write-back) and the code update their next state, via the corresponding update functions.
Finally, the clock cycle advances using the updateClk function.

Let us recall that the input program is represented in the concrete state configuration C
by the state component Code. In our TLA+ models, the program is represented by its set of
program paths and each path is a sequence of instructions. An instruction is represented by
several parameters: the program counter, the execution resources (as the set of necessary
FUs), the latencies (the concrete representation considers exactly one latency per instruction),
the dependencies with respect to other instructions and finally the temporal availability (in
this latter case, it is borrowed from the task-oriented model of computation). Whereas our
instruction representation does not model a particular instruction set architecture (ISA), it
contains all the necessary semantic ingredients to capture existing ISAs semantics. Figure 2
shows examples of instructions respecting the properties of our instruction model.

The concrete architecture models are cycle-accurate and deterministic. The part Code of
C is instantiated with concrete program paths and executed using the TLC model checker.
We rely on the TLC statistics on the state space to assess the determinism aspect of our
architecture models and to drive, whenever necessary, model refinements. We extensively test
both concrete models to gain confidence in their correct functionality and determinism. The
abstract models are constructed directly over the concrete models, e.g., replacing predicate
(1) with (2) in Figure 3. We detail this procedure in the next section.

(2) The locality concept

It is accepted [11, 14] that locality matches an instruction progress through the pipeline
stages. The notion of locality is thus formalized as a path fragment of interest, for any
execution path in the model. The particular example of scheduling timing anomalies, which
appear in processors due to contention for functional units defines the locality level as the
execution pipeline stage, i.e. the _EX stage in our pipeline models.

The locality constraints are convex predicates which hold locally – on path fragments of
interest. They could be (a) pre-determined and encoded in the program part of the state
configuration, e.g., in our case in Code, or (b) dynamically calculated during the model
execution. We experiment with both variants and henceforward and without the loss of
generality, our locality constraints are given, i.e., we assume (a). Precisely, we work with
convex predicates in the form of single linear inequalities where an instruction latency is
bounded by a pre-computed value. For example, in Figure 2 (left), the execution time for B
is bounded by 1 for the first execution and by 3 for the second execution.

(3) The labeling function

We use the Arch configuration to construct cycle-accurate architecture models. It is necessary
to relate them to the instruction-level information presented in the Code configuration. We
address this aspect directly in the concrete architecture model, as our method is centered
around the program path. Hence, Code encodes all the program paths [10] which are
evaluated path by path. In the general form, our code-related configuration is:

Code = 〈 [Paths], CurrPath 〉.

with the input program and data in [Paths] and the current program path in CurrPath.
Since the study of timing anomalies require input variations at the path level, we assume,
without loss of generality, that a simplified Code contains only CurrPath. Structurally, a
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program path is encoded as a list of instructions. Semantically, each instruction advances in
the program order, given by the program counter, through the pipeline stages until Execute,
where a corresponding resource allocation takes place. TLA+ facilitates a flexible encoding
of path-related variations with its set-theoretic semantics. For example, the latency 3 of
instruction B from Figure 2 is adequately represented in CurrPath by a singleton.

The design of concrete architecture models follows the principles of the formal definition
of timing anomalies: the architecture is deterministic and cycle accurate, the code is part
of the model; the program paths are evaluated one by one etc. Over such infrastructures,
we systematically construct abstract models which are checked for timing anomalies. We
present next how we perform abstractions over the concrete model and how we use model
checking for the detection of timing anomalies.

4 Detection of Timing Anomalies

Generally, a TLA+ specification Spec consists of the definition of the initial state Init and a
state transformer Trans applied over the state variables, e.g., in our case C:

Spec == Init ∧� TransC .

where � is the temporal operator “always”. Trans contains guarded transitions for pipeline
stalls, flushes, single acquire of FU1 or FU2, simultaneous acquires of both FUs, simultaneous
acquire of FU1 and release of FU2 etc.

(1) The hardware model – abstract

We construct an abstract architecture model which augments the concrete model Spec with
non-deterministic choices. The abstraction creates “diamonds” in the specification which are
to be explored with the model checker. The abstract state configuration, A refines C in both
architecture AArch and program ACode components:

A = 〈 AArch, ACode 〉 .

For example, variable latency {1, 3} of instruction B in Figure 2 (left) form a diamond in
the abstract architecture model. Similar variations lead to have CurrPath of the ACode

configuration encoding sets of concrete paths. The state transformer Trans′ associated to
AArch extends its concrete counterpart based on Arch to fully explore these sets of paths.
For example, for the aforementioned instruction B, the latency is non-deterministically chosen
between 1 and 3, when applicable (i.e., in certain states of interest). The model checking
explores both possibilities of the new abstract architecture model – Spec′:

Spec′ == Init ∧� Trans′
A.

The abstract architecture model includes the path-level variations, as presented in
Figure 3 on rule AcquireFU1 where predicate (2) replaces (1). This particular rule shows
two important aspects of our abstract model: it is constructed directly over the concrete
model and the abstraction points – the “diamonds” – are visible in the specification. This
latter point opens the possibility of exploring the diamonds in a guided way, which establishes
the third step of our systematic framework for automatic detection of timing anomalies.

A timing anomaly is characterized by a pair of execution paths because it “compares”
local worst-case variations with respect to global worst-cases. For example, let us consider
two execution paths, as in Figure 4 (left), where local variations ∆1 and respectively ∆2,
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∆1 ∆2

ET1 ET2

∆1

∆2

Figure 4 Abstraction diamond (left) and timing anomaly on the search tree (right).

with ∆1 > ∆2 result in global execution times ET1 and respectively ET2, with ET1 < ET2.
Intuitively, automated detection of timing anomalies over the abstract model Spec′ means
searching for such pairs of execution paths with counter-intuitive behavior. Now, it remains
to encode this property in TLA+ and launch the TLC model checker to search for timing
anomalies. A simple way to encode this property is as an invariant of the form:

PropT A = � ¬ (∆1 > ∆2 ∧ ET1 < ET2)

and the property is checked on Spec′.
We accommodate such a formulation over a transformed search tree, as in Figure 4 (right),

where, intuitively, each path consists of two different paths of the original encoding of the
search space. More simply, a diamond is fully unfolded along a single path, while respecting
the initial conditions of its cases. For example, the two execution paths in Figure 2 (left)
form a single execution path in the new search tree, with ∆1 = 1, ∆2 = 3, ET1 = 8 and
ET2 = 7. This new search tree is constructed on-the-fly and the detection procedure stops
when the first “long” path which violates the property PropT A is found. Intuitively, the
diamond unfolding corresponds to a simple observer automaton which toggles between two
states (e.g., with a set/reset-like semantics).

We guide the model checker to find “long” paths, implementing a mechanism to track the
exploration of all diamonds. We opt to encode this mechanism directly in the abstract model
(it can also be automatically generated for a given abstract model). As such, we extend the
abstract configuration A to accommodate the guiding mechanism:

Astate = 〈 AArch, ACode, Guide 〉 .

In its simplest form, Guide monitors the execution, records taken decisions and direct
subsequent executions to the unexplored state space. Precisely, our Guide encodes how to
construct long paths and then how to fully explore the new state space. We address the first
point using a single TLA+ rule which is activated only when the first (red) execution in
Figure 4 (right) terminates and under the same initial conditions, the second (blue) execution
starts. With respect to the second point, our current implementation supports a rudimentary,
though systematic, exploration of all diamonds in our abstract model. For example, if the
set of timing variations of a particular instruction is {2, 4, 5}, Guide explores (in this order)
the diamonds {2, 4}, {2, 5} and {4, 5}. Variations on multiple instructions are handled in
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a similar fashion with the order of diamonds also depending on the instruction program
counters. More refined heuristics to speed-up the model checking (e.g., with interpolation
techniques as in [6]) are left for future work.

We detect (scheduling) timing anomalies like those in Figure 2, from [16]. We experiment
with small scale architecture models, in total around 2K lines of TLA+ specification, upon
which we execute both concrete and abstract program paths. At the architecture level, we
consider two dual-issue pipelines with 5 stages for the in-order functional unit allocation and
respectively with 6 stages for the out-of-order variant, with precise modeling of the instruction
advancement in the pipelines and with complete specification of resource contention in the
execution stages. We also perform preliminary experimentation with variants of the in-order
architecture models based on pipeline stalls, as indicated in [4]. At the program level, we
consider program paths which activate the worst-case contention scenarios for the model
in Figure 1 (right), when all reservation stations and functional units are full. Next, we
elaborate on some experimentation, conducted on a quad-core Intel i7 at 2.8GHz with 16GB
RAM and with the TLA+ Toolbox using the TLC model checker version 2.19.

Let us exemplify with the following test scenario, named T , upon which we construct
several test variants. At the architecture level, we consider the 5-stage pipeline with in-order
functional unit allocation. At the code level, we use a program path of size 20, with multiple
variations for instruction latencies and resource allocations (actual statistics on the size of
the both feasible and infeasible search space are subsequently given). We investigated several
aspects of our approach: (a) the concrete executions are deterministic, (b) the absence of
timing anomalies in T and finally (c) the detection of timing anomalies in methodically-
constructed variants of T , using the guide mechanism. The TLC model checker provides
several statistics on the search space, notably the problem diameter, the number of existing
states and the number of distinct states. Our extensive evaluation of (a), on concrete
executions (i.e., the instruction latencies are given as singletons) of T end, after 2-3 seconds,
with identical numbers on all these parameters. The absence of timing anomalies (b) requires
full exploration of the state space of T . As such, we employ bounded model checking (with
a bound value of 100) and prove that T does not have timing anomalies in approximately 7
hours and with a maximum memory consumption of 39GB. The statistics on the entire state
space of T include 839M states found with 835M distinct states (i.e., around 0.5% duplicated
states). Finally, we address (c) the detection of timing anomalies in T , using Guide. We
produce several variants of T , “inserting” timing anomalies (as variations of instruction
latencies) into the test scenario. For example, small timing variations (i.e., |∆1 −∆2| ≤ 2
cycles), at various path locations (i.e., program counters of 5, 14 and 20) cause timing
anomalies with ET s variations of up to 20 cycles. The timing anomalies are found as ”long”
paths in the search tree of Figure 4 (right) using bounded model checking with the bound
value of 1000. The running time varies between 1-2 minutes, with around 10M states covered.
We also experimented with variants of T with well-concealed timing anomalies, yielding a
running time time of around 1 hour and up to 200M explored states.

We address next some advantages and weaknesses of our detection algorithm. We present
a general method, which it is not restricted to scheduling timing anomalies, as exemplified
here. Because our approach is constructed over a concrete architecture model, it is possible to
subject the detection of timing anomalies to guided, but non-exhaustive, heuristics (as they
were firstly observed in [11]). Also, our detection procedure could be tuned to compute the
local variations (deltas) of [13]. Finally, our formal architecture models could be adapted to
experiment with newly proposed and/or predictability-driven architecture modifications [4].
On the other hand, our approach relies on two daunting tasks: the construction of the formal
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infrastructure and the handling of the state space explosion. While we discussed possible
approaches towards the latter, building a cycle accurate formal executable architecture
remains complicated. A possible solution is to use already constructed formal models,
another is to automatically extract them from existing HDL designs (as suggested in [1, 3]).

5 Related Works

The first assessment of timing anomalies in the context of the WCET analysis is presented in
[11]. It reports timing anomalies caused by caches (and identified in [14] as speculation timing
anomalies) in out-of-order architectures. The first formal definition of timing anomalies is
proposed in [14]. We elaborate on its technical aspects in Section 2 as it establishes the
foundation of our work. A class of timing anomalies (and identified in [14] as scheduling
timing anomalies) is studied in [16] on two superscalar models with in-order and respectively
out-of-order resource allocation. The work in [2] presents an actual computer architecture –
the LEON2 processor – with timing anomalies (i.e., speculation timing anomalies).

Our approach shares similarities with two other approaches [1, 3] on the formal investiga-
tion of timing anomalies. Briefly, the work in [1] focuses on proving the absence of timing
anomalies using bounded model checking, whereas the work in [3] combines static analysis
with measurement-based techniques towards detection of timing anomalies. Both approaches,
as well as ours, follow a similar pattern – the construction of a convenient representation
of the abstract architecture state space and work, as in our case, under the assumption
that the input program has a finite number of paths. With respect to [1], our framework
targets the detection of timing anomalies, hence our Guide (through simple) advances on
the straightforward model-checking algorithm of [1]. Moreover, our framework checks the
presence of timing anomalies on a single model and with the property PropT A given as an
invariant, whereas the technique in [1] requires two models out of which one is assumed
without timing anomalies and with a property expressed over the execution paths of both
models. Also, the work in [1] focuses on identification of timing anomalies independently from
a given program, but no complexity analysis or runtime performance results are reported
and no specifics of the formal models are presented. We instead focus on the identification
of code-specific scheduling timing anomalies and provide details on the formal models in
Sections 3 and 4. Note that we could also add constraints in our work to upgrade to a
code-independent problem. However, we believe that the code-specific problem is more
interesting from an industrial point of view as most hardware architectures are subject to
timing anomalies. Identifying where within a code such anomalous behavior can happen
are useful to later insert mitigation mechanisms. With respect to [3] which checks timing
variations of the worst-case path (computed with an WCET analyzer) using program runs
on the actual architecture, our approach directly integrates the concrete architecture model
in order to support such runs. The approach in [3] constructs a prediction graph which is a
compact representation of instruction-level simulations of program paths. Whereas the work
in [3], though extensive, relies on non-exhaustive investigation of the architecture, ours is
able to provide formal guarantees with respect to it (though subjected to scalability issues).

The work [11] which introduces timing anomalies in context of the WCET analysis also
proposes a simple code modification to eliminate their effects. An alternative approach,
in [13] explores the abstract hardware state space using pre-computed local worst-cases
called deltas. [7] proposes to speed-up WCET analyses by parallelizing their computations.
However, this computation methodology generates timing anomalies that are not necessarily
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present in the underlying architecture model. Lastly, the compositional timing analyses for
multicores, from [4], address the problem of timing anomalies with sound techniques, ranging
from pipeline stalls to overapproximation of local effects with integer linear programming.

Automatic detection of timing anomalies supports the design of predictable/compositional
systems as, according to [15], the timing anomalies are “at the heart of unpredictability at
processor level”. The timing anomalies could have bounded or unbounded effects (also known
as domino effects), leading to a classification of computer architectures [17] into: fully timing
compositional (i.e., without timing anomalies), compositional with constant bounded effects
(i.e., only with bounded timing anomalies) and non-compositional (i.e., with domino effects).

6 Conclusions and Future Work

We presented a methodology to automatically detect timing anomalies based on formal models
of computer architectures. Our proposal is systematic; it starts with a concrete architecture
model, thoroughly tested to gain confidence in its concrete semantics. Then, we constructed
abstractions, which are necessary to facilitate the study of timing anomalies, directly over
the concrete architecture model. Finally, we described a detection procedure based on guided
model checking. Our preliminary investigation considered a simple transformation of the
search space to check for timing anomalies expressed as invariants.

New designs of either whole systems or specific components claim to be free of timing
anomalies and it is important to rely on formal techniques to validate their behavior. Our
preliminary study remains to be developed in several directions. We leave as our future work
a similar investigation of timing anomalies due to prefetching, towards our goal for complete
architecture models and the development of heuristic techniques to accelerate the model
checking phase (e.g., using cuts, as in [6]).
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Abstract
We introduce a unified wcet analysis and scheduling framework for real-time applications de-
ployed on multicore architectures. Our method does not follow a particular programming model,
meaning that any piece of existing code (in particular legacy) can be re-used, and aims at re-
ducing automatically the worst-case number of timing interferences between tasks. Our method
is based on the notion of Time Interest Points (tips), which are instructions that can generate
and/or suffer from timing interferences. We show how such points can be extracted from the
binary code of applications and selected prior to performing the wcet analysis. We then rep-
resent real-time tasks as sequences of time intervals separated by tips, and schedule those tasks
so that the overall makespan (including the potential timing penalties incurred by interferences)
is minimized. This scheduling phase is performed using an Integer Linear Programming (ilp)
solver. Preliminary results on state-of-the-art benchmarks show promising results and pave the
way for future extensions of the model and optimizations.

2012 ACM Subject Classification Software and its engineering → Automated static analysis

Keywords and phrases Multicore architecture, WCET, Time Interest Points

Digital Object Identifier 10.4230/OASIcs.WCET.2018.3

1 Introduction

The advent of multicore architectures in embedded real-time systems raises multiple challenges
for the community. For single-task (single-threaded) applications running on single-core
architectures, the computation of safe-yet-precise Worst-Case Execution Time (wcet) bounds
is a mature research domain, in which the complexity of hardware acceleration mechanisms
(e.g. branch predictors) and of programs semantical properties (e.g. infeasible execution paths)
must be mitigated in the analysis in order for the problem to remain tractable. On single-
core machines, using preemptions to implement multi-task applications additionally incurs
Cache-Related Preemption Delays (crpds) [2]: since multiple tasks share the instruction and
data caches, a preemptive task can invalidate cache lines still needed by preempted tasks.
This leads to additional timing penalties that were not present in the analysis of single-task
applications.

For applications running on multicore architectures, deriving wcet bounds for the tasks
running on each core becomes even more complex. Indeed, logically independent tasks
can cause or suffer from timing interferences induced by the execution of tasks running
simultaneously on other cores. For architectures where multiple cores share caches, the same
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effect as crpd can be observed. However, caches are not the only source of contention in
multicore architectures, and subtler timing interferences between tasks can be generated in
other shared elements such as the interconnect.

We consider that closely integrating wcet analysis and Time-Triggered (TT) scheduling
can be a pragmatic and efficient way of coping with this increasing complexity by reducing
the temporal instability of the applications. Existing models [15, 6] have shown that this
approach yielded good results, but they require the analyzed applications to be written in a
particular fashion. On the other hand, we propose a unified, code-analysis centric approach
targetting arbitrary applications, and thus suited for legacy applications. Our technique
analyses each task’s code in isolation, and pinpoints all instructions that can generate or
suffer from timing interferences. We call these particular instructions Time Interest Points
(tips). Our method abstracts each task of the system into a sequence of code segments
delimited by two (not necessarily consecutive) tips. Each segment’s execution duration is
stabilized by injecting a busy-wait loop before the ending tip, directly in the binary code.
Each segment is represented by its duration and the worst number of tips executed on any
control flow path contained in the code of the segment. The objective of our approach is
to schedule the segment sequences according to the real-time (e.g. periods and deadlines)
and functional (data dependencies) constraints of their respective tasks, while reducing the
number of possible timing interferences. In this paper, we propose an ilp formulation of the
scheduling constraints in order to formally expose the problem. Since this paper presents
a preliminary investigation of this model we will only focus on applications composed of
two tasks running at the same frequency, yet the proposed approach can be easily extended
to more general task systems (e.g. multi-periodic dependent tasks). Our approach does
not rely on a particular programming model, and can be used on existing code without
re-writing it. It works at binary level, allowing the analysis and the automatic code injection
in pre-compiled code, and freeing our analysis from any programming language constraint.

This paper is divided as follows: Section 2 gives a presentation of existing work in the
domain, Section 3 formally presents the problem and Section 4 details our method. Finally,
Section 5 provides a proof-of-concept and Section 6 concludes.

2 Related work

2.1 Multicore interference analysis frameworks
Several Worst Case Response Time analysis frameworks [1] for multicore architectures have
been devised in the past years. Their goal is to provide a schedulability criterion for a
multi-task real-time system prior to its deployment, in particular for task systems scheduled
using a non TT policy (e.g. fixed priority or EDF). The objective is to derive an exact or
conservative bound on the number of timing interferences that can occur on each task, and
to apply timing penalties to their wcets accordingly. In [3], the analysis framework is based
on the analysis of all possible execution traces of the task system on a given architecture,
and allows a very high level of precision in the modeling of the architecture components,
raising the concerns of the authors about the complexity of their analysis. Alternatively, the
authors of [14, 16] propose an analysis method based on real-time Calculus for applications
running on multicore architectures: tasks are approximated as sequences of time intervals
containing the minimum and maximum number of potential interferences that can occur for
the task on these intervals. However, to the best of our knowledge, the authors do not provide
methods to obtain such abstractions from actual code. Our method uses an intermediate
representation that is very close to the one defined in [14] and refined in [16]. However our
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model differs in several points. First, instead of verifying the schedulability of the system,
we use this representation to derive a schedule of the tasks. Second, in our method each
code portion corresponding to a segment in the representation is temporized using busy-wait
loops so that it executes for exactly the segment duration. Finally, our method targets the
general model of multicore architectures with starvation-free interconnects, instead of the
more restricted model of tdma interconnect based architectures of [16].

2.2 Multicore extensions of the PREM model
The PREM [13] model was designed to avoid timing interferences for applications running
on single core architectures connected to peripherals. The main idea is to separate the
application into phases of three types: Read phases perform reads in the memory to preload
the application code and the needed data, Execution phases perform the task calculation
using only the instructions and data present in the cache, and Write phases update the
values of modified variables in the main memory. The phases of the application can then
be statically scheduled so that no Read or Write phase occurs when a peripheral uses the
bus1. This model is extended to multicore architectures with scratchpad memories [15] and
caches [6] by separating each task in three phases (Read/Exec/Write for the rew model or
Acquisition/Execution/Restitution for the aer model) and by scheduling them statically
so that memory phases from two or more cores never happen simultaneously. Each phase
is time-triggered following the pre-computed starting dates. These methods work at the
granularity of tasks, meaning that each task is composed of exactly one Read, one Execution
and one Write phase. The Read (or Acquisition) phase prefetches all the data and instructions
potentially required for the execution of the task in the local L1 cache or scratchpad, even
though they may not be actually needed during the execution. To do so, it must be clear
what data will potentially be read or written, as well as what code may be executed, by the
task. This is defined by the programmer, using for example a system-level language such as
PRELUDE [12] or wrapper functions. Tasks whose memory requirements exceed the capacity
of the cache or scratchpad have to be manually divided into smaller subtasks. By contrast,
our method works at a finer grain level and does not require any programmer’s intervention.

3 Problem setting and formalism

In this section we define the formalism that will be used to describe our model and method
throughout the paper.

3.1 Architecture
Our model focuses on multicore architectures composed of N cores, each of them connected to
a private L1 cache. Each L1 cache is connected to the main memory through a starvation-free
interconnect.

Each core has a programmable timer that can wake up a task sequencer (implementing
a schedule computed off-line) using an interrupt through a direct link (not going through
the shared interconnect).The core can program or rearm the timer through the shared
interconnect. Moreover, each core also has a time stamp counter register tsc_reg (or an
equivalent register) which counts CPU clock cycles with a fine granularity. These architecture
traits are present in commercial off-the-shelf microprocessors such as the Aurix Tricore [10]
or multicore ARMv8A [4].

1 In the PREM model, peripherals such as sensors are allowed to write to the main memory.
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3.2 Real-time tasks
We consider real-time applications modeled under the form of non-preemptive mono-periodic
task systems. Formally, we denote T = {τi|1 ≤ i ≤ n} a task system composed of n tasks.
Each task τi ∈ T is characterized by:

its period2 τi.p ∈ N,
its deadline τi.d ∈ N (when τi.p = τi.d, the task is said to have an implicit deadline),

In the scope of this paper, we assume that each task runs on a separate core: this simplifies
the scheduling ILP system, and at the same time allows us to apply our technique in situations
where interferences are more likely to appear. This model is simple, yet complex enough to
capture the traits of real-time applications with regard to multicore timing interferences.

3.3 WCET Computation
The identification of tips and the proposed scheduling method require not only wcet
computation by static analysis but also intermediate results such as the analysis of the data
cache. To this end, we use the Implicit Path Enumeration Technique (ipet) [11] approach
which is made of three passes: (a) the path analysis, (b) the accelerator mechanism analysis
and (c) the time analysis.

The path analysis consists in parsing all executions of the program. In order to increase
the precision of the analysis, the ipet is performed on the binary form of the program and
therefore, a compact and complete representation of a task is the Control Flow Graph (cfg).
A cfg is a graph G = 〈V,E, ν, ω〉 where the nodes set V is composed of Basic Blocks (bb).
A bb is a sequence of instructions in which only the first instruction can be targeted by
a branch and only the last instruction can be a branch. E ⊆ V × V is the set of edges
representing sequential execution or branches of the program. ν, ω ∈ V are special empty
bbs ensuring that G contains exactly one entry point (ν) and one exit point (ω).

The second analysis (b) aims at estimating the impact of accelerator mechanisms such as
caches or branch predictors: these statistically improve the execution of the program (hit),
but they do not work all the time (miss). A very common approach to support them is to
statically compute abstract states (including all possible hardware states) and to assign a
category representing their behavior. For example, for data caches [7], we distinguish four
categories: Always Hit (AH), Always Miss (AM), Persistent (PE) or Not-Classified (NC).
NC is the most imprecise case and a fall-back when the cache behavior is too complex. PE
is a bit smarter and arises in loops: it means that the first access may cause a miss but the
following accesses will cause hits. Notice that only memory instructions classified as AH are
guaranteed to not generate interferences.

The last pass (c) computes the duration of bbs and weaves together (1) the wcet
expression as the sum of all bbs durations multiplied by their occurrence counts on the
wcet path, and (2) the constraints representing the execution paths and the effects of the
accelerator mechanisms. The result gives an ilp system whose maximization provides the
wcet.

3.4 TIPsGraph
We define TIPsGraphs as an intermediate representation in order to transform the cfg
representing the control flow of a task into a sequence of time intervals representing the
timing aspects of the task execution.

2 In the scope of this paper we only target mono-periodic systems, so all tasks have the same period.
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A TIPsGraph for task τi, GT IP s(τi) = {VT IP s(τi), ET IP s(τi)} is composed of tips
t ∈ VT IP s(τi) and of edges e ∈ ET IP s(τi).

tips t ∈ VT IP s(τi) are instructions of task τi which can create or suffer from interferences
in a multicore execution context, or pivot instructions which represent flow disjunctions (i.e.
conditional branches) and junctions in the cfg. Pivot instructions allow our algorithm to
encapsulate if and loop constructs into a single TIPsGraph edge, and thus to restrain the
complexity of the subsequent ILP system.

Typically, tips can be:
Memory instructions (stores and loads), when the static analysis cannot guarantee that
they will always result in AH,
Memory instructions addressing shared variables, or data residing in a cache block that
can be written by another task,
Instructions for which the static analysis cannot guarantee that they will always result in
a hit in the instruction cache,
Pivot instructions.

Instructions falling in the first and third categories can generate interferences for other
tasks or suffer from interferences from other tasks on the interconnect (e.g. memory bus).
Instructions falling in the second category are subject to interferences due to cache coherence
maintenance. In the scope of this paper, we will focus on instructions falling in the first
and last categories only, although the extraction of TIPsGraphs including tips falling in the
other two categories is performed using the same algorithm. The reason for this restriction
is that increasing the number of tips in the system dramatically complexifies the ilp system
that we use for scheduling. Consequently, for the scope of this paper we consider that the
tasks code is preloaded into the Instruction caches (or equivalently in private ScratchPad
Memories) when the system is powered up.

An edge e ∈ ET IP s(τi) is characterized by:
its source tip instruction e.src ∈ VT IP s(τi),
its destination instruction e.dst ∈ VT IP s(τi),
the worst-case number e.µ of tips encountered on any control-flow path linking e.src to
e.dst,
e.wcet: the wcet of control-flow paths linking e.src to e.dst.

3.5 Temporal segments sequence
Each task τi is represented as a sequence of time intervals (or segments) {(di.j , µi.j)0≤j<ni

}, ni

being the number of segments that compose τi. These sequences are used to generate the ilp
system which ultimately produces the tasks schedule. A time interval tii.j is characterized by
its duration di.j , as well as the worst case number of non-AH memory accesses µi.j performed
during the execution of the segment. An important point is that a segment is characterized
by an exact duration, and not by a wcet: in order to effectively reduce conflicts on the
interconnect through careful scheduling of the tasks, we must know in advance when a
task accesses memory. In order to suppress the temporal instability inherent to unbalanced
control-flow paths and to the conservatism of our wcet estimation technique, stabilization
loops are injected automatically in the binary code before the end of each segment. These
loops poll the tsc_reg of their core until a pre-computed date is reached. Once it has been
reached, the normal execution flow resumes. This technique has been introduced in the
PREM model [13] to stabilize the duration of the whole Execution phase of each task.
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Figure 1 Example of graph extraction for
a linear sequence of bbs.

Figure 2 Example of graph extraction for
a non-linear control structure.

The segments are straightforwardly obtained from a TIPsGraph by translating each edge
in the graph into a segment.

4 Multicore WCET analysis using TIPs

In this section, we describe how TIPsGraphs are extracted from the cfg of tasks and then
transformed into sequences of temporal segments. We also explain how the ilp scheduling
system is generated from a set of temporal segments sequences.

4.1 Extracting a TIPsGraph from the CFG of a task
The extraction of the TIPsGraph of a task τi is performed by exploring the task’s cfg from
the entry point to the exit point. During this exploration, the extraction algorithm can be in
one of two situations: either it is exploring a linear sequence of bbs without pivot instruction,
or it has reached a pivot which marks a disjunction in the control flow. In this second case,
a subprocedure looks for the matching junction in the graph and creates an edge between
the disjuncting pivot and its matching join pivot (see 4.1.2).

4.1.1 Linear sequence of Basic Blocks
As long as the exploration procedure has not encountered a pivot instruction, it goes
through the instructions of the program in sequence. If an instruction inst is a memory
instruction (str/ldr/stm/ldm in ARM instruction set) which is not guaranteed to result
in a hit (non-AH) in the data cache, the procedure creates a corresponding tip new_TIP
in VT IP s(τi), and an edge e in ET IP s(τi) from the last encountered tip last_TIP to the
current tip, with e.µ = 0 since no memory operation is performed between the two tips,
and e.wcet equal to the wcet of the code portion between last_TIP and new_TIP . In
order to reduce the number of extracted tips, the procedure then regroups all non-AH
memory instructions directly following new_TIP in the code as part of the same tip (if
such instructions are present). It computes the number µ′ of all non-AH memory accesses
performed by the instruction(s) grouped in the tip, as well as the wcet of the corresponding
instruction(s) wcet′, and creates an edge e′, in which e′.src = e′.dst = new_TIP , e′.µ = µ′

and e′.wcet = wcet′. This self-edge looping on the tip accounts for the duration of
the instruction(s) represented by the tip, which generate traffic on the interconnect. The
procedure then resumes the exploration of the instructions in sequence. Figure 1 illustrates
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this process: the boxes on the left represent bbs in the cfg of a task, and the graph in the
right is the part of the TIPsGraph corresponding to this part of the cfg. The str instruction
in the top is analyzed as non-AH, so a tip (a node) is created in the TIPsGraph. The
self-edge on this tip is labeled with µ = 1 because the str instruction only performs one
non-AH memory access. The wcet label for this edge corresponds to the wcet of this str
instruction3. The next non-AH memory access found by the procedure is made by the ldmfd
instruction at the bottom. A tip is added to represent this instruction in the TIPsGraph,
and an edge links it to the previous tip.

If a pivot instruction p is reached, the procedure creates a corresponding tip in VT IP s(τi),
as well as an edge e from the last encountered tip to p, with e.µ = 0 and e.WCET =
WCET (last_TIP, p). The procedure then follows the algorithm described in the next
section. Finally, when the procedure reaches the end of the cfg, it returns GT IP s(τi).

4.1.2 Non-linear control structures
When a pivot instruction p is reached, it necessarily marks a disjunction in the control
flow (an if branch or the start of a loop). In order to analyze the disjoint part of the cfg
as a whole, the procedure first looks for the unique pivot instruction p′ that marks the
corresponding junction of the control flow paths, and puts it in VT IP s(τi). This instruction
is the first instruction of the first bb that (a) is a (direct or transitive successor of the bb
containing p and (b) dominates the exit point (ω) of the cfg. Then the procedure explores
all control flow paths between p and p′, in order to find the maximum number of non-AH
memory instructions µmax present on any path linking p to p′. Finally, it creates an edge
e in ET IP s(τi), with e.src = p, e.dst = p′, e.µ = µmax and e.wcet = wcet(p, p′). The
procedure then resumes the linear exploration of the cfg described in Section 4.1.1.

The exploration of non-linear control structures is illustrated by Figure 2. The bhi
instruction is a pivot which opens a disjoint section of the CFG. The procedure adds a tip
corresponding to this pivot in the TIPsGraph. After this, it looks for the first instruction
after the disjoint portion of the cfg (the first instruction of the bottom bb) and creates a
corresponding tip. Then an analysis is performed on the two paths: the maximum number
of non-AH memory accesses on either paths is 2: the left path executes a ldmfd instruction
performing two memory accesses, both of which were labeled non-AH by the cache analysis.
On the other hand, the path on the right makes no non-AH memory access. The wcet of
the section between the bhi instruction and the first instruction in the bb at the bottom was
found to be 24 time units. This wcet does not necessarily correspond to the left path.

4.2 From a TIPsGraph to a temporal segments sequence
Once a TIPsGraph containing all tips of a task has been extracted, its translation into a
sequence of temporal segments is straightforward: the graph is traversed from its starting
node to its end node, passing by each edge exactly once, with a priority given to self-edges.
When traversing an edge e, it is translated into a segment s with s.d = e.WCET and
s.µ = e.µ. Figure 3 shows how a segment sequence is obtained from the TIPsGraph of a
task τ1: the TIPsGraph section considered in this example starts by a tip on the left. The
first edge e0 to be translated into a segment is a self-edge: a segment ti1.0 is created with

3 In the figures, the wcets are given in arbitrary time units.
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Figure 3 Example of temporal segment sequence extraction.

d1.0 = e0.WCET = 2 and µ1.0 = e0.µ = 1. Then a second segment ti1.1 with µ1.1 = 0 is
extracted from edge e1, and so on. In the figure, the density of the color of the segments
reflects the number of tips they contain: the higher the µ, the darker the segment.

We will now present how such sets of sequences are translated into ILP variables and
constraints in order to schedule the task system.

4.3 Multicore scheduling using ILP
In this section, we present the variables and constraints that are used to model our scheduling
problem in ilp. Multiple objective functions can be used, optimizing different aspects, but
overall the constraints presented here remain the same regardless of the optimization criterion.
Finally, some constraints make use of ∞ : these constraints are encoded using a sufficiently
large integer number (i.e. at least one order of magnitude larger than the variables of the
system)4.

For each task τi in our system, we first introduce two sets of variables : {si.j |0 ≤ j < ni}
and {γi.j |0 ≤ j < ni}, which represent respectively the start time and the number of inter-
ferences for each segment tii.j . In addition to these variables, we define si.ni

as the end date
of the last temporal segment of τi (i.e. the end date of tii.ni−1). Using these variables, the
following constraints impose the sequential execution of τi and the application of deadline
τi.d (cinter represents the cost of an interference):

si.0 ≥ 0 (1)
si.ni

≤ τi.d (2)
∀j : 0 ≤ j < ni, si.j+1 = si.j + di.j + cinter × γi.j (3)

The tricky part concerns the evaluation of γi.j which depends on the segments of tasks
running on other cores, k.l (segment l of task k), that overlap the execution of segment i.j.
Variable χi.j−k.l ∈ {0, 1} asserts whether i.j and k.l overlap. In this case, i.j undergoes at
most min(µi.j , µk.l) interferences from k.l. In fact, considering all segments of τk overlapping
i.j, our conservative approximation is that i.j suffers in the worst case from the sum of
interferences generated by each overlapping segment of core k, with at most µi.j interferences
in total. The interferences with τk are recorded in γi.j−k and, as exposed below, γi.j is the
sum of interferences of τi with all other tasks:

γi.j =
∑

0≤k<n∧k 6=i

γi.j−k , with: γi.j−k = min

µi.j ,
∑

0≤l<nk

µk.l × χi.j−k.l


The formulation of γi.j−k cannot be translated as is in the ilp system because of the min

4 As a result, ∞× 0 = 0
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but we can rewrite it as:

γi.j−k ≤ µi.j (4)

γi.j−k ≤

 ∑
0≤l<nk

µk.l × χi.j−k.l

 (5)

γi.j−k ≥ µi.j −∞× (1− αi.j−k) (6)

γi.j−k ≥

 ∑
0≤l<nk

µk.l × χi.j−k.l

−∞× αi.j−k (7)

0 ≤ αi.j−k ≤ 1 (8)

Eq. (4) and (5) enforce the selection of the minimum but, according to the trend of the
objective function, a possible value for γi.j−k could be 0. This is prevented by the variable
αi.j−k and Eq. (6) and (7) which ensure that either µi.j , or the sum of µk.l is selected.

To detect overlapping and define χi.j−k.l, we have to compare start and end dates of
segments of tasks running on different cores, i.j and k.l:

θi.j−k.l ⇐⇒ sk.l ≤ si.j < sk.l+1 , and θk.l−i.j ⇐⇒ si.j ≤ sk.l < si.j+1

Considering the trend to minimize γi.j , θi.j−k.l (and symmetrically θk.l−i.j) can be viewed
as the selection of exactly one of the following constraints:

sk.l ≤ si.j < sk.l+1 (θi.j−k.l = 1); si.j < sk.l (θi.j−k.l = 0); sk.l+1 ≤ si.j(θi.j−k.l = 0)

Introducing the cancellation variable βi.j−k.l, the ilp formulation becomes:

sk.l ≤ si.j +∞× (1− θi.j−k.l) (9)
si.j < sk.l+1 +∞× (1− θi.j−k.l) (10)
si.j < sk.l +∞× (1− βi.j−k.l) (11)
sk.l+1 ≤ si.j +∞× (βi.j−k.l + θi.j−k.l) (12)
0 ≤ βi.j−k.l + θi.j−k.l ≤ 1 (13)

Eq. (9) and (10) apply only if θi.j−k.l = 1 (overlapping of segments i.j and k.l). When
θi.j−k.l = 0, only one constraint between Eq. (11) and (12) holds, depending on the value of
βi.j−k.l ∈ {0, 1}. The last constraint ensures that βi.j−k.l and θi.j−k.l are not both set to 1
at the same time.

Notice that θi.j−k.l and θk.l−i.j can be set to 1 together when the segments start at the
same date (si.j = sk.l). Finally, χi.j−k.l is defined as:

0 ≤ χi.j−k.l ≤ 1 (14)
χi.j−k.l ≥ θi.j−k.l (15)
χi.j−k.l ≥ θk.l−i.j (16)

At this point, we have presented all the models and algorithms required to apply our
method. In the next section, we present our preliminary results on realistic applications.
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Table 1 Summary of applications profiles.

wcet in isolation longest segment max tips
bench (in clock cycles) # segments # tips (in clock cycles) in a segment
edn 416221 70 5882 208056 3400

insertsort 2968 30 13 2796 1
fibcall 942 18 69 761 60

5 Proof-of-concept

We developed a prototype application5 based on the OTAWA [5] wcet analyzer and applied
it on three benchmarks from the Mälardalen [8] suite: edn, fibcall and insertsort. These
benchmarks exhibit common traits of embedded applications, and as we will see, they show
very different profiles in terms of wcet and of number of memory accesses.

The first result of our analysis method is that we are able to exhibit and analyze a safe
and refined timing profile of memory accesses of these applications. These profiles can also
be used to extract precise arrival curves suited for methods such as [14]. We summarize key
points in Table 1.

These three applications show varied profiles in number of segments, overall size and
number of tips. Yet, one common trait is that each of them has one segment that lasts
around half of its total wcet or more (wcets and segment lengths are given in number of
processor cycles). This is the result of aggregating ifs and loops inside one segment. However,
we are currently working on adding more precision to the analysis of such constructs, and
in particular on allowing the extraction of segments delimited by a chosen number of loop
iterations.

Once this profiling is done, our prototype calls CPLEX [9] to schedule tasks two-by-two on
separate cores, minimizing the makespan of the task system. We chose to fix the interference
cost cinter to 10 processor cycles, because it is approximately the cost of accessing the shared
data scratchpad in the Aurix Tricore architecture. The result for insertsort and fibcall with
this objective function is an interference-free schedule in which insertsort begins its execution
at date 0 and finishes at date 2968. fibcall starts at date 170 and finishes at date 1112.
Without our method the worst-case of 13 interferences should have been assumed, incurring
a total additional duration of 130 cycles, which is more than a 10% overhead for fibcall. This
preliminary experiment on real applications illustrates the possibility to reduce the number
of timing interferences without having to re-write existing code, as well as the necessity
to define precise analysis models in order to do so. We also tried to apply our method on
application pairs featuring edn, but CPLEX failed to provide a solution. We believe this is
linked to this application having a too long overall wcet, which increases dramatically the
feasible region to be explored. These experiments convince us that our method should rely
on efficient scheduling heuristics rather than on ilp solvers if we are to successfully deal with
large tasks and/or large task systems.

5 Following this proof-of-concept, a complete analysis application is now under development.
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6 Conclusion and future work

In this paper we proposed a novel approach for the wcet analysis of applications running on
multicore architectures. This method is particularly well-suited for legacy applications, since
it can be fully automated, requires no re-writing of existing code, and works directly at the
binary level. It is based on the notion of Time Interest Points, which are instructions in the
binary code that potentially cause or suffer from timing interferences on the interconnect. Our
method extracts such tips and abstracts the application tasks as sequences of tips separated
by temporal segments. In order to increase the timing stability of this representation, waiting
loops are automatically injected at the end of each segment. These sequences of temporal
segments are then scheduled in order to minimize the application makespan. In order to
illustrate how this approach works, we implemented a prototype application and applied it
on benchmarks from the Mälardalen suite. Our preliminary results (application profiling and
scheduling) lead to the following conclusions:

This method is technically feasible and promising, especially for the analysis of legacy
code,
Our next efforts should target the definition of fast-yet-efficient scheduling heuristics, to
free our method from the limitations inherent to ilp and allow the resolution of larger
systems as well as the introduction of new kinds of tips in our problems (e.g. Instruction
Cache tips),
In order to aggressively reduce the number of interferences, we must break down large
temporal segments that represent ifs and loops. For example, we want to make it possible
to extract temporal segments as specified chunks of loop iterations.
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Abstract
In measurement-based probabilistic timing analysis, the execution conditions imposed to tasks
as measurement scenarios, have a strong impact to the worst-case execution time estimates. The
scenarios and their effects on the task execution behavior have to be deeply investigated. The
aim has to be to identify and to guarantee the scenarios that lead to the maximum measurements,
i.e. the worst-case scenarios, and use them to assure the worst-case execution time estimates.

We propose a contention analysis in order to identify the worst contentions that a task can
suffer from concurrent executions. The work focuses on the interferences on shared resources
(cache memories and memory buses) from parallel executions in multi-core real-time systems.
Our approach consists of searching for possible task contenders for parallel executions, modeling
their contentiousness, and classifying the measurement scenarios accordingly. We identify the
most contentious ones and their worst-case effects on task execution times. The measurement-
based probabilistic timing analysis is then used to verify the analysis proposed, qualify the
scenarios with contentiousness, and compare them. A parallel execution simulator for multi-core
real-time system is developed and used for validating our framework.

The framework applies heuristics and assumptions that simplify the system behavior. It
represents a first step for developing a complete approach which would be able to guarantee the
worst-case behavior.
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1 Introduction

Today’s multi- and many-core platforms provide an amount of computational resource
unconceivable a decade ago for real-time systems. While performance increases due to the
availability of multiple cores and the possibility for parallel execution, the determinism is
heavily challenged by the use of optimization features like cache memories or pipelines.
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With multiple cores being accessible, task concurrently running (co-running) on different
cores suffer from interferences while racing for shared resources like cache memories and
buses. Due to concurrent accesses and bottlenecks, shared resource interferences have a
prominent impact on tasks executions. Timing anomalies and worst-case conditions appear
more often and the worst-case task execution time increases.

Isolation techniques and deterministic policies like Round Robin bus scheduling may be
applied for reducing interferences. They would come at the cost of expensive implementations
and decreased average performances. A valid alternative would consist in effectively modeling
the interferences that each task suffers under different execution conditions. This way, the
interference effects can be made predictable resulting into deterministic models to tasks and
system behaviors.

Probabilistic models are emerging as flexible and reliable representations for tasks worst-
case executions [7]. In those models, the classical deterministic Worst-Case Execution Time
(WCET) is generalized with a probability distribution, the probabilistic WCET (pWCET),
where it is quantified how likely an execution time may be exceeded.

Measurement-Based Probabilistic Timing Analysis (MBPTA) can be used for estimating
pWCETs. It is sensitive to the measurement scenario which has been considered for measuring
execution times [1, 13]. By measurement scenario it is intended, for example, a specific task
mapping on multi-core processors, specific task inputs, environmental conditions, etc.. Each
scenario would enforce a particular interference pattern on system resources with its specific
impact to the task behavior; a scenario is representative also of interference conditions.
The trace of measurements depends on such scenarios and the EVT exploits the worst-case
specific to the scenario applied. The pWCET estimate would be the worst-case for only the
specific scenario applied [8, 13].

In order to have safe pWCET estimates, it is necessary to determine the scenario that
leads to the maximum execution time measurements, and consequently to the maximum
pWCET estimate. The scenario exploration has to be efficient, since the measurement
scenarios within multi-core systems can be in huge number, and reliable in offering the
maximum pWCETs.

Contributions. In this work, we propose a contention analysis to explore the measurements
scenarios for parallel real-time applications executed within multi-core platforms. The
goal is to characterize all the scenarios and identify the worst-case from which to estimate
the maximum pWCET. We name it contention analysis because it focuses on modeling
interferences from contentions within cache memories and memory buses. At this stage, we
do not deal with data synchronization problems e.g., deadlocks in parallel executions. Graph
analyses, interference models, and contentiousness metrics are developed to characterize the
worst parallel execution condition that tasks may suffer. The MBPTA is used for qualifying
and comparing the execution scenarios.

We target the case of multi-core platform with shared cache, and a parallel execution
simulator is developed and applied to an avionic case study. At this stage, the solution
proposed is a partial one, which applies heuristics and assumptions that simplify the system
behavior. It represents a first step for developing a complete approach which would be able
to guarantee the worst-case behavior.

Organization of the paper. Section 2 presents the background in terms of computational
modeling and analysis tools applied. Section 3 details the contention analysis and its main
contributions. Analysis complexity and safety guarantees for pWCET estimates are outlined.
In Section 4, it is described the experimental setup and the results of the simulation-based
evaluation. Section 5 is for conclusions and future work.
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Related Work. Measurement-based [probabilistic] timing analysis relies on measurements
of actual task execution times for estimating either deterministic or probabilistic upper-
bounds [9, 7]. An open challenge to them is the coverage problem and the so called
confidence/representativity of the input measurements [9]. Our work particularly addresses
this challenge with regard to task parallel execution and contention due to shared memory
and memory bus.

Within a probabilistic framework, the definition of measurement scenarios and the
confidence in the estimate can be addressed [1]. The confidence is related to the observation
of events whose probability of occurrence is very low e.g., 10−15. In our work the confidence
defines the ability of selecting the worst scenario as the scenario which defines the task
worst-case execution times.

In multi-core settings with competition to access shared resources, the combination of
local cache misses and interference delay can be large and highly variable. The analysis of
contentions represents a big challenge for the predictability of real-time embedded systems.
In recent years, some progress on WCET and memory interference analysis has been achieved
for multi-core systems. Some approaches have considered the impact that contention has on
WCET estimates [11, 3]. They act to enrich static timing analysis models accounting for
interference impacts. Some other approaches’ goal is to bound interference with scheduling
choices [17]. Our work copes with MBPTA and the contention analysis characterizes worst-
case execution scenarios for guaranteeing more confident pWCET estimates.

For validating our approach, it has been developed a processor simulator which is a
simplified implementation of a multi-core processor. We use it to test the solution proposed
and to validate the effect of certain changes to the system behavior. The simulator enables
characterizing the simultaneous accesses by the cores to shared resources like cache memories
and memory bus. With the assumptions made, the simulator oversimplifies the system
behavior focusing on memory accessing only. The assumptions made to develop it will be
released in future works in the effort to complete system modeling and converging to realistic
system behaviors.

Existing simulators have been investigated before developing our own. For example,
the gem5 simulator is a highly configurable architecture simulator that supports different
computing architectures like ARM. It tends to simulate the real behavior of the system, but
it makes it quite complex to extrapolate specific behaviors since it takes into account too
many mechanisms that could happen.

SimSo [6] is a multi-core scheduling simulator that takes into account cache temporal
impacts. In order to compute cache effects on task executions, SimSo makes use of the
frequency of access model [6, 5]. As the number of cycles per instruction depends on the state
of the processor, the best way to model is to use state machines instead of a deterministic
function like the frequency of access model. Thus, the need for more realism with respect to
the system behavior which is driving the development of our simulator. On the other hand,
multi-core and cache aspects of SimSo inspired our work. Our cache simulator makes use of
a trace of memory addresses to access, and so execute address by address. The multi-core
simulation is represented with accesses concurrently applied.

2 Models and Tools

Probabilistic Worst-Case Execution Time Model. Interferences and contentions do not
only increase task execution times, they also bring variability to the task behavior at
runtime. Probabilistic models can better catch the underlying task execution uncertainty
than deterministic models.
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A sequence of execution time measurements Cj can be gathered in a trace T = (Cj) j∈[[1;n]].
The MBPTA estimates pWCETs, denoted by C λ, by applying the EVT to a trace of
measurements T [7, 8]. WCET thresholds 〈WCET ; p〉 are extracted from C λ, and can be
used to describe the task behavior, instead of using the whole distribution C λ. In 〈WCET ; p〉,
WCET is the timing upper-bound on the task execution time and p is the probability for
WCET to be exceeded at runtime. With 〈WCET1; p1〉 and 〈WCET2; p2〉, by decreasing
probability p p1 ≤ p2, it is WCET1 ≤WCET2. This means that WCET1 has more chances
to be exceeded at runtime thanWCET2; the probability p can be seen as a level of confidence
on the WCET threshold. Different probabilities can be considered e.g., 10−6, 10−9 and 10−12

with the associated WCET thresholds.
Figure 1 and Figure 2 depict respectively, for an example task, a trace of execution

time measurements and the pWCET estimate together with two WCET thresholds at given
probabilities.

The MBPTA is sensitive to the execution scenario applied for measuring. A scenario s is
an abstraction and represents a specific execution condition for the task and the system. It is
an instantiation of the set of possible conditions e.g., task inputs I, environment state Env
and task mapping Map. s is a function f(I, Env,Map, . . .) and it affects the behavior of the
task and it can also change at runtime. The trace of measurements T s under s describes the
expected execution behavior of the task under the condition. The pWCET estimation C λ,s

models the largest task execution times under s, Figure 3.
An embedded real-time system has a finite number of execution scenarios S = {s1, s2, . . . ,

sk}. Among them, there would be the worst scenario sworst as the scenario which ends up into
the worst measurements and the worst pWCET estimates. The problem of enumerating all the
s ∈ S, is a complex problem as it could exist a large, but finite, number of parameters defining
the scenarios. This work aims at determining sworst that includes the worst interference from
cache and memory buses due to parallel executions. sworst has to be guaranteed from an
effective characterization of all the possible execution conditions, including the worst ones [9].

It is important to note that we call the pWCET from each trace "worst-case", but it is
only the worst-case under the considered scenario. The contention analysis here is focusing
on a subset of interferences/contentions conditions. It explores them efficiently, and it defines
the worst scenario among them. For validating it we make use of the MBPTA tool called
diagXtrm [8] which accepts traces of execution time measurements as input and it estimates
pWCETs from those. diagXtrm evaluates the confidence of EVT applicability as well
as the quality of the pWCET estimates for each measurement scenario applied. It also
compares multiple scenarios in terms of both average and worst-case behaviors. diagXtrm is
developed in R and is publicly available at https://forge.onera.fr/projects/diagxtrm2.
diagXtrm and MBPTA in this work, are only used to verify the soundness of the contention
analysis we propose.

https://forge.onera.fr/projects/diagxtrm2
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Directed Acyclic Graph Model. In case of precedence constraints, the execution partial
ordering between real-time tasks can be represented by a Directed Acyclic Graph (DAG)
G(V,E) where V is a set of N nodes and E is a set of directed edges [2, 10].

Each node ni ∈ V corresponds to a task and it can be weighted w(ni) by the task pWCET
C λ
i or WCET thresholds 〈WCET ; p〉. Edges represent the order of execution between the

tasks. The edge ei,j directly connects two nodes ni and nj , with ni preceding nj . An entry
node in a DAG is a node with no predecessors; an exit node is a node without successors.

The precedence constraints encoded in DAGs impose that a node cannot start its execution
before all his predecessors ended theirs. Edges can be weighted w(ei,j) representing the
communication delay which postpones task executions, i.e. task offsets. A path from ni to
nj in a DAG exists if and only if it is possible to reach nj from ni; the path is the set of
nodes from ni to nj and the sequence of edges, {{ni, nk, nr, . . . ns, nj}, {ei,k, ek,r, . . . es,j}}.
Tasks that are linked directly by sharing an edge or by a path are said to be functionally
dependent because the activation of a task requires the termination of the other one. DAGs
can be used to represent mono- and multi-rate task sets. In the latter, it necessary to define
DAG reduction mechanisms with multiple task instances and communication buffers [12].
The buffers are for guaranteeing the correct communication pattern and the respect of the
precedence constraints across multiple task occurrences.

3 Contentions from Parallel Executions

Parallelizing task executions, whenever it is possible, enables speeding up on average the
real-time application. However, co-running tasks suffer from interferences and timing an-
omalies which could drastically reduce the worst-case performance. Those cases have to be
scrupulously modeled in order to make the system predictable.

Independence Analysis. In case of precedence constraints, the tasks that can execute simul-
taneously on different cores are those functionally independent. Having G(V,E) representing
the real-time application, two tasks ni and nj are said to be independent, denoted ni∇nj , if
and only if it does not exist any path from ni to nj in G. At runtime, independent tasks ni
and nj are contenders since they can interfere with each other by introducing contention on
shared resources.

The potential contenders Γ(ni) of a task ni i.e. tasks that can execute in parallel to
ni or equivalently tasks independent from ni: Γ(ni) = {nj ∈ G | ni∇nj}. Seeking for
contenders consists in determining the complement of the undirected transitive closure1 of
the DAG. Then, by taking the complement graph G of the undirected transitive closure of
the DAG, only independent tasks share an edge. The resulting graph G is called the graph
of independences, as opposed to the initial G.

Γ∗(ni) is the set of tasks which are independent from each other and independent from
ni: Γ∗(ni)

def= {nj , nk ∈ G | ni∇nj , ni∇nk, nj∇nk}, and is derived from G. Note that, ni is
included in both Γ(ni) and Γ∗(ni) and Γ∗(ni) ⊆ Γ(ni). We call this process independence
analysis; the next steps are for exploring Γ∗(ni) and its possible subsets in the quest of
contentiousness.

1 The transitive closure allows adding an edge between two nodes if they are not independent i.e. if there
exists a path from one to another.
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Contender List. Given Γ∗(ni), we now seek for the list of possible contenders to ni. A set
of c tasks, including ni, in which every couple of tasks share an edge in G consists of a clique
cliquec(ni). The clique is relative to ni and has size (cardinality) c = |cliquec(ni)|. To note
that any clique of ni is a subset of Γ∗(ni), cliquec(ni) ⊆ Γ∗(ni).

For each task ni there exists a maximal size to its cliques. cliquemax(ni) is the maximum
(largest in size) clique for ni in G; cliquemin(ni) denotes the minimum (smallest in size)
clique for ni in G. Both the maximum clique and the minimum clique are not usually unique.
For a cliquec(ni), the c− 1 tasks cliquec(ni)/{ni} (cliquec(ni) without ni) are the potential
contenders of ni. The complete set of contender for ni are all the cliques cliquecs(ni)/{ni}
for c ∈ [|cliquemin(ni)|, |cliquemax(ni)|]. For a M -core processor, only up to M − 1 tasks can
run in parallel to ni. Then, cliques whose size c exceeds M are rejected because impossible
to happen scenarios.

We assume that the more tasks are executed in parallel, the more interference between
the co-running tasks there is. This is true with cache memories and the model we apply,
where more concurrent tasks would evict larger portion of cache or more frequent eviction,
increasing memory latencies. With memory buses it would be the same considering the
same modeling with constant rates, where more concurrent accesses would increase memory
communication latencies. Hence for, in order to identify the worst contention scenario, the
contender list of ni should only be composed of the largest sets of contender tasks within
Γ∗(ni).

What can be called valid contender list of ni ContenderList(ni), is defined as:
ContenderList(ni)

def= {cliquec(ni)/ni : c = min(|cliquemax(ni)|,M)}. The task sets
in ContenderList(ni) are all of size min(|cliquemax(ni)| − 1,M − 1).

Contender Classification. The objective of the worst contention analysis is identifying for
ni, its min(M −1, |cliquemax(ni)|−1) worst contenders within ContenderList(ni). Running
them in parallel together with ni would foster the worst interferences for ni.

The classical approach to worst contention analysis would consist in executing all the
possible combinations for all the task sets in the contender list. However, the size of the
contender list may be too large for an affordable exhaustive search. We define a learning
procedure called contender classification in order to reduce the complexity of the worst
contention analysis.

In this work we focus on contentions from the memory hierarchy and buses for parallel
applications and co-running tasks. Inspired by it [15], we measure the number of accesses
to the shared cache accesses. The number of accesses can be either lines fetched from the
shared cache to the private caches, or writes to the shared cache. Such number of accesses
has to be normalized, either in number of instructions or in time units t. We define the
memory bandwidth usage mem_band as: mem_band def= accesses/t. The rationale behind
the mem_band metric is that a task whose memory bandwidth usage is high, leads to a lot
of potential interferences for co-running tasks. mem_band adds to the maximal cliques for
the worst-case scenarios.

Tasks with different execution lengths would impact differently the contentions. If the
task under analysis has a large execution time and runs together with small execution time
tasks, then the larger task would not be impacted by interferences in the last part of its
execution. We overcome this issue by letting all the tasks execute continuously for the entire
execution of the task under analysis. This way, the task would experience the greatest amount
of interference during its entire execution: there are not zones without contention. At this
stage, we do not investigate the effects of offsets between tasks; future work will be devoted to
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that. Figure 4 describes the assumption we make with different interference sections (vertical
lines) from the two interfering tasks task_j and τ_k for task_i. The repeated executions are
such that task_j is executed continuously twice and task_k is executed four times, while
starting synchronously.

Given the mem_band defined as a constant rate, the synchronous case with repetition
guarantees the maximum rate of contentiousness for the task under investigation. We are
well aware that this is simplistic assumption and perhaps an unrealistic case, but it is a
starting point to study parallel task contentiousness. Moreover, mem_band accounts only
for the temporal interferences at the shared memory bus level. The approach in this work is
an initial step toward an heuristic able to reduce the cost for identifying worst-case execution
conditions. It is obvious that the final metric would take mem_band into account together
with other effects, and has to be developed incrementally.

3.1 Contention Analysis Discussion
A task ni running on a M -core processor ΦM is denoted as ΦM (ni). Two tasks ni and nj
running in parallel within ΦM are denoted by ΦM (ni ‖ nj); obviously ni and nj are running
on different cores within ΦM . The ‖ notation also applies for p tasks n1 ‖ . . . ‖ np.

What we propose, is an approach for maximizing the execution time measurements with
some possible worst interference task mapping configuration sworst in order to produce a
safe pWCET at system deployment. It is based on heuristics and restrictive assumptions to
avoid exhaustive search. The main steps of the contention analysis can be summed up with
the following four basic functions:
1. Contender List Search ∀ni ∈ G, ContenderList(ni) is the result of the contender list

search and the G transformation into G. This step includes the independence analysis;
2. Contentiousness Characterization: ∀ni ∈ G, mem_band(ni) is measured using τmon in

case of ΦM (ni||τmon(t)). τmon(t) is an artifact task used to monitor other task effect on
shared resources;

3. Contender Task Sets Classification: ∀ni ∈ G, sort(ContenderList(ni)) sorts the task sets
from the ones with the greatest sum of memory bandwidth usage values
sort(ContenderList(ni))[·] to those with the least sum of memory bandwidth usage
values sort(ContenderList(ni))[|ContenderList(ni)|];

4. Worst Contention Scenario Measurements: ∀ni ∈ G, T (ni) is the measurement trace
under sworst ΦM (ni||sort(ContenderList(ni))[1]) to which the EVT is applied.

This paper offers a narrow perspective to contentions from parallel executions for the
assumptions and definitions made. The proposed contentions analysis guarantees the worst
execution condition among those and accounted for here.

The computation time complexity of independence analysis and contention list search
(step 1) is O(3N/3) and depends on the number of tasks N , [16].

Thanks to their memory bandwidth usage, each task set in the contender list can be
ordered from the most contentious to the least. The task contentiousness characterization
and classification for all the N tasks in G would take

∑N
i=1 tni , where tni is the execution

time of ni. One execution per task is sufficient for the task contentiousness characterization
because we consider single-path tasks. The simplistic single-path task assumption could
resemble to an unrealistic case. Instead, it can be applied to any actual task representation
where only the worst-case path is exercised all the time, As

∑N
i=1 tni

< N×T , where T would
be the largest task execution time in G, the computation time complexity of characterizing
the contentiousness (step 2 and step 3) is O(N) on the number of tasks.

WCET 2018
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By executing ni together with its most contentious tasks in its contender list, we assure
the worst contention scenario sworst for ni. Measuring according to sworst for all the tasks
of the application (step 4) has computation time complexity O(N) on the number of tasks.

4 Case Study and Simulation

In this section we present the case study used for the experimental evaluation of the proposed
contention analysis. First, we briefly describe the simulator we develop for parallel execution
and contention measurements. Then, we detail the real-time application we apply for
validating our contention analysis. Finally, we outline the results of the contention analysis
with the simulator developed and the application selected.

Platform Simulation. One of our driving interests is to develop a generalizable and realistic
multi-core parallel execution simulator with memory hierarchy. The simulator allows observing
and controlling specific resources like cache memory and memory bus.

The simulated architecture is composed of four cores, with two levels of cache, L1 Data
Cache (DC) and Instruction Cache (IC), and L2. The L2 cache is shared between the four
cores and is accessed through a bus. The cache memories make use of the LRU policy and
the write-through policy. The L1 cache memories are 4-way associative with 8 blocks per
set i.e. 32 blocks in total, and whose access penalty is 1 cycle. The L2 cache memories are
4-way associative with 32 blocks per set i.e. 128 blocks in total, and whose access penalty is
4 cycles. The bus makes use of the FIFO policy. This architecture is similar to the LEON4
processor [4].

The way it has been implemented, the simulator allows choosing for the size of the cache
memories and their arbitration policy, as well as the bus policy. Tasks are modeled with a
trace of memory accesses i.e. a sequence of reads or writes to a memory location. With this,
we represent memory accesses and we cope with the defined mem_band. Such traces are
randomly generated with different profiles, but they can be built from the assembly code
of the task for a given platform. The task profiling with traces is generic enough to apply
to different task characteristics. It would suffice adapt the memory access and reproduce
different task behaviors. We stress what is randomly generated are memory accesses; cache
misses results from the replacement policy implemented, and are not random.

More details about the platform simulator, like the core execution and the task profiling
based on a trace of memory accesses, may be found at https://forge.onera.fr/projects/
multicore-simulator. Figure 5 details the main elements already implemented on the
simulator. mem_band defined describes the constant rate accesses to the cache memory
shared between cores through the bus.

https://forge.onera.fr/projects/multicore-simulator
https://forge.onera.fr/projects/multicore-simulator
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Table 1 Results of the contender list search
applied to the FAS case study.

task |cliquemax(ni)| # Γ(ni)
gps0 4 4
gyro0 4 4
str0 4 4
GPS_Acq85 4 4
Gyro_Acq79 4 4
Str_Acq90 4 4
FDIR100 1 1
tc0 4 26
GNC_US109 3 6
PDE117 4 31
TM_TC127 4 22
gnc0 4 50
GNC_DS111 4 6
pde0 4 31
tm0 4 22
PWS122 4 28
SGS119 4 28
pws0 4 28
sgs0 4 28

Application Setup. For this case study, we make use of the Flight Application Software
(FAS) application of the Automated Transfer Vehicle designed by EADS Astrium Space
Transportation for resupplying the International Space Station [12]. FAS is composed of 19
tasks and 21 precedence constraints, which can be represented by the DAG G(V,E) given in
Figure 6. It is a relatively small real-time application, but is already enough to show the
advantage of using the contention analysis we propose.

For these experiments, we make use of the mono-rate version of the FAS application,
but as already mentioned, our approach can cope with multi-rates as soon as their DAG
representation is available. G for FAS is the closure representation of G; each arc from one
node connects two independent tasks. Already with FAS, there exist lots of independent
tasks, as high as 16 for task tc0. A smart and efficient contention analysis is much needed to
avoid exhaustive exploration.

With respect to the implementation of the FAS tasks, we use a randomly generated
trace of memory accesses for each task. Not knowing the exact original implementation, we
have generated traces with different characteristic for the 19 tasks. They have been made
from uniform distributions with different supports or Poisson distributions with different
rates to reproduce different behaviors; the length of the traces is randomly picked from a
uniform distribution. Task parameters like period and deadlines are defined according to [14].
The random generation of tasks profiles does not limit the generality of our work, since the
contentiousness part would model the task for whatever access trace is considered. Also,
real implementations can be included with measurements applied to characterize the access
profiles.

4.1 Contention Analysis
Table 1 presents the results of the independence analysis and contender list search for the
FAS case study, step 1 – contenderList(). As some contender lists are quite long, only the
maximum clique size and the size of the contender list are given for each task. The maximal

WCET 2018



4:10 Toward Contention Analysis for Parallel Executing Real-Time Tasks

gps0

Str_Acq90

str0

tc0

gyro0Gyro_Acq79

GPS_Acq85

GNC_DS111 sgs0

pde0

FDIR100

TM_TC127

gnc0

PWS122 pws0GNC_US109

PDE117

SGS119

tm0
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Table 2 Statistics of the contentiousness characterization for the tasks in the GPS_Acq85
contender list.

task execution time (cycles) L1 hit/misses L2 hit/misses bus accesses mem_band rank

GPS_Acq85 1025 123/177 93/84 204 0.68 -
Str_Acq90 811 225/75 28/47 118 0.40 2

tc0 271 89/11 0/11 34 0.34 3
gyro0 374 53/47 3/44 57 0.57 1

Gyro_Acq79 641 285/15 0/15 68 0.23 5
str0 261 94/6 0/6 32 0.32 4
gps0 355 55/45 5/40 54 0.54 -

found clique for all tasks in the graph is of size five. However, as the number of available
processor is four, cliques of size greater than four are not considered for the analysis. Some
tasks exhibit a high number of task sets in their contender list, up to fifty for the gnc0 task.
That is the main motivation for the contender classification and to avoid evaluating all the
combinations.

As representative example, we detail the worst contention analysis and its experi-
mental evaluation for the task GPS_Acq85. From the independence analysis and the
contender list search, the GPS_Acq85 contender list is: ContenderList(GPS_Acq85) =
{{Str_Acq90, tc0, gyro0}, {Str_Acq90, tc0, Gyro_Acq79},
{str0, tc0, gyro0}, {str0, tc0, Gyro_Acq79}}. There are six tasks to simulate for contentious-
ness and contention analysis.

All six tasks involved (GPS_Acq85, Str_Acq90, tc0, gyro0, Gyro_Acq79, str0) are first
executed one time in isolation, Φ4 (nj), in order to characterize their contentiousness. The
results are given in Table 2 where execution times are in CPU cycles. Table 2 presents
also the measurements of cache misses, bus access, and the resulting mem_band. As the
platform simulator considered here has no prefetching mechanism, the memory bandwidth
usage is computed as mem_band = bus_accesses

number_of_instructions , with the number of instructions
specified by the task characteristics for the simulation. A ranking is attributed to each task,
with the contentiousness defined according to the memory bandwidth usage mem_band.
Rank 1 is for the largest memory bandwidth usage among the contenders. The task set
tsi represents a possible execution scenario for GPS_Acq85 (cliques). The task ranking is
propagated to the contender list, ordering the task sets from the most contentious set, denoted
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Figure 9 GPS_Acq85 and four interference
scenarios tsi: the pWCET estimated and com-
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by ts1, to the least contentious task set ts4. It is sort(ContenderList(GPS_Acq85)) =
{ts1, ts2, ts3, ts4}, with ts1 = {Str_Acq90, tc0, gyro0}, ts2 = {str0, tc0, gyro0}, ts3 =
{Str_Acq90, tc0, Gyro_Acq79}, and ts4 = {str0, tc0, Gyro_Acq79}.

Once identified and ranked the tsi, for each tsi, 500 consecutive execution time meas-
urements are obtained: the classification between tsis according to their contentiousness is:
max(ts1) > max(ts2) > max(ts3) ' max(ts4). The measurements, as expected behavior,
validate the ranking proposed with the contentiousness. sworst for GPS_Acq85 consists of
executing it in parallel of the tasks in ts1 i.e. Φ4 (GPS_Acq85||Str_Acq90||tc0||gyro0).

diagXtrm is applied to the four traces T tsi and it provides the statistical analysis (box
plots, first order, and second order statistics) as well as the worst-case analysis (pWCET)
for each input trace. All the average behaviors are plotted in the box plot of Figure 8; the
scenarios are compared on average. The pWCET estimates are plotted in Figure 9 with the
inverse cumulative distribution representation. The worst pWCET, the greatest distribution
between the four possible pWCETs, and it comes from the worst-case scenario ts1 C λ,ts1,
Φ4(GPS_Acq85, ts1). The scenario comparison as in Figure 9 validates that the worst-case
scenario among the 4 considered is the one from the most contentious clique. It is worth
noting that diagXtrm applied to the 4 scenarios passes all the tests for confident pWCET
estimates; only for space reasons this is not illustrated with a plot.

5 Conclusions and Future Works

We propose a contention analysis which enables measuring, at low cost, the worst contentions
for parallel executing tasks. The maximum execution times are reproduced from the worst
parallel execution conditions among those investigated. The whole procedure is an heuristic
approach conceived to guarantee identifying the worst contention conditions and to reduce
the computation costs. It represents a first step toward an efficient and complete contention
analysis.

The proposed contention analysis framework still has some limitations that have to be
addressed in future works. Among others, we intend to release the single-path assumption
and consider multi-path tasks. Furthermore, we intend to enrich the contentiousness metric,
mem_band to account for multiple effects.

WCET 2018
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Abstract
The notion of the Worst-Case Execution Time (WCET) allows system engineers to create safe
real-time systems. This value is used to schedule all software tasks before their deadlines. Failing
these deadlines will cause catastrophic events, e.g. vehicle crashes, failing to detect dangerous
anomalies, etc. Different analysis methodologies exist to determine the WCET. However, these
methods do not provide early insight in the WCET during development. Therefore, pessimistic
assumptions are made by system designers resulting in more expensive, overqualified hardware.

In this paper, an extension on the hybrid methodology is proposed which implements a
predictor model using Machine Learning (ML). This new approach estimates the WCET on
smaller entities of the code, so-called hybrid blocks, based on software and hardware features. As
a result, the ML-based hybrid analysis provides insight of the WCET early-on in the development
process and refines its estimate when more detailed features are available. In order to facilitate
the extraction of code-related features, a new tool for the COBRA framework is proposed.

This paper proves the potential of the ML-based hybrid approach by conducting multiple
experiments based on the TACLeBench on a first prototype. A set of annotated code features were
used to train and validate eight different regression models. The results already show promising
estimates without tuning any hyperparameters, proving the potential of the methodology.
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1 Introduction

In the last decade, embedded systems have taken a more prominent role in our environment.
The possible applications with these systems are endless, e.g. smart mobile devices, cars,
avionics, etc. For instance, the number of devices connected in the Internet of Things
(IoT) is expected to rise to 20 billion units in 2020 [19]. Unlike general purpose computers,
cyber-physical system (CPS) and IoT applications require specific context related constraints
on the controller units, such as energy consumption, size, real-time behaviour (i.e. execution
time), etc. This guarantees affordable, reliable and safe systems. However, these requirements
also have consequences on the code running on these devices.
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An (autonomous) car is a perfect example of a CPS with hard real-time constraints. It
is from the uppermost importance that these systems not only have correct behaviour, but
also are responsive. For example, the Electronic Control Unit (ECU) of the braking system
should respond to the breaking pedal before a strict deadline in order to prevent catastrophic
consequences. Therefore, the Worst-Case Execution Time (WCET) of code is an important
value for real-time systems. However, determining this value can not always been taken
for granted, as different optimisation techniques used in embedded systems and compilers
influence the deterministic behaviour of the software, such as pipelining, branch prediction,
pre-emption, parallelisation, etc. As a result, the WCET analysis becomes complexer to
perform. In the state of practise, these influences are often simplified or neglected and
compensated with a safety margin resulting in less tight or underestimated upper bound [14].

In order to determine the schedulability of software tasks, a timing analysis is required
to calculate the WCET. For instance, this value is required by the scheduler of operating
systems and hypervisors to schedule all tasks within specified time frames on the system [4].

In the state of the art, there are three main WCET analysis methodologies, namely
the static, measurement-based and hybrid approach [13] [18]. However, a big trade-off
between accuracy and computational complexity needs to be made. We believe that the
hybrid methodology is the best solution as it provides the possibility to set a balance
between accuracy and computational complexity depending on the needs of the user. The
implementation of this hybrid approach is integrated in our COBRA framework [12] which
allows us to perform code behaviour analysis on different embedded platforms.

Nevertheless, it is difficult to acquire early insight of the WCET during development with
the hybrid methodology as it relies on the physical hardware and binary code to measure the
execution time. In addition, the measurement process itself is time consuming. Therefore,
we want to extend the hybrid methodology by applying machine learning (ML) techniques
to predict the WCET of the code blocks instead of physically measuring it on the device.

In this paper, we will firstly discuss the hybrid methodology for WCET analysis. Secondly,
we present a new extended approach combining the hybrid analysis with machine learning
to predict the WCET without the need to actually performing physical measurements on
the device unlike the measurement-based layer. Finally, we conclude with an early stage
experiment proving the potential of our approach.

2 Hybrid Methodology

The hybrid WCET analysis combines the strengths of two commonly used methodologies.
On the one hand, we have the static analysis. This approach determines the WCET based
on models of the application and the target hardware without actually executing the code
itself on the platform. However, the computational complexity of creating and calculating
these models rises tremendously with the size of the code base and hardware optimisations
on the target platform. These models, which are not always publicly available, are required
to obtain sound results with a small upper bound [20]. Therefore, the static analysis becomes
infeasible as the complexity of the system increases.

On the other hand, the measurement-based analysis is computational less complex
compared to the static analysis. The execution time of the program is measured by running
the code multiple times with different input sets, resulting in a timing distribution. This
distribution leads to three important boundaries: best-case (BCET), average-case (ACET)
and worst-case execution time (WCET). Depending on the analysis cost and effort that can
be afforded, the number of measurements is decided. By measuring an arbitrary limited
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number of input cases, it is never guaranteed that the real WCET is detected! The accuracy
will drop dramatically when the amount of measurements decreases as not all systems states
are covered by the given input sets. A safety margin needs therefore to be taken into account
to minimise the risk of underestimating the upper bound [20].

In order to tackle the shortcomings of the previous mentioned techniques, we are using
the hybrid methodology which combines both approaches to estimate the WCET of a software
task [3] [8] [12]. The goal is to find a balance between the computational complexity of
the static layer and the accuracy issue of the measurement-based layer. To apply this
methodology, the source code is split into a set of smaller entities which are called “hybrid
blocks”. Each block resembles a trace of consecutive instructions which has exact one entry
and one exit point [11]. The blocks are similar to the regular “basic blocks” [13]. However,
the size of these blocks can vary from a single instruction up to entire functions or programs
depending on the accuracy and complexity we want to achieve [11]. The process starts by
performing timing measurements on each block. In the second stage, all results are statically
combined to acquire an estimate of the WCET.

The hybrid analysis is integrated in the Code Behaviour fRAmework (COBRA) tool.
This open source tool is developed by the IDLab research group to examine the performance
and behaviour of code on different architectures [12]. It allows developers to optimise
the resource consumption on (currently) three main levels, namely WCET analysis [12],
scheduler optimisation [4] and design pattern based performance optimisation for multi-core
processors. First results show a significant reduction in analysis effort while keeping the
WCET predictions close above the real WCET with the hybrid method compared to the
static and measurement-based approach [12]. However, the source code still needs to be
compiled and run on the target hardware with this technique, which still takes quite some
time to perform.

3 Early Stage Estimation

Most existing WCET tools perform the analysis on compiled binaries for specific hardware
platforms. This approach requires the developers to have a compilable version of the
application and the physical hardware platform before any estimate can be given [8] [17] [20].
As a result, it becomes difficult to acquire early insight of the WCET during development.
Additionally, hard real-time systems have strict requirements on the WCET as failing
deadlines will lead to disastrous consequences. To ensure that all deadlines are met during
development, two possible scenarios occur.

On the one hand, system designers assume really pessimistic results of the upper bound
to compensate for all errors and assumptions made during analysis. This results in the use
of over qualified hardware which will increase the cost of the final product. Whereas small
cost savings on better suited hardware will result in huge savings in mass production.

On the other hand, underestimating the final WCET during development leads to financial
losses when custom developed hardware does not appear to be sufficient enough to schedule
the software tasks [2]. At that point, it is important to “fail fast”, so that developers have
the opportunity to correct and iterate the design much faster. “Failing faster” will limit
development costs as less budget is lost due to unnecessary hardware design time and effort.

The main reason that causes the previous scenarios is the lack of insight on the WCET
in the early stages of the development cycle. When we look at the V-model development
process, we start with defining the project requirements and add more details to the design
with each step, as shown in Figure 1.

WCET 2018
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Figure 1 V-model – Development and verification process model.

In the V-model, the code development will only start in the implementation phase at the
bottom of the model. As a result, the first opportunity to get insight in the WCET is after
the project details are already fixed. In the case of an underestimation of the final WCET,
the development process has to move up again in the V-model to adapt the design.

Altenbernd et al. [1] proposed a new methodology to gain early insight into the execution
time by “training” a linear time model that translates code into basic instruction of which the
timing is determined. Experiments on TACLeBench benchmarks showed promising results [1].
As the model is linear, it becomes rather difficult to model and incorporate non-linear effects
on more complex platforms, e.g. caches, pipelines, etc. In addition, each basic instruction
needs to be trained by generating and measuring a training program.

In order to obtain faster insight on the WCET, we believe that each system can be
characterised right from the start of the development process. The characteristics of a system
are described as attributes and represent the system from the high-level design down to
the code- and hardware-related components. This would allow software developers to look
into the influence of design choices and code changes much faster. However, in the early
“project definition” stages there is little to no source code available to perform analysis on.
Nevertheless, as the project specifications are determined, more and more system attributes
are resolved that could hint the software developer to a certain interval in which the WCET
is located, e.g. algorithms, code instructions, hardware model, etc. As a result, the system
engineers are able to reduce the design space of suitable hardware for the system when
making a decision. The key for this problem is to create a predictor to estimate the WCET
value according to the system attributes which we try to resolve using machine learning.

4 Machine Learning

The execution time of a software task depends on the instructions of the followed program
trace on a specific hardware platform [20]. In the case of the WCET, we are interested in
the events and interactions that results in the longest path in time of the software task,
such as instructions, input data, pre-emption, caches, etc. All these soft- and hardware
characteristics can be described as a collection of attributes for a given software task on a
specific platform. As a result, it is possible to develop models with these attributes to make
predictions on the WCET. Creating a generic model with classic rules-based programming
to assess a given code base for a random platform is nearly impossible. Therefore, we need
another approach to create or “train” an estimation model with machine learning techniques.

Bonenfant et al. [3] propose a method to approximate the WCET early on in the
development by applying machine learning. Their goal is to characterise source code in order
to find a formula for a specific target platform and compiler toolchain, which will be achieved
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by training a neural network on a set of test programs. The prediction is based on the
worst-case event count. A static analysis characterises a program by counting events, which
would lead to the worst-case result. The training is performed by matching the worst-case
event count with the provided WCET estimates of the test programs. Eventually, the trained
network will then predict the WCET of a given program with the event counts from the static
analysis and the trained formula of the tested hardware [3]. In addition to the worst-case
event counts attributes, the author suggests to make a classification based on the code style
attributes, e.g. lines of code, loop nesting, auto-generated or handwritten code, etc.

We believe that machine learning presents a valuable solution to make early WCET
predictions by classification of the complex problem statement. However, the approach
presented by Bonenfant et al. might suffer from oversimplification [3]. The suggested
characterisation by event counting makes a high abstraction from the source code so that
valuable information of the code flow get lost. At the end, the code flow and hardware
interactions will become too complicated if a program is classified based on the entire code
base.

The machine learning approach provides us WCET estimates right from the start of
the developed process based on the available system attributes. Therefore, rough estimates
with a large deviations are available in the early stages of the development phase. However,
the early predictions will provide us insight to explorer the hardware design space and
exclude target platforms and configurations which will not be suitable. When the design and
development process continues, more accurate attributes becomes available resulting in a
gradual improvement of the WCET estimation. At that point, it is important to verify and
gain trust in the trained model to obtain sound predictions.

In other research, Griffin D. et al. used a Deep Learning Neural Network (DLNN) to
model the influences of other processes on shared resources [7]. The attributes used for the
DLNN are the build-in Performance Monitoring Counters (PMC) in the multi-core processor.
These counters keep the number of occurred events, e.g. number of cache misses, pipeline
flushes, etc. The output is an interference multiplier which will be the worst-case overhead
originating from the interferences of other processes. The methodology shows promising
results with small underestimation errors on the final WCET [7]. However, this approach
still requires a regular WCET analysis on a single core without interference to acquire the
final WCET, as the obtained results needs to be multiplied with the interference multiplier.
Additionally, the number of PMCs is limited which requires to run multiple measurements
on the platform to acquire different parameters [7], which increases the analysis effort.

With the right approach, we are convinced that we can create a methodology based
on machine learning which is able to perform accurate WCET predictions for any given
architecture by combining/improving the hybrid methodology with machine learning and
characterising the source code at lower levels (i.e. hybrid blocks) to avoid oversimplification
(e.g. loss of code flow information, etc.) or too complex classifications. In this paper, we will
focus on the software related attributes for now.

5 Feature generation

In the first step, we need to derive a set of attributes from the source code. This set of code
attributes is used as features to train the machine learning layer and eventually estimate
the WCET. As shown in Figure 2, the code related attributes are acquired from blocks
that are generated by the Hybrid Block Generator. A comprehensive discussion of the block
generation with the COBRA framework can be found in [12].

WCET 2018



5:6 New Hybrid Approach on WCET Analysis for RT Systems Using Machine Learning

Figure 2 Schematic overview of the Feature Selector in the COBRA-HPA chain.

After generating the hybrid blocks, a “value” for each code attribute (i.e. feature) is
obtained from these blocks. Extracting these features from source code is a time consuming
and error-prone task. Additionally, to train a machine learning layer that is able to provide
a “solution”, i.e. WCET estimate, we need to apply a supervised learning strategy [6]. As a
result, a large annotated training set needs to be created. In order to assist us in analysing
and collecting features, we are developing an extension on the HPA-COBRA framework.

The Feature Selector module allows us to generate a formatted output file containing all
features derived from the hybrid blocks in the project, as shown in Figure 2. The selection
of features allows us to describe the characteristics of the code in the blocks at a higher
abstraction level. This makes it less complicated to develop and train a machine learning
layer that is able to generalise the problem [6]. As stated in Section 4, we need to examine
which features have a significant influence on the WCET of code. Therefore, feature design
requires adequate insight in the domain to compose a list of potentially relevant, quantifiable
features. The next step is to assess the importance of the selected features by checking for
correlations between them [9] [10] and eventually training different types of machine learning
methodologies to optimise the performance on the verification set.

In order to easily generate and adjust the features for the large hybrid block collection,
the Feature Selector has a flexible and modular design that enables us to describe a code
feature in an XML-file. The detection of features is accomplished by defining and configuring
basic detector modules which in turn are chainable to accommodate more complex feature
detection rules. In the first prototype of this tool, there are three basic detector modules
that already provides an extensive range of possibilities:

The Token Count Detector counts each occurrence of a set of basic tokens and maps the
result to the desired feature;
The Context Detector classify if a certain syntactic rule is present in the context of the
analysed hybrid block;
The Collection Utilities Detector performs basic set operations on the output of two or
more detectors, e.g. accumulate results, union between sets, etc.

The functionality of the basic detectors is built on the open-source parsing framework,
ANTLR v4 (ANother Tool for Language Recognition). This tool provides the functionality
to parse a text file according to a given grammar file [15]. The ANTLR framework is also
part of the core of the Block Generator tool.

When all attributes of the blocks are determined, a list of features is generated. These
features are then ready to be exported to a formatted file. Currently, a CSV exporter module
is integrated in the tool which allows us to read the features in a machine learning framework,
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Table 1 List of code attributes extracted with the Feature Selector.

No. of Additive operations No. of Multiplicative operations No. of Division operations
No. of Modulo operations No. of Logic operations No. of Bitwise operations
No. of Assign operations No. of Shift operations No. of Comparison operations
Return statement present No. of Evaluation operations No. of Local variables access
No. of Local array access No. of Global variables access No. of Global array access

Table 2 4-Fold cross-validated Mean Relative Error (MRE) for each trained regression model.

Regression models MRE average MRE worst-case
Linear Regression 0.778510 1.385968
Polynomial Regression (2nd Degree) 3.005707 6.693175
Tree Regression 0.338957 0.535293
Random Forest Regression 0.518764 0.846265
Support Vector Regression (Linear Kernel) 0.272756 0.402447
Support Vector Regression (RBF Kernel) 0.497793 0.839461
K-Nearest Neighbours Regression 0.389732 0.423841
Ridge Regression 0.778263 1.303659

such as Scikit-Learn or TensorFlow. In addition, a WCET-annotated version can be created
when the corresponding WCET results are provided. This presents the functionality to
generate annotated features for training sets.

6 Experiment

The Hybrid Machine Learning methodology for WCET analysis is a new approach which is
currently in the early stages of research. In order to test the functionality and performance,
we need to generate data sets to train and validate different machine learning techniques.
These data sets are generated from benchmark code of the TACLeBench initiative [5]. The
TACLeBench is a benchmark project of the TACLe community to evaluate and compare
different timing analysis tools and techniques. The benchmark programs are used by a wide
community which has performed timing analysis on different platforms. This provides us a
large reference database to train and validate our methodology in later stages.

For this first experiment, we have selected a set of code related attributes which are
listed in Table 1. These attributes are modelled in the Feature Selector tool, so we are able
to easily obtain features from the benchmark code. The attributes in this experiment are
selected by visually inspecting the blocks and identifying which code characteristics would
have a significant impact on the execution time. For this first prototype, we kept the size of
generated hybrid blocks small and the number of features limited. For example, iterations
statements were unrolled and not modelled as independent features, as extra features would
require more training data which would made the prototype too ambitious.

At the core of the prediction mechanism is a target specific trained machine learning
layer. This layer receives a set of features, as the ones in Table 1, and provides one output
value that resembles its estimation for the WCET of the hybrid block. The next step is to
select a set of machine learning techniques that would be suitable to perform the task. In our
case, we need predictors (i.e. features) to predict a numeric value, namely the WCET. This
approach is referred to as regression [6]. For this experiment, we have trained and evaluated
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Figure 3 Regression error box plot for each regression model with removed outliers.

a selection of standard regression models, as listed in Table 2. All models in this experiment
were implemented with the Scikit-Learn framework [16]. This frameworks provides a wide
range of tools to create, train and validate machine learning algorithms in Python.

The training and validation sets are built from hybrid blocks generated by the Block
Generator tool [12]. The selected blocks originate from benchmarks of the TACLeBench [5].
For this experiment, the training and validation sets have a size of respectively 75 and 25
blocks (datapoints) which are iterated in a 4-fold cross-validation process. Each of those
blocks are provided with all attributes from Table 1 and annotated with a WCET value to
train the model and verify the results.

The target platform used in this experiment is an ARM Cortex-M3 CPU on the EZR32
Leopard Gecko board of Silicon Labs, where the WCET of each block was measured according
to the hybrid methodology explained in Section 2 [12]. To evaluate and compare the
performance of the regression models, a formula is needed to get insight in the prediction
error. We are mostly interested in the relative error, as an error of 5 clock cycles on big
blocks with a total of 10000 clock cycles (+0.05%) is less severe than for smaller blocks with
a total of 20 clock cycles (+25%!). Therefore, the Mean Relative Error (MRE) is used in the
results for evaluation.

The average and worst MRE scores on the validation sets for each regression model is
shown in Table 2. The best performing model in this experiment is the Support Vector
Regression (SVR) with a linear kernel, followed by Tree and K-Nearest Neighbours Regression.
The graphs in Figure 4 plot the predicted WCET values of the validation set with respect to
the corresponding real measured results. The closer a point is vertically located to the dotted
line, the smaller the prediction error is. However, the box plots of the error distributions
in Figure 3 provides interesting insides. If we remove the outliers, we see that the 2nd
Polynomial Regression actually performs significantly better then initially thought when
comparing it to the result of Table 2. As the MRE is sensitive for the large outliers the
model predicted, e.g. the model had prediction errors (MRE) down to -4000% and lower!

After validating the ML models on small hybrid blocks, we performed an experiment
on three TACLeBench application to test the performance of the hybrid methodology. The
results of these experiments are shown in Table 3. This table shows the errors of each model’s
estimation of the WCET. A negative and positive error resembles respectively an under- and
overestimation of the real WCET.
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Figure 4 Predicted vs real WCET values for trained regression models on the validation sets.
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Table 3 Prediction error of the hybrid ML approach on three TACLeBench application for each
trained regression model.

Regression models Bitonic Bsort Recursion
Linear Regression -49.3% 102.2% -0.2%
Polynomial Regression (2nd Degree) 100.2% -266.3% -10.9%
Tree Regression 18.1% 18% -52.8%
Random Forest Regression -11.8% 113.7% -14.6%
Support Vector Regression (Linear Kernel) -24% 8.5% -55.3%
Support Vector Regression (RBF Kernel) -31.9% -36.6% -45.6%
K-Nearest Neighbours Regression -45,9% 38.5% -54.1%
Ridge Regression -47,1% 56.8% 0.5%

The results in Table 3 show good results for the Tree and SVR with Linear Kernel models.
However, they perform significantly worse for the Recursion benchmark compared to the
other ML models. This benchmark has a small code base which repeatedly gets called
recursively. In this case, a small error on a hybrid block will result in a rising total error
when the number of recursive calls increases.

7 Discussion and Future Work

In this paper, early stage experiments show that machine learning based WCET prediction is
a high potential technique. In the context of the WCET, we are mostly interested in the worst
performance as we need to evaluate the error margin in order to obtain the upper bound.
The results of the first prototype (Table 2) indicate that the Support Vector Regression with
a linear kernel has worst-case the lowest MRE of 40.2%, however it reached an average of
27.3%. In addition, we see in Figure 4 that the SVR (Linear Kernel) accurately predicts all
features of the verification set with just a few small outliers compared to the other trained
regression models. The worst performing cross-validated iteration of the SVR is possibly due
to a validation bucket that contained less trained attributes. This problem can be mitigated
by further extending the labelled dataset.

The higher performance of the linear kernel models probably is because of the linear
characteristics of the trained features on a “simple” architecture, e.g. single core, no caches,
etc. Therefore, these models are better in generalising the problem, as more complex models
will overfit the solution [6]. The well-performing SVR model tries to fit the data such that
the distance between the data points and the fit, which is referred to as the supporting
vectors, is maximised [6]. On the other hand, the Tree model partitions the data points in
clusters for which a value is assigned to. In this first experiment, we achieved good results.
This approach however, estimates discrete values. If we want to have high accurate output
values, we need a high partitioning of the data space which results in large complex trees.

Nevertheless, none of the tested machine learning models will be excluded from further
research at this point, as these are still preliminary results in this experiment. The results in
Table 2 were acquired with the default configuration of each regression model without tuning
any of the hyperparameters, as the goal of this experiment is to examine the feasibility of
applying machine learning techniques to predict WCET values. Therefore, we can conclude
that the WCET estimations show already promising results on small hybrid blocks. We
believe that additional tuning of the attributes and models will further improve the accuracy
of the predictions.
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In future work, we will continue to improve the prediction models [6] [21], selecting
the right features in a systematic approach (feature engineering) [9] [10], examine the
accuracy/computational complexity trade-off for bigger blocks and extend the list with
ensemble models and neural networks. In the case of neural networks, more labelled data
is required to train the model in order to achieve acceptable results. In addition, each
trained model is platform specific. By including hardware/toolchain related attributes to
the model however, we believe a better performing, more generic model can be trained for
related architectures. A more general predictor model will lower the effort to train target
specific models. In addition, modelling the interferences on shared resources with a DLNN
seems a feasible approach as shown by [7]. Therefore, it provides a first step to extend our
methodology to more complex hardware.

8 Conclusion

The early stage experiments in this paper show that machine learning-based hybrid WCET
prediction is a high potential methodology. In a first stage, we discussed the importance of
early stage WCET prediction where current analysis methods falls short, as they rely on an
existing code base. In the second stage, we propose to add a predictor model using machine
learning to our hybrid methodology. This combined approach is a new concept where code
features are utilised to estimate the WCET of a hybrid block.

In order to prove the potential of this methodology, we created the COBRA-HPA
framework that splits code into blocks according to the hybrid methodology and dynamically
generates corresponding features based on a configurable detector chain. The resulting
features can be used to estimated the WCET of the block or to train machine learning
models.

Finally, we trained and compared the performance of eight different regression models
with code features generated by the Feature Selector. The results of this first prototype
show that the Support Vector Regression with a linear kernel has the best performance. In
overall, the WCET estimations of all models have promising results. Additional tuning of
the attributes and models will further improve the accuracy of the predictions.

We believe that this approach will be the solution to early stage WCET prediction. There-
fore, we will continue to improve the regression models by focussing on feature engineering,
tuning prediction models, acquiring more data, extending the models with (deep) neural
networks and ensemble models, and integrate hardware/toolchain related features.
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Abstract
Implementation-based benchmarking of timing and schedulability analyses requires system code
that can be executed on real hardware and has defined properties, for example, known worst-case
execution times (WCETs) of tasks. Traditional approaches for creating benchmarks with such
characteristics often result in implementations that do not resemble real-world systems, either
due to work only being simulated by means of busy waiting, or because tasks have no control-
flow dependencies between each other. In this paper, we address this problem with TASKers,
a generator that constructs realistic benchmark systems with predefined properties. To achieve
this, TASKers composes patterns of real-world programs to generate tasks that produce known
outputs and exhibit preconfigured WCETs when being executed with certain inputs. Using this
knowledge during the generation process, TASKers is able to specifically introduce inter-task
control-flow dependencies by mapping the output of one task to the input of another.
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1 Introduction

Timing and schedulability analyses are essential steps in the development process of a real-
time system, allowing developers to ensure, for example, that all tasks meet their deadlines.
As analysis runtimes increase with system complexity [6], such analyses usually cannot explore
the entire problem space [15], but in part need to make conservative assumptions on system
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behavior to be feasible and to complete within an acceptable amount of time. When determin-
ing upper bounds for the response times of tasks in a system, a typical approach, for example,
is to use pessimistic estimates of operating system overheads, because precisely determining
their influence often is too expensive [3, 18]. For the same reason, when analyzing the
schedulability of a task set, many analysis algorithms assume the absence of inter-task depen-
dencies [1, 4, 5]. Relying on these kinds of assumptions, on the one hand, ensures feasibility,
but on the other hand typically also prevents timing and schedulability analyses from produc-
ing exact results. This pessimism entails two main consequences: First, with different analysis
techniques possibly providing different results, it creates the need to assess the accuracy of
each method, both on an absolute scale as well as in relation to alternative techniques. Second,
the fact that analysis results are partially based on assumptions makes it necessary to verify
whether the guarantees determined still hold when the system is executed on the targeted
platform. Both problems can be addressed by benchmarks that provide known baselines, for
example, by conducting evaluations in which system code runs on real hardware and execution
times are first determined by measurement and then compared to the predicted results.

Comprehensive evaluations require a large number of benchmarks with varying properties
and therefore, in general, cannot be performed using real-world programs with given temporal
properties only. As a result, it is essential to rely on generated benchmark systems which, to
obtain meaningful results, must be configurable yet resemble actual systems as closely as
possible. Consequently, such generative benchmarking approaches should, in the optimal case,
provide traceable and reproducible inter-task control-flow dependencies, include scheduling
and preemption effects, and consider interference caused by the hardware (e.g., caches).

In this paper, we focus on an essential step towards this ultimate goal: The automatic
generation of realistic benchmark-system implementations with predefined properties. Most
notably, the generated systems have to meet the following requirements: (1) The task
implementations of these systems should resemble real-world task programs; in particular,
they must not only simulate work by performing busy waiting [10, 14, 23]. (2) The worst-case
execution times (WCETs) and the number of generated tasks need to be configurable to be
able to create customized benchmark systems that are tailored to specific use cases. Their
execution time must vary for different inputs [24, 25], as it is the case for most real-world
tasks. (3) The tasks of a generated system need to have dependencies between each other,
for example, due to one task’s output serving as input for a subsequent task. Inter-task
dependencies usually pose a challenge to static analysis techniques and therefore are an ideal
means to evaluate the individual strengths and weaknesses of different methods, especially in
the context of whole-system timing analysis [6].

To provide the properties discussed above, we designed and implemented TASKers,
an approach to automatically generate realistic system implementations that serve as a
reliable baseline for benchmarking static analyses. Given a predefined platform and timing
configuration, TASKers combines different code patterns that are typical for real-world
programs to create a task-set implementation whose tasks match the specified WCETs when
being executed with known (configurable) worst-case input values. Starting the system with
other input values, on the other hand, results in different (lower) execution times due to task
implementations comprising multiple possible program paths. During the task-set generation
process, TASKers connects tasks by precedence constraints and thereby introduces control-
flow dependencies. Using the generated task set, in a final step TASKers then creates the
entire executable benchmark system, including an OSEK-compliant operating system [20].

In summary, this paper makes the following contributions: (1) It presents the TASKers
approach for generating benchmarks systems with predefined task WCETs, inter-task control-
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flow dependencies, and a defined overall worst-case response time (WCRT, the time between
the release of an event and the response to it). (2) It discusses details of our current prototype,
the TASKers tool. (3) It evaluates the TASKers tool on an ARM Cortex-M4 platform.

The remainder of this paper is structured as follows: Section 2 details the challenges arising
from generating complex task sets that resemble real-world systems. Section 3 describes our
TASKers approach of generating benchmark programs comprising whole real-time systems.
Section 4 presents our prototype that is used for the evaluation in Section 5. Section 6
discusses related work. Finally, Section 7 outlines future work and concludes.

2 Problem Statement

In this section, we discuss two core challenges of generating realistic benchmark systems:
(1) Sound synthesis of configurable whole-system implementations that are composed of
tasks with inter-task control-flow dependencies and (2) generation of code for said systems
that conforms to predefined temporal properties. To complete the problem statement, we
furthermore provide details on TASKers’ underlying system model and assumptions.

Challenge #1: Configurable Systems Synthesis with Inter-Task Dependencies

The typical approach to model benchmark systems by artificially consuming execution time
(i.e., busy waiting) is precise in time and simple to configure [4, 5, 18]. However, due to
the absence of executable code, this approach is inapplicable for the assessment of static
analysis techniques. Furthermore, it excludes effects that result from task interactions. For
example, given a producing and a consuming task, the consumer’s local worst-case path
may be infeasible combined with the producer’s worst-case path due to mutually exclusive
effects. Contrary, evaluation schemes based on real-world systems, or parts of them, are
universally applicable as benchmarks. In addition, they inherently incorporate inter-task
effects and thus resemble the actual system behavior much more accurately. However, in
general, it is challenging to manipulate the temporal properties of functional code to a given
specification; not to mention tuning the system’s global worst-case path. The resulting
problem is, therefore, the generation of benchmark systems with configurable temporal
properties that feature realistic precedence constraints and dependencies and provide a
common baseline for the assessment of both runtime evaluation and static code analysis.

Our approach: We synthesize evaluation systems with given utilization, number of tasks,
and worst-case properties under consideration of target platform and real-time operating
system used. To incorporate inter-task dependencies, we rely on task-dependency graphs,
which are used to form task systems that fulfill the configured temporal parameters. Therefore,
we derive the tasks’ WCETs as well as an overall worst-case path budget, which is the result
of their composition.

Challenge #2: WCET-Adhering Code Generation

A sound composition and code generation for non-trivial benchmark systems with numerous
tasks and interdependencies is challenging: First of all, paths that are locally feasible may
become globally infeasible, changing the costs of the global worst-case path. Similarly,
inter-task dependencies, such as shared memory, may further affect individual execution
costs. Consequently, path budgets and task WCETs must be adapted to compensate for
these effects without jeopardizing the overall soundness. These effects virtually impede a
straight-line code generation for individual tasks.

WCET 2018
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Figure 1 Overview of the TASKers approach.

Our approach: From the generated task set, we derive worst-case paths and synthesize
operational code (i.e., resembles functional code) along with the associated worst-case
inputs/outputs. We use a linear regression approach to model the relationship among desired
path length and the actual WCET (i.e., number of instructions). In the generation process, we
assemble the tasks’ implementations to be longest if executed with the preselected worst-case
inputs while ensuring that all other paths are shorter. To verify the actual WCETs and the
resulting WCRTs, we leverage knowledge of the generated system to trigger and measure
local and global worst-case paths at runtime on the target platform. Potential deviations are
fed back until all specifications are met.

System Model and Assumptions

TASKers targets embedded real-time systems with a single processing core and an operating
system that complies with the OSEK standard [20] (i.e., uses fixed-priority scheduling).
Consequently, we make the following two assumptions:

(1) The generated task set is OSEK BCC1 compliant. That is, tasks are executed
run-to-completion (i.e., non-blocking) in the absence of asynchronous interrupts and events.
TASKers generates tasks and task sets under consideration of the target system’s scheduling
semantics such that their schedule at least becomes deterministic in the worst case (i.e., the
worst-case path is triggered). This assumption is not a general limitation: more elaborate
operating systems and scheduling variants can be incorporated, as long as the worst-case
behavior can be mapped to a defined, deterministic equivalence class of schedules.

(2) Emanating from a given state, the processor is deterministic for any consecutive
code sequence. That is, a task’s WCET can be measured by the worst-case inputs. Even
though this might seem like a severe limitation at first, the assumption of an adequately
controllable hardware state is entirely feasible: TASKers exercises control over all code that
is executed. This includes, in particular, all initialization processes, whose appropriate size
ensures, for example, a known cache state [21]. Sufficiently predictable hardware architectures
that feature, for example, an LRU cache replacement strategy are generally available in the
embedded domain (e.g., Infineon’s Aurix lineup).

3 The TASKers Approach

In this section, we present the whole-system generator TASKers and discuss how it solves the
challenges identified in Section 2. In a nutshell, TASKers constructs operational real-time
systems by combining generated tasks, thereby ensuring certain properties of both the tasks
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Figure 2 Example of a dependency graph for a task set with tasks T1, ..., T5.

and the overall system. Figure 1 outlines the three basic steps of the system-generation
process: (1) In the first step, TASKers randomly generates a directed acyclic dependency
graph based on the number of tasks, their WCETs, and the input value provided by the
user. The generated graph describes the producer-consumer relationship and therefore the
precedence constraints, while its acyclicity guarantees that there are no cyclic dependencies
and thus all dependencies can be fulfilled. These inter-task dependencies mimic the behavior
of real-world applications, such as the dependence on a value that is read from a sensor [23].
(2) In the second step, TASKers generates the code for each task in such a way that a task’s
worst-case path is either triggered by the user-provided input (for the initial task) or by the
calculated output of the task’s predecessor(s) in the dependency graph. To create a task
implementation with a predefined WCET, TASKers first generates a program whose longest
path comprises a specific number of instructions and then determines the actual WCET of
the program by measurement on the target hardware. In case the measured WCET does
not yet match the intended WCET, in an iterative process, the generator further refines
the program by adding or removing instructions. During the generation process, TASKers
stores information about programs and their measured WCETs in a database to speed up the
creation of subsequent tasks. (3) In the final step, TASKers uses the previously generated
task set to produce the final, fully operational operating-system binary.

Solution #1: Composing Whole-System Benchmarks with Known Properties

In order to create realistic benchmark systems with inter-task control-flow dependencies,
TASKers starts the generation process by constructing a directed acyclic graph that models
all the dependencies between tasks in the final system. As illustrated in Figure 2, for each
task this graph also contains information on (1) the input value that should trigger the
task’s worst-case path and (2) the corresponding output value to be produced for this input.
Consequently, TASKers is able to introduce control-flow dependencies between tasks by
mapping the worst-case output value of one task to the worst-case input value of another
task. Using the worst-case input value specified by the user, the initial task (i.e., T1 in the
example given in Figure 2) of a generated set is activated through an external signal.

Having constructed the dependency graph, TASKers then starts to generate code for the
individual tasks that meet the requirements specified in the graph. For this step, TASKers
relies on a modified version of the task generator GenE [24], a tool that automatically
composes program patterns of real-world tasks to create realistic programs with input-
dependent execution times. Most importantly, the programs generated by GenE have
known worst-case paths of configurable length (i.e., the number of executed instructions)
that are triggered by user-specified worst-case input values. Due to GenE’s task generation
process being unable to provide specific worst-case output values, we extend the generation
approach for TASKers by introducing a mechanism to track the range of values every
variable may have over the course of a task’s execution. Knowing the contents of variables for
the worst-case input value, TASKers therefore is able to force a task program to produce a
predefined, nevertheless input-dependent, worst-case output value by making the program
return the value of an input-dependent variable plus/minus a suitable constant.

WCET 2018
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Solution #2: Generating Task Implementations with Predefined WCETs

As described above, TASKers’ task generator produces task implementations with a config-
urable number of instructions on the worst-case path. However, with different instructions
usually having different execution times, additional measures are necessary to obtain pro-
grams that exhibit predefined WCETs (in terms of milliseconds). For this purpose, TASKers
uses an iterative process that repeatedly adjusts the path budget for a task (i.e., the length
of the worst-case path in terms of instructions) until the actual WCET of the generated
implementation on the target hardware matches the user-specified WCET for the task.

Having generated a task program based on an initial, estimated path budget, TASKers
executes the program on the target hardware with the predefined worst-case input value
and measures the resulting execution time. If the measured WCET deviates from the user-
specified WCET by less than a configurable margin (e.g., 0.1%), the task-generation process
is complete. Otherwise, TASKers starts an additional iteration and generates another
program, this time with a different path budget. To determine the new path budget, the
tool exploits the fact that, for its generated programs, there is a linear correlation between
path budget and WCET (see Section 5.1). In particular, TASKers calculates the linear
regression between path budget and measured WCET using several interpolation points, and
estimates a fitting anchor value for the new path budget. If necessary, the tool further refines
the estimated budget in subsequent iterations by repeated sampling close to the current
anchor value and enhancing the linear regression.

To speed up the creation of additional tasks, TASKers stores knowledge on the generated
task programs and their respective WCETs in a database. As a consequence, if, for example,
a subsequent task is requested to have a similar WCET, the tool does not need to start the
generation process from scratch, but can continue based on a previously generated program.

4 Implementation

TASKers’ task generator is implemented on top of the LLVM compiler infrastructure [17].
The tasks are generated using LLVM’s intermediate representation (LLVM IR), a represen-
tation closely related to machine code, while still being independent of the concrete target
architectures. For maintaining all information during the lowering from LLVM IR to machine
code, the tool relies on control-flow relation graphs [12].

The TASKers task generator is a modified and extended version of the GenE tool [24]
and constructs tasks by weaving together different code patterns in a systematic fashion
that allows the generator to define the worst-case path. To produce realistic task programs,
the code patterns used for this purpose closely resemble the typical building blocks of
real-world applications. Amongst other things, this includes input-dependent computations,
assignments, function calls, conditional branch statements, as well as different shapes of
loops. The fact that most code patterns are parameterizable enables TASKers to create
complex programs in which, for example, the execution of branches depends on the program’s
input and the bodies of loops may contain other, nested code patterns, possibly even other
loops. Prior to the start of the generation process, a TASKers user is able to influence the
composition of the resulting benchmark by configuring the probability with which each code
pattern is selected and woven into the program. This way, a user can rely on TASKers to
generate benchmark-system implementations that possess the characteristics of real-time
systems from a particular domain (e.g., digital-signal-processing applications).

In contrast to GenE, TASKers’ task generator does not use the path budget as seed for
pseudorandomly selecting the next program pattern to weave into the task program. Instead,
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Figure 3 Linear correlation between path budget and the resulting task’s WCET.

TASKers limits the impact small changes to the path budget have on the structure of the
generated program, thereby ensuring that two programs resemble each other if they were
generated with similar (but different) path budgets. As a key benefit, this approach improves
the linearity between the path budget and a task implementation’s WCET, and therefore
significantly speeds up the process of creating a program with the requested WCET.

The task generator is integrated into and driven by a Python framework that, in addition,
takes care of producing the task set, building the system binary, measuring on the target
hardware and postprocessing of the measured values. The final system binary is assembled
on basis of dOSEK [11], an OSEK-compliant real-time operating system.

5 Evaluation

In this section, we move on to the evaluation of TASKers. First, we assess our approach to
correlate desired path budget and actual WCET of the operational code by linear regression.
Based on this, we demonstrate that in the worst case the generated tasks meet specifications
and otherwise exhibit realistic behavior. Finally, we showcase the performance and worst-case
compliance of a whole system and its suitability as a benchmarking baseline.

Experimental Setup

We used an Infineon XMC4500 development board with an ARM Cortex-M4 processor as an
available hardware platform with the instruction timing, pipeline behavior, and memory-
access latencies being sufficiently predictable and well documented [13]. The 32-bit processor
runs at 120MHz and features a 3-stage pipeline, 1024KB flash memory with 4KB instruction
cache (2-way set associative, LRU cache-replacement policy). Time measurements were
conducted using the cycle-accurate counters (i.e., DWT) provided by the Cortex-M4 core.
For the measurements, we applied our system model as described in Section 2. All tasks are
generated using the default configuration of TASKers’ task generator (i.e., all code patterns
are enabled and use their default probabilities).

5.1 Correlation of Path Budget and WCET
TASKers’ task generator exploits the linear correlation between the path budget and the
WCET of the resulting operational code to estimate the budget required to generate a
fitting task. To confirm the assumption of linear correlation between path budget and
a task’s WCET, for our first experiment we generated 20,000 tasks with different path
budgets, while retaining the generator’s other parameters, and determined the tasks’ WCETs.
Figure 3 illustrates the correlation between the path budget and the tasks’ WCET: Each data
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point (dot) represents a single task whose WCET is plotted against its predefined budget.
The regression used by TASKers to estimate a value for the path budget is given as a line.
The adjacency and concentration of the measured data points close to the regression line
substantiate the assumption of the linear correlation between path budget and WCET and
thus TASKers’ approach to generating tasks with predefined WCETs.

5.2 Temporal Behavior and Realism of Tasks
In a next step, we evaluated the accuracy of the operational code generation itself. Therefore,
we generated tasks with budgets in the range from 1ms to 5ms and a maximum deviation
of 0.1% and measured the actual WCET by triggering the generated worst-case path at
runtime. Figure 4 shows the results of this evaluation: For all 9 tasks, the actual WCET
fits the predefined budget with great accuracy. The maximum deviation in this experiment
was 0.02% or 37 cycles (1.5ms task), well below the configured threshold of 0.1%. For all
practical purposes, TASKers’ code generation accuracy per task is more than sufficient for
the composition of whole-system benchmarks.

The tasks generated by TASKers show a WCET that is defined at generation time and
can be triggered by a user-defined input. Moreover, as identified in Section 2, tasks should
in practice also show input-dependent variations of their execution times, adding a jitter
component to the benchmark. To assess this aspect of the code generation, we measure the
3ms-task’s execution time for 224 = 16,777,216 different input values; Figure 5 graphs the
resulting distribution. First of all, the traversal of the worst-case execution path is triggered
by 19 different input values, including the designated worst-case input value used during the
generation process. The WCET (i.e., the execution time of the task’s worst-case execution
path) is 360,000 cycles (3.0ms at 120MHz) and matches the predefined WCET of 3.0ms.
Moreover, the task exhibits a wide range (0.2 to 3ms) and distribution of execution times.
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Figure 6 Execution and response times for task set of five tasks T1, ..., T5.

The variation also indicates the multitude of different paths through the task.
In summary, the generated operational code complies with the preassigned temporal

properties with high accuracy and, at the same time, resembles real-world execution behavior.

5.3 Whole-System Temporal Behavior and Worst-Case Path
This final evaluation is devoted to the temporal behavior of a whole system. Therefore,
we took as an example a task set consisting of five interdependent tasks and leveraged
the knowledge about the generated system to incorporate the overheads induced by the
underlying operating system. To stay unbiased, we randomly chose the tasks’ WCETs
(71,637 cycles, 72,519 cycles, 158,795 cycles, 394,958 cycles, 157,532 cycles for tasks T1, ..., T5)
using the UUniFast [2] algorithm. For the generated benchmark system, we measured the
individual execution times of all five tasks, as well as the overall response times for different
input values. Figure 6 gives the frequencies of the measured execution and response times
for 220 = 1,048,576 randomly selected input values. All tasks T1, ..., T5 exhibit varying
execution times, ranging from 4,257 cycles (∼ 35.5 µs, T2) to 394,958 cycles (∼ 3.3ms, WCET
of T3), again substantiating the variety of local execution paths. Except for T1, each task’s
execution path depends on the output of the previous task’s calculation, the high distribution
of execution times indicates a substantial variation of global control-flow paths through the
generated system that depends on the respective input and output values.

The longest execution path through the task set (calculated as the sum of the corresponding
tasks’ execution times) takes 7,129 µs and is traversed whenever the predefined worst-case
input value is passed to T1. Incorporating the overheads induced by the operating system,
the system’s actual response time is higher. In case of this experiment, the actual worst-case
response time measured by TASKers is 7,151 µs; 22µs higher than the lower bound (i.e., the
summation of individual execution times).

WCET 2018
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In summary, our evaluation demonstrates that the overall system also conforms to
predefined temporal properties and exhibits known WCRTs.

6 Related Work

To our knowledge, TASKers is the first whole-system generator for benchmarking real-time
systems. The generator is able to create tasks with arbitrarily configurable WCETs and
complex inter-task dependencies. The closest related work to ours is the task-set–generation
approach from de Bock et al. [4]. They use existing benchmarks from the TACLeBench
suite [8], which are written in C, and execute several programs in a loop in order to achieve a
predefined execution time. In contrast to their approach, we do not rely on already available
benchmarks but generate each task from scratch using a low-level representation (i.e., LLVM
IR) and consequently do not depend on the immutable execution times of existing programs.
Generating both the tasks as well as the enclosing system from scratch has the major benefit
of enabling TASKers to insert inter-task dependencies on a fine-grained level. Additionally,
TASKers lays the foundation for automatically creating programs to benchmark memory-
consumption and caching-behavior analysis, which cannot be achieved when relying on
memory consumption and access patterns from existing benchmark programs written in a
high-level programming language. In contrast, using LLVM’s intermediate representation
results in our benchmarks being more resilient against compiler optimizations compared
to the TACLeBench suite [24, 25]. The most important difference is that, even though
TASKers’ generated tasks have varying execution times, the worst-case path of the overall
system is known. Executing this non-trivial path with the predefined worst-case input leads
to the WCRT of the task set, thereby providing a baseline for timing-analysis approaches.

Several real-world benchmarks and suites are used for benchmarking real-time system
analyses [8, 9, 10, 14, 16, 19]. However, in order to evaluate approaches on a global scale, the
ground truth, such as the worst-case path, is inevitable, which can never be safely determined
when trying to extract it from existing code [22]. Instead, we solve the problem of baselines
by generating the entire executable real-time system with known properties.

Tools exist that output the parameters of tasks, such as UUniFast [2] or the task-set
generator from Emberson et al. [7]. These generators are used for the theoretic evaluation of
scheduling algorithms since they do not produce any executable code. TASKers fills this gap
by considering these task parameters and producing an executable system for comprehensive
evaluations of timing-analysis approaches on real embedded platforms.

7 Conclusion & Future Work

In this paper, we presented the TASKers generator that produces real-time systems with
known properties for the purpose of benchmarking timing-analysis approaches. TASKers
generates entire systems that execute precedence-constrained tasks with configurable WCETs,
which are scheduled by their fixed priorities. Since all relevant knowledge about the generated
systems is either directly available or can be determined by measurement (e.g., a system’s
WCRT), TASKers enables a comprehensive evaluation of timing and scheduling-analysis
techniques on an absolute scale. Our evaluation confirms TASKers’ accuracy, showing that
the actual WCETs of generated tasks differ less than 0.1% from the WCETs requested.

As part of future work, we will extend the current prototype of TASKers to make
it more aware of the target platform’s micro-architectural properties, and thereby further



C. Eichler, T. Distler, P. Ulbrich, P. Wägemann, and W. Schröder-Preikschat 6:11

challenge analysis approaches. Specifically, we will integrate challenging code patterns to
generate benchmarks that target whole-system cache and pipeline analyses.

The source code of TASKers is available at: https://gitlab.cs.fau.de/taskers

References
1 M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. Energy-aware scheduling for

real-time systems: A survey. ACM TECS, 15(1), 2016.
2 E. Bini and G. Buttazzo. Measuring the performance of schedulability tests. Real-Time

Systems, 30, 2005.
3 B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and G. Heiser. Timing analysis

of a protected operating system kernel. In Proc. of RTSS ’11, 2011.
4 Y. De Bock, S. Altmeyer, J. Broeckhove, and P. Hellinckx. Task-set generator for schedu-

lability analysis using the taclebench benchmark suite. In Proc. of EWiLi ’16, 2016.
5 A. Burns and R. Davis. Mixed criticality systems - a review. Technical report, Department

of Computer Science, University of York, 2018.
6 C. Dietrich, P. Wägemann, P. Ulbrich, and D. Lohmann. SysWCET: Whole-system

response-time analysis for fixed-priority real-time systems. In Proc. of RTAS ’17, 2017.
7 P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis of multiprocessor

tasksets. In Proc. of WATERS ’10, 2010.
8 H. Falk et al. TACLeBench: A benchmark collection to support worst-case execution time

research. In Proc. of WCET ’16, 2016.
9 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET benchmarks:

Past, present and future. In Proc. of WCET ’10, 2010.
10 M. Guthaus et al. MiBench: A free, commercially representative embedded benchmark

suite. In Proc. of WWC ’01, 2001.
11 M. Hoffmann, F. Lukas, C. Dietrich, and D. Lohmann. dOSEK: The design and implemen-

tation of a dependability-oriented static embedded kernel. In Proc. of RTAS ’15, 2015.
12 B. Huber, D. Prokesch, and P. Puschner. Combined WCET analysis of bitcode and machine

code using control-flow relation graphs. In Proc. of LCTES ’13, 2013.
13 Infineon Technologies AG. XMC4500 reference manual, 2012.
14 F. Kluge, C. Rochange, and T. Ungerer. Emsbench: Benchmark and testbed for reactive

real-time systems. Leibniz Trans. on Embedded Systems, 4(2), 2017.
15 J. Knoop, L. Kovács, and J. Zwirchmayr. WCET squeezing: On-demand feasibility refine-

ment for proven precise WCET-bounds. In Proc. of RTNS ’13, 2013.
16 S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive benchmarks for free.

In Proc. of WATERS ’15, 2015.
17 C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis &

transformation. In Proc. of CGO ’04, 2004.
18 M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang. A survey of WCET analysis of

real-time operating systems. In Proc. of ICESS ’09, 2009.
19 F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. De Michiel. PapaBench: A free

real-time benchmark. In Proc. of WCET ’06, 2006.
20 OSEK/VDX Group. Operating system specification 2.2.3. Technical report, OSEK/VDX

Group, February 2005.
21 Jan Reineke. Caches in WCET Analysis: Predictability, Competitiveness, Sensitivity. PhD

thesis, Saarland University, 2008.
22 H. G. Rice. Classes of recursively enumerable sets and their decision problems. Trans. of

the AMS, 1953.

WCET 2018

https://gitlab.cs.fau.de/taskers


6:12 Real-Time System Benchmark Generator

23 P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-Preikschat. I4Copter: An
adaptable and modular quadrotor platform. In Proc. of SAC ’11, 2011.

24 P. Wägemann, T. Distler, C. Eichler, and W. Schröder-Preikschat. Benchmark generation
for timing analysis. In Proc. of RTAS ’17, 2017.

25 P. Wägemann, T. Distler, P. Raffeck, and W. Schröder-Preikschat. Towards code metrics
for benchmarking timing analysis. In Proc. of RTSS WiP ’16, 2016.



Experimental Evaluation of Cache-Related
Preemption Delay Aware Timing Analysis
Darshit Shah
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
s8dashah@stud.uni-saarland.de

Sebastian Hahn
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
sebastian.hahn@cs.uni-saarland.de

Jan Reineke
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
reineke@cs.uni-saarland.de

https://orcid.org/0000-0002-3459-2214

Abstract
In the presence of caches, preemptive scheduling may incur a significant overhead referred to as
cache-related preemption delay (CRPD). CRPD is caused by preempting tasks evicting cached
memory blocks of preempted tasks, which have to be reloaded when the preempted tasks resume
their execution.

In this paper we experimentally evaluate state-of-the-art techniques to account for the CRPD
during timing analysis. We find that purely synthetically-generated task sets may yield misleading
conclusions regarding the relative precision of different CRPD analysis techniques and the impact
of CRPD on schedulability in general. Based on task characterizations obtained by static worst-
case execution time (WCET) analysis, we shed new light on the state of the art.
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1 Introduction

In real-time systems, it is often necessary to schedule tasks preemptively in order to meet all
tasks’ deadlines. Most work on preemptive scheduling is based on the assumption that the
overhead incurred by preemptions is negligible and may thus be subsumed into the worst-case
execution time of each task. When tasks are executed on complex microarchitectures with
caches, this assumption is problematic: Preempting tasks may alter the state of the cache,
leading to an increased execution time of preempted tasks once they are resumed, because
their data has been evicted from the cache and needs to be reloaded from main memory.
The additional execution time due to such reloads is known as cache-related preemption
delay (CRPD).
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As the CRPD depends both on the “low-level” cache aspect and on “higher-level” schedul-
ing decisions, it is tackled by a combination of low-level static analysis, characterizing each
task’s “cache footprint”, and CRPD-aware response-time analysis, bounding a task’s re-
sponse time using the low-level characterizations. Altmeyer et al. [1] provide an overview
of the state-of-the-art techniques to account for CRPD during response-time analysis. To
experimentally evaluate the different CRPD-aware response-time analyses, Altmeyer et al. [1]
use synthetically-generated task sets with synthetically-generated task characteristics.

In this paper, we experimentally evaluate the state of the art concerning CRPD-aware
timing analysis to gain further insights into where future research on CRPD may be profitable.
To this end, we attempt to answer the following questions:

Can we reproduce the results obtained in the experimental evaluation of Altmeyer et al. [1]
based on synthetic task sets?
Do we obtain similar per-task characteristics (worst-case execution time (WCET) values,
number of Evicting Cache Blocks (ECBs), and number of Useful Cache Blocks (UCBs))
as Altmeyer et al. [1] based on our low-level analysis toolchain?
If we base the experimental evaluation on task characterizations obtained by static WCET
analysis, do we observe similar trends as those observed in [1] based on synthetic task
sets? If not, why? Related to the previous question: Are the parameters for the synthetic
task set generation meaningful?

Our paper is structured as follows: We summarize the background concerning caches and
CRPD-aware timing analysis in Section 2. In Section 3 we discuss relevant details of our
analysis implementation. Then, in Section 4 we present the results of our experimental
evaluation, partially answering some of the questions listed above. We conclude the paper
with a summary of our findings in Section 5.

2 Background and Related Work

2.1 Caches
Caches are small but fast memories that store a subset of the main memory’s contents to
bridge the latency gap between processors and DRAM-based main memory.

To profit from spatial locality and to reduce management overhead, main memory is
logically partitioned into a set of memory blocks of a certain size. Blocks are cached as a
whole in cache lines of the same size. When accessing a memory block, the cache logic has to
determine whether the block is stored in the cache, a cache hit or not, a cache miss.

To enable an efficient look-up, each block can only be stored in a small number of cache
lines. For this purpose, caches are partitioned into equally-sized cache sets. The size of a
cache set is called the associativity of the cache. Caches of associativity one are called direct
mapped. Most work concerning CRPD-aware response time analysis has been conducted in
the context of direct-mapped caches. Such caches are also the focus of this work.

2.2 Timing Analysis for Preemptive Scheduling
Timing analysis is traditionally separated into two phases:
1. Worst-case execution time (WCET) analysis, which determines bounds on each task’s

execution time. Usually Ci denotes the WCET bound of task τi.
2. Response-time analysis (RTA), which determines bounds on each task’s response time

under a particular scheduling algorithm; based on the tasks’ WCET bounds, minimum
inter-arrival times (also referred to as periods), denoted by Ti, and release jitter, denoted
by Ji.
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If no task’s response time may exceed its relative deadline Di, then the task set is determined
to be schedulable.

Traditional response-time analysis assumes that preemptions are free, i.e., context switches
are performed instantaneously and the execution times of tasks are not affected by the
execution of preempting tasks. For fixed-priority preemptive scheduling, the least solution of
the following recursive equation [3, 12] then determines a task’s response time:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + Jj

Tj

⌉
· Cj , (1)

where hp(i) denotes the indices of those tasks that have a higher priority than task τi.
Unfortunately, context switches cannot be performed instantaneously for several reasons:

1. The scheduler takes some time to select the next task to execute. 2. Upon a context
switch, the hardware needs to save the contents of registers and restore the contents of the
task whose execution is to be resumed. This process also results in flushing the pipeline.
It is commonly assumed that the cost of these two actions can be bounded by a constant,
which can then be taken into account by appropriately inflating each task’s WCET bound.

In the presence of caches, however, preemptive scheduling may incur an additional
overhead, called cache-related preemption delay (CRPD): The execution time of preempted
tasks may be prolonged due to additional cache misses caused by cache evictions of preempting
tasks.

To account for CRPD, Equation (1) can be extended by γi,j representing the preemption
cost due to each job of a higher-priority preempting task τj executing within the worst-case
response time of task τi [6]:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + Jj

Tj

⌉
· (Cj + γi,j). (2)

Note, that the response time calculation inherently relies on timing compositionality [10] of
the cache-related preemption effects. Recent work in the area of multi-core timing analysis [9]
has shown that the compositionality assumption is often violated even on simple hardware
platforms. However, the analysis techniques of [9] could be adopted to still allow for a
compositional reasoning.

2.3 Characterizing a Task’s Cache Footprint
To bound γi,j one needs to bound the number of additional cache misses in preempted
tasks τi due to the execution of preempting tasks. The number of such cache misses, depends
on the memory-access behavior of both the preempted task and its preempting tasks.

To characterize preempting tasks, Busquets-Mataix et al. [6] introduced the notion of
ECBs: A memory block is an ECB of task τj if it may be accessed during τj ’s execution.
For the computation of cache-related preemption delays the precise identity of a memory
block is irrelevant. What is important is which cache set an ECB maps to, which is where
it may potentially evict cached memory blocks of a preempted task. Further, in case of
direct-mapped caches, if two or more ECBs map to the same cache set, they may not do
a greater damage than an individual ECB mapping to this cache set. Thus, in case of
direct-mapped caches – which we focus on in this paper – one may characterize the set of
ECBs of a task by a set ECBj ⊆ {0, . . . , N − 1}, capturing the subset of cache sets that a
task’s evicting cache blocks map to.

WCET 2018
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To characterize preempted tasks, Lee et al. [13] introduced the notion of UCBs: A memory
block m is a UCB of task τi if there is a program point P within τi, such that m may be
cached at P and m may be reused at a later program point P ′, which may be reached from
P without eviction of memory block m along the execution from P to P ′. Intuitively, only
useful cache blocks may result in additional cache misses due to preemptions. As there may
be at most one useful cache block in each cache set of a direct-mapped cache at any point
in time, the set of UCBs of a task may be represented by a set UCBi ⊆ {0, . . . , N − 1},
capturing the cache sets that a task’s useful cache blocks map to.

Later, Altmeyer and Maiza [2] introduced the notion of definitely-cached useful cache
blocks (DC-UCBs): A memory block m is a DC-UCB of task τi if there is a program point P
within τi, such that m must be cached at P and m may be reused at a later program point P ′,
which may be reached from P without eviction of memory block m along the execution from
P to P ′, and, crucially, m is considered to be a cache hit at P ′ by the WCET analysis. The
set of DC-UCBs is always a subset of the set of UCBs. The observation in the definition of
DC-UCBs is that CRPD analysis needs to only account for preemption-induced cache misses
that are not already conservatively accounted for during WCET analysis.

2.4 CRPD-Aware Response-Time Analysis for Fixed-priority Scheduling

Based on the sets of ECBs and UCBs of all tasks, there are different ways of defining γi,j , such
that the response times of tasks are correctly bounded by solutions of (2). In the following,
we briefly summarize the six state-of-the-art approaches from Altmeyer et al. [1] that apply
to direct-mapped caches. More details can be found in [1]. The methods can be extended to
be applied to set-associative caches with LRU replacement, but not to caches with FIFO or
PLRU replacement [5]. Those six approaches follow from two different interpretations of γi,j

that differ in case of nested preemptions:
1. “Effect of the preempting task”: In this case γi,j bounds the cost of additional misses in

the preempted tasks due to execution of the preempting task τj .
2. “Effect on the immediately preempted task”: In this case γi,j bounds the cost of additional

misses in the task immediately (i.e. not in a nested fashion) preempted by τj , due to τj ’s
execution and the execution of higher-priority tasks which may in turn have preempted τj .

Effect of the Preempting Task

Busquets-Mataix [6] and later Tomiyama and Dutt [16] used the number of ECBs of the
preempting task to bound the preemption cost, in what Altmeyer et al. [1] termed the
ECB-Only approach:

γECB
i,j = BRT · |ECBj |, (3)

where BRT denotes the block reload time, i.e., the time to fetch one memory block from main
memory into the cache.

Tan and Mooney [15] improved upon ECB-Only by also considering the set of UCBs of
all tasks that may be affected by the preemption by τj . This approach is termed UCB-Union
in [1]. Altmeyer et al. [1] introduced the UCB-Union-Multiset approach, which improves
upon UCB-Union by taking into account how often different tasks may preempt each other
based on their minimum inter-arrival times.
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Effect on the Immediately-Preempted Task

Lee et al. [13] introduced the UCB-Only approach, which bounds cost of a preemption in the
immediately-preempted task by considering its UCBs:

γUCB
i,j = BRT · max

∀k∈aff(i,j)
{|UCBk|}, (4)

where aff(i, j) = hep(i) ∩ lp(j) is the set of tasks that have a lower priority than task τj but
a higher-or-equal priority than task τi, the task under analysis. Thus aff(i, j) is the set of
tasks that task τj may immediately preempt during task τi’s response time.

Altmeyer et al. [1] later introduced the ECB-Union and the ECB-Union-Multiset ap-
proaches, which additionally take into account the ECBs of the preempting tasks, and the
number of times tasks may preempt each other based on their minimum inter-arrival times.

As the UCB-Union-Multiset and the ECB-Union-Multiset approaches are incomparable,
they may be combined by taking the minimum response time of the two approaches for each
task, to yield an approach, coined Combined-Multiset, that dominates the two [1].

3 Implementation

In this section we describe the tools used for the experiments presented later in this paper.
This includes the tools for analysis of tasks to determine task characteristics, for generation
of synthetic task sets and for running the schedulability analysis.

3.1 Obtaining Task Characteristics
We use our low-level timing analysis tool LLVMTA [9] to compute not only the worst-case
execution time bound for a given task, but also its preemption-related characteristics: ECBs,
UCBs, and DC-UCBs. LLVMTA supports the detailed microarchitectural analysis of different
processors. In this paper, we use the model of a conventional in-order pipeline with five
stages [11], static branch prediction, and native support for floating-point instructions. The
main memory is accessed via separate instruction cache and data scratchpad. We employ
standard must- and may-analyses [7] to predict the instruction cache behavior. Similar
to [2], our analyses are context sensitive: they (virtually) peel the first iteration of loops and
distinguish the different call sites for each function. This is important to achieve precise
analysis results [7].

The microarchitectural analysis results in a microarchitectural execution graph [9] whose
nodes correspond to abstract microarchitectural states and whose edges represent the possible
execution flow. To obtain the worst-case execution time bound, we use an integer linear
program to calculate the longest path through the microarchitectural execution graph – also
known as implicit path enumeration [14].

This microarchitectural execution graph also contains detailed information about the
memory accesses initiated in the pipeline. Unlike the control-flow graph of a program,
it explicitly includes speculative accesses triggered by branch prediction or even access
reorderings in out-of-order pipelines. To ensure soundness, we thus perform the ECB and
DC-UCB analysis on this microarchitectural execution graph rather than on the control-flow
graph of the program. Our implementation follows the data-flow description of the analysis
in [2].

The set of useful cache blocks is a property of a particular program point. To be able
to use the sets in an efficient way in the schedulability analysis, we need to combine the
program-point-sensitive results. In accordance with [1], we calculate the set of those cache
sets that exhibit a useful cache block at any program point.
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Instructions that share a single cache line are usually executed consecutively in straight-
line code fragments (spatial locality). As a consequence, the cache line is useful at the
program point between two instruction of that cache line. In the program-point-insensitive
result, almost every cache line in the program is (definitely-cached) useful due to spatial
locality if the line size exceeds the word size. Similar to [2], blocks that are useful only due to
immediate spatial locality can be ignored in the low-level analysis, if they are compensated
for by one additional cache reload per preemption in the schedulability analysis.

3.2 Task Set Generation and Schedulability Analysis

The generation of synthetic task sets and the CRPD-aware schedulability analysis is done
using a new tool that we developed using the Rust programming language. This tool performs
CRPD-aware schedulability analyses of [2] on synthetically generated task sets using either
the task characteristics provided by LLVMTA or by synthetically generating them.

4 Evaluation

In this section we experimentally evaluate the differences between the various approaches
discussed in Section 2.4 using both synthetically-generated task characteristics and task
characteristics derived through our WCET analysis tool, LLVMTA. In the latter case, we use
the programs from the Mälardalen test bench [8] as tasks.

As in most previous work on cache-related preemption delay, including [1, 2], we assume
a direct-mapped instruction cache and a data scratchpad. The size of the data scratchpad is
sufficient to not cause preemption-induced reloads. To compare our results to [1], we use a
cache with a line size of 8 bytes and 256 sets, i.e. a total size of 2 kB.

In each of our evaluations, we have compared the six CRPD approaches listed in Section 2.4,
along with the optimistic No Preemption Cost case where preemptions are considered to the
completely free and the extremely pessimistic, Full Cache Reload case where each preemption
causes the entire cache of the preempted task to be reloaded.

4.1 Timing Analysis With Synthetically-Generated Task Characteristics

In order to replicate the results of [1], we used our tool to generate synthetic task sets with
the same parameters as in the original experiment. The task characteristics such as WCET,
UCB, and ECB values are also synthetically generated following the methodology used in [1].
Since, the clock frequency is not mentioned in the original study, we assumed a frequency of
100 Mhz1.

For the experimental evaluation, 1000 task sets with 10 tasks each were generated for
every utilization value from 0.025 to 1.000 in steps of 0.025 using the UUnifast [4] algorithm.
The task periods were generated according to a log-uniform distribution with the minimum
period as 500,000 cycles (5 ms) and a maximum period of 50,000,000 cycles (500 ms). The
cost of a cache miss, also known as the Block Reload Time, is considered to be 800 cycles
(8 µs). The cache utilization (CU) of a task is the ratio of the number of ECBs of a task
to the total number of cache sets available. The cache utilizations for the tasks in a task

1 As all task parameters are given in terms of wall-clock time, the particular processor frequency has a
negligible effect on the experimental results.
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(a) Block reload time, BRT = 800.
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Figure 1 Results using synthetic task sets with synthetically-generated task characteristics.

set were generating using UUnifast2, considering a total CU = 10. The number of ECBs
of a task are then computed using the generated cache utilization values. The ratio of the
number of UCBs of a task to the number of ECBs is defined as the reuse factor (RF). For
this experiment, the reuse factor for each task was picked uniformly at random within the
range [0, 0.3]. All of these values are taken from the parameters of the original study.

For the results of the schedulability tests, see Figure 1a. Our first observation is that the
resulting schedulability graph closely matches the corresponding graph in Figure 9 of [1],
which confirms the correctness of the independent implementations of schedulability analyses
used in both papers.

The latency of actual main memory modules3 are at least an order of magnitude lower
than the 8 µs (800 cycles) used in the original experiment. In [2], Altmeyer et. al. use a
memory latency of just 4 cycles for their WCET analysis and yet the generation of synthetic
task characteristics uses a latency of 800 cycles. To gauge the effect of a more realistic memory
latency, we re-ran the experiment, however this time with a lower memory latency of 20 cycles.
The results of this experiment can be seen in Figure 1b. As is clearly evident from the figure,
reducing the memory latency almost completely eliminates the effect of CRPD on overall
schedulability. We must emphasize here that we do not claim that CRPD has a negligible
effect on the overall schedulability, but rather that the methods used to synthetically generate
task characteristics provide misleading results. With a lower memory latency, we see that
even in the case of having to pay the penalty of a full cache refresh for each preemption, the
schedulability of the task sets closely follows the case where preemption is considered to be
free. The reason for such behavior is that the generation of synthetic task characteristics does
not take into account the fact that both the WCET and the CRPD depend on the memory
latency, and are thus correlated. However, in our experiment, decreasing the memory latency
reduces the CRPD without similarly reducing the execution time of the tasks at all. At this
point, the WCET almost completely dominates the response time of the task.

2 UUnifast may generate values greater than one, indicating that the ECBs fill the entire cache. The
number should be capped to the number of cache sets. However, for the computation of UCBs, the
original value of ECBs is used.

3 As example, consider this automotive SDRAM https://www.micron.com/~/media/documents/
products/data-sheet/dram/mobile-dram/low-power-dram/lpddr/256mb_x8x16_at_ddr_t66a.pdf
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4.2 Comparison of Task Characteristics
In this section, we compare the per-task characteristics provided in [1, 2] for a subset of
the Mälardalen benchmarks with the numbers calculated using LLVMTA. The results are
shown in Table 1 for the subset of benchmarks analyzed in [1, 2] in the upper half and
for the remaining benchmarks in the lower half. The apparent gap between the WCET
bounds is mostly explained by different memory latencies. While we use a memory latency
of 20 cycles throughout the paper, they use a low latency of only 4 cycles as described in [2].
Furthermore, the different compilers (gcc versus clang+LLVM), hardware platforms, and
analysis settings (e.g. loop bound annotations) contribute to this gap. The lower WCET
bound (and significantly lower ECB value) – compared to [1] – for some benchmarks, such
as sqrt and qurt, are explained by the native floating point support of our pipeline model
in contrast to software emulation, which is assumed in [1].

Taking the above differences in the underlying model into account, our ECB values and
the cache utilizations resemble the ones provided by Altmeyer et al. [1].

As described in Section 3.1, column DC-UCB of Table 1 shows the size of the set containing
all cache sets that exhibit a useful cache block at some program point. In addition, column
Max DC-UCB shows the maximum number of cache blocks that are (definitely-cached) useful
at a single program point. This number can be used to improve the UCB-Only approach,
which we call UCBMax-Only. Note that DC-UCB and Max DC-UCB results from different
schemes to aggregate program-point specific information of the static cache analysis. Thus,
there is no reason in considering UCBMax-Only in Section 4.1 when task characteristics are
synthetically generated.

Unlike the ECB values, our DC-UCB values differ significantly from the values in [1].
Compiling our benchmarks with optimizations4 reduces the number of DC-UCBs, but also
the number of ECBs which resulted in significant gaps for ECBs and DC-UCBs. The only
way to get similarly low DC-UCB values using our toolchain is to disable the (virtual) loop
peeling which worsens the must cache analysis and thus decreases the number of DC-UCBs.
However, according to [2], their numbers were obtained with loop peeling enabled. As a
result of the higher number of DC-UCBs in our analysis, we also see a higher value of the
reuse factor in our tasks.

4.3 Timing Analysis With Analysis-Derived Task Characteristics
In this section, we conduct schedulability experiments with task characteristics derived using
LLVMTA rather than generated synthetically. For deriving task characteristics, we used the
programs in the Mälardalen suite and derived the WCET and the ECB and DC-UCB sets
for each task as described in Section 3.1 and discussed in Section 4.2. These characteristics
were then used to generate synthetic task sets. In addition to the approaches outlined in
Section 4, in this section, we also consider the UCBMax-Only approach which was introduced
in Section 4.2.

As before, 1000 task sets were generated for each utilization value from 0.025 to 1.000 in
steps of 0.025. Each task set consists of 10 randomly selected tasks from the set of tasks
found in Table 1. The utilization Ui of each of the 10 tasks within a task set was generated
using the UUnifast algorithm [4] and the periods were computed based on the following
equation: Ti = Ci/Ui. Since the WCETs of the tasks were derived through analysis, we did
not have control over the range of task periods. Implicit task deadlines, i.e. Di = Ti, were

4 It is not specified whether the programs in [1] have been compiled with or without optimizations.
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Table 1 Comparison of task characteristics. In parenthesis: results without virtual loop peeling.
* denotes use of floating-point calculations.

WCET ECB DC-UCB Max CU RF
Theirs Ours Theirs Ours Theirs5 Ours DC-UCB Theirs Ours Theirs Ours

bs 445 3052 35 43 5 23 (9) 20 0.137 0.168 0.143 0.535
bsort100 1567222 3146185 62 57 8 40 (11) 30 0.242 0.223 0.129 0.702
crc 290782 1621246 144 127 14 63 (28) 35 0.562 0.496 0.097 0.496
fibcall 1351 8406 24 28 5 16 (6) 16 0.094 0.109 0.208 0.571
fir 29160 12406071 105 90 9 41 (16) 22 0.410 0.352 0.086 0.456
insertsort 6573 11291 41 29 10 16 (5) 15 0.160 0.113 0.244 0.552
matmult 742585 1447379 100 85 23 51 (26) 31 0.391 0.332 0.230 0.600
ns 43319 126865 64 55 13 37 (12) 34 0.250 0.215 0.203 0.673
qsort-exam * 22146 163089 170 142 15 83 (38) 39 0.664 0.555 0.088 0.585
qurt * 214076 71655 484 130 14 40 (32) 26 1.891 0.508 0.029 0.308
select * 17088 6306 151 159 15 73 (35) 55 0.590 0.621 0.099 0.459
sqrt * 39962 22436 477 53 14 21 (13) 12 1.863 0.207 0.029 0.396

adpcm - 82368867 - 256 - 229 108 - 1.000 - 0.895
cnt - 127558 - 123 - 58 44 - 0.480 - 0.472
compress - 1098331 - 247 - 149 57 - 0.965 - 0.603
cover - 71967 - 256 - 38 15 - 1.000 - 0.148
edn - 739514 - 256 - 220 120 - 1.000 - 0.859
expint - 2144875 - 113 - 63 36 - 0.441 - 0.558
fdct - 10258 - 126 - 113 62 - 0.492 - 0.897
fft1 * - 257657 - 222 - 154 63 - 0.867 - 0.694
janne_complex - 33778 - 39 - 28 27 - 0.152 - 0.718
jfdctint - 21742 - 132 - 122 54 - 0.516 - 0.924
lcdnum - 6129 - 50 - 14 10 - 0.195 - 0.280
lms * - 10793664 - 242 - 134 38 - 0.945 - 0.554
ludcmp * - 116312 - 210 - 168 44 - 0.820 - 0.800
minver * - 67157 - 256 - 178 47 - 1.000 - 0.695
ndes - 1050167 - 253 - 178 38 - 0.988 - 0.704
nsichneu - 201969 - 256 - 183 2 - 1.000 - 0.715
prime - 7726328 - 79 - 50 38 - 0.309 - 0.633
st * - 3763684 - 192 - 95 52 - 0.750 - 0.495
statemate - 41776 - 256 - 111 2 - 1.000 - 0.434
ud - 349120 - 188 - 161 42 - 0.734 - 0.856

considered and tasks priorities were assigned in deadline-monotonic order. We considered
two values for the block reload time, BRT: 20 cycles and 800 cycles, which are used both in
the calculation of the WCET and the CRPD bounds. The resulting schedulability graphs
can be found in Figures 2b and 2a respectively.

The first observation is that the results in Figures 2a and 2b look very similar; very
much unlike those in Figures 1a and 1b. As the BRT value is taken into account both during
WCET and during CRPD analysis, the WCET and CRPD values in the BRT=800 case are
both about 40 times higher than in the BRT=20 case. As the task periods are generated
based on the WCET values, the periods are similarly 40 times higher on the average, and
thus the relative impact of the preemptions is essentially the same in both cases.

In contrast to the results based on synthetically-generated task characteristics, the UCB-
Only approach performs considerably worse than the other approaches, in particular much
worse than ECB-Only. This is due to the higher number of DC-UCBs in our analysis as we

5 Note, that the authors of [1] refer to DC-UCBs as UCBs in their evaluation.
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(a) Block reload time, BRT = 800.
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Figure 2 Results using synthetic task sets with experimentally determined task characteristics.

have explained in Section 4.2. The UCBMax-Only approach however, performs similarly well
as the rest of the approaches.

In contrast to the results based on synthetically-generated task characteristics, the
ECB-Only approach performs similarly to the more sophisticated approaches that take into
account both ECBs and DC-UCBs. This happens due to the fact that the high number of
DC-UCBs does not help to improve the performance of these other approaches much.

Comparing Figure 2b with Figure 1b, we observe a wider gap between the optimistic No
Preemption Cost and the pessimistic Full Cache Reload approaches. This implies that there
is a greater CRPD overhead in the task sets than is apparent in the case of synthetically-
generated task characteristics at BRT=20, but less than at BRT=800.

5 Conclusions and Open Questions

In this paper, we experimentally evaluate state-of-the-art CRPD-aware timing analysis
approaches. First, we reproduce the response-time analysis results of prior work [1] for purely
synthetic task sets based on our own independent implementation of schedulability analyses,
thereby increasing confidence in the correctness of both implementations.

Choosing a more realistic value for the block reload time than prior work, we obtain
very different results that superficially seem to indicate that the CRPD overhead would
be negligible. To further investigate this issue, we next obtain task characterizations using
static analysis for all benchmarks in the Mälardalen suite. Our analysis results closely match
prior analysis results in case of ECBs, but, surprisingly, not in case of DC-UCBs. Based on
these task characterizations, we generate synthetic task sets and use them to evaluate the
state-of-the-art approaches. We find that
1. The effect of the cache-related preemption delay on the overall response times – and

thus overall schedulability – is not negligible, but smaller than suggested by the original
results in [1].

2. The block reload time does not significantly influence the impact of the CRPD on overall
schedulability, if it is taken into account both during WCET and CRPD analysis.

3. The simple ECB-Only approach is competitive with the more sophisticated alternatives,
such as the UCB-Union-Multiset approach. This is due to the fact that our static analysis
classifies more blocks as DC-UCBs than prior work.

Our findings lead us to conclude that either synthetic task sets should be generated from
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characteristics derived by low-level analysis of actual programs rather than synthetically-
generated characteristics; or better task characteristics generators are required that do not
miss important dependencies between different characteristics such as WCET and number
of ECBs/UCBs. Analogously, we suspect existing synthetically-generated task sets are not
representative of real-world system-level workloads. Thus, obtaining real-world system-level
benchmarks together with the low-level characteristics of the involved tasks is an important
future step.
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1 Introduction

For safety-critical hard real-time systems, it is not only crucial that the software computes
the correct result, but also that this happens in a timely manner. Examples for such software
are the flight control systems of modern aircraft or the crankshaft-synchronized tasks of
automotive motor control systems. One must therefore determine the worst-case execution
time of critical parts of the software to get an embedded system certified.

The execution time of a program depends on three things: The input data of the program,
the state of the CPU core on which the program is executed, and interference from the
outside world (e.g. due to preemption or shared resources). It is thus not sufficient to just
measure the execution time of a task once from start to end, as this measurement might
underestimate the true WCET. Since the determination of the exact WCET is undecidable
in general, WCET analysis tools instead compute estimates or safe upper bounds. There
exist basically two mechanisms to do this [15, 14]:

First, there are static analysis techniques that compute safe upper bounds with the help
of a mathematical model of the execution platform. The precision of the results mostly
depends on the predictability of the used hard- and software architecture [7, 5], but also
on the availability and quality of the documentation concerning the execution time. If a
feature is not described at all, or not well enough, the analysis model must incorporate
the worst possible outcome to ensure soundness. AbsInt’s aiT [2] is such a static WCET
analysis tool.
Second, there are measurement-based/hybrid techniques that obtain execution times from
measurements on the real hardware. However, their soundness depends on whether it is
possible to measure all possible executions of a program, which is usually infeasible due
to the huge state space. AbsInt’s TimeWeaver [4] is such a hybrid WCET analysis tool.

There exists a quasi-standard architecture for static WCET analysis tools. First, a binary
reader disassembles a fully linked binary input executable into its individual instructions.
Architecture specific patterns decide whether an instruction is a call, branch, return or just
an ordinary instruction. This knowledge is used to form the basic blocks of the control flow
graph (CFG). Then, the control flow between the basic blocks is reconstructed. In most
cases, this is done completely automatically. However, if a target of a call or branch cannot
be statically resolved, then the user needs to write some annotations to guide the control flow
reconstruction. On this control flow graph, several static analyses take place to determine
the values of registers and memory cells, addresses of memory accesses, bounds of loops
and recursions, as well as infeasible code. Sometimes, loop bounds cannot be computed
statically. Then, the user can guide the analysis via annotations. With this information, a
microarchitectural analysis is started. There, a mathematical model of the target processor is
used to derive timing bounds for each instruction, incorporating the intrinsic behavior of the
pipeline and the memory hierarchy, in particular the caches. This abstract model does not
cover all the features of the concrete processor, but only those that are relevant for timing
analysis. Subsequently, the CFG together with the basic block timing information are used
to construct an integer linear program (ILP). Solving this ILP gives then a path with the
longest execution time (and consequently, an estimate of the worst-case execution time). For
a measurement-based/hybrid WCET analysis tool, the microarchitectural analysis is replaced
by an analysis step which extracts the basic block timing information from measurements
taken on the real hardware.

The timing analysis tools of AbsInt can be guided via AIS annotations [1]. These
annotations need to be specified on the machine code level, referring to e.g. code addresses
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or memory cells, since the analysis works on the binary level. Usually, they are provided as
extra files. The programmer, however, is normally more apt on the source code level. Thus,
every tool support to bridge the gap between the (high-level) source code and the (low-level)
machine code is welcome. We want to aid the programmer by offering a way to express
annotations on the source level which are then automatically transferred to the binary level.

2 Embedded Program Annotations for aiT

In order to provide an automatic mechanism to transfer annotations from the source code level
to the machine code level, we extended CompCert’s already existing annotation mechanism
via __builtin_annot() to (a) generate AIS compatible syntax for program points, registers,
and memory cells and (b) store the generated annotations in a special section of the
ELF executable. Consequently, we named the mechanism __builtin_ais_annot(). This
mechanism is available in CompCert public version 3.3 and commercial version 18.04, and is
supported in aiT version 18.04.

CompCert collects all annotations contained in a compilation unit and stores them in
encoded form in a special section of the object file (__compcert_ais_annotations, see the
assembler listing in the example below). While creating the final executable, the linker
collects all annotation sections from the object files, concatenates them, and stores the result
in the executable. Since we only use standard constructs of the assembler and linker, no
changes neither to the linker nor to the assembler are necessary. To ensure that the final
executable contains the special annotation section, the linker must be instructed to keep
the section __compcert_ais_annotations, e.g. with a linker command file. Like debug
sections, the annotation section is marked non-allocated/non-executable so that it is not
loaded in the running program. aiT can automatically extract the annotations from section
__compcert_ais_annotations and utilize them in analyses. Note that the order in which
annotations are exported into the final executable is explicitly undefined. It is therefore not
possible to rely on a specific order in which aiT will see the annotations.

For CompCert, annotations via __builtin_ais_annot() look like a call to a variadic
function similar to “printf”: The first argument contains the AIS annotation and is also a
format string. It can contain format specifiers like %here or %e, where the latter is tagged
with an index number and refers to a specific argument independent of the order. It is
also possible to refer to an argument more than once. %here is replaced with the absolute
address of the annotation location in the final executable. Expressions, i.e., %e1, %e2, . . . are
replaced with an AIS expression for the value of the first, second, . . . additional argument.

Furthermore, if the argument of the __builtin_ais_annot() is a constant pointer, the
generated annotation contains the corresponding symbol name. This reference, then, is
resolved by the linker to the address of the symbol, which allows to specify ambiguous
symbols, for example static variables or functions.

Semantics

CompCert treats __builtin_ais_annot() as a call to an external function. No actual
code is generated for the call, but the parameters of the builtin will be evaluated, as it
is mandatory in C semantics. The execution of a __builtin_ais_annot() statement is
modeled as producing an observable event that includes the text of the annotation and the
values of the arguments. CompCert’s formal correctness proof guarantees that, for a C source
program that is deterministic and free of undefined behaviors, the compiled code performs
the same observable events and in the same order as the source code [10, section 2]. This
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Listing 1 Source code annotations as part of dead code.
// assume that count is always zero
for (int i = 0; i < count; i++) {

__builtin_ais_annot ("try loop %here bound: %e1;", count);
...

}

gives strong guarantees that annotations are preserved throughout CompCert’s compilation
and optimization passes.

If all additional arguments are non-volatile C variables or compile-time constant expres-
sions, it is guaranteed that no additional code will be generated for __builtin_ais_annot().
Moreover, the location displayed as a replacement for the %e sequence is guaranteed to be
the location where the corresponding variable resides.

Note that using local variables in parameter expressions to __builtin_ais_annot() may
extend the liveness of those variables and hence prevent some optimizations. Furthermore,
since __builtin_ais_annot() is considered a call to an external function it also acts as a
barrier for many optimizations. In the current implementation, __builtin_ais_annot()
can only be used at places where C statements are valid, i.e. within a function definition.

CompCert has no knowledge about the AIS annotation language and checks neither the
syntax nor the semantics of the annotations. aiT can extract either all annotations embedded
in an executable or none. Analyses that cover only a portion of the binary code – e.g., when
doing a separate analysis for each task of the executable – may therefore issue warnings for
annotations of unreachable program points. The try keyword of AIS can be used to suppress
such warnings.

Robustness

In the context of optimizations and conditional compilation, the builtin is a robust mechanism
to attach annotations to specific code locations. It does not rely on the rather ambiguous
line information of the DWARF debug information, for example in macro usages, but rather
utilizes the label mechanism of the assembler and linker to generate annotations with actual
code addresses.

With the builtin-mechanism it is possible for CompCert to e.g. remove unreachable code
together with the contained annotations or do code transformations like reordering code
blocks without breaking the annotations. Consider the C code snippet in Listing 1. If constant
propagation can prove that count is always zero, CompCert can remove the whole loop since
it will never be executed. In such a situation the annotation will also be removed. In contrast
to this, a conventional source code annotation via special formatted C comments (e.g. /* ai:
...*/) would remain visible and probably cause problems since aiT collects such annotations
by scanning the source code without knowledge of any compiler optimizations. The same is
true, when source code uses the C preprocessor for conditional compilation: CompCert can
remove unused annotations while conventional source code annotations will remain visible
for aiT. Section 4 discusses interactions with compiler optimizations in more details.
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Listing 2 Small C code example.
double func( double x)
{

double data [10] = { ... };

// x is known to be always >= 0.0 and < 10.0
int i = x;

// Refine the value in the location holding variable i
__builtin_ais_annot ("try instruction %here { enter with: %e1 =

↪→ 0..9; };", i);
return data[i];

}

Validation

In order to ensure that the linking was performed correctly, there exist the linker validation
tool Valex. It takes as input a dump of the intermediate representation of the abstract
assembly syntax as well as the linked binary and validates that the functions contained in
the assembly are preserved, the addresses of the symbols are consistent and the initialization
data of global variables is correct. In order to validate that all annotations are correctly
translated and contained in the linked binary, we extended Valex to also check whether the
AIS annotations are contained in the special AIS section __compcert_ais_annotations and
that the addresses of the symbols used in the annotations are consistent.

3 Examples/Use Cases

The following, we present the different parts of the mechanism on an example. Moreover, we
show how to use the annotation mechanism with aiT in, e.g., a software library that will be
integrated in an embedded system.

Refinement/Assertion of Values

The first example is borrowed from [6]. In this example, shown in Listing 2, a double value
with a known range is converted to an integer and used as an index, e.g. to access a look-up
table. aiT has currently no knowledge of floating point values and assumes the full range of
possible values for them. Thus, it needs help to restrict the range of i (and derived from it,
a memory access) to a small range.

CompCert will emit the PowerPC assembly code shown in Listing 3 when compiling the
example code. The assembler code at the labels .L116, .L117 and .L119 corresponds to
the C code shown in the assembler comments below the labels. The assembler code at label
.L120 removes the stack frame, whereas the assembler code at label .L121 performs the
actual return. The format specifier %here has been replaced by CompCert with the label
.L118 which will later be replaced by the assembler/linker with an address. The format
specifier %e1 has been replaced with the register that was allocated to variable i. Finally,
aiT extracts the annotation from the ELF executable, as shown in Listing 4.

WCET 2018



8:6 Embedded Program Annotations for WCET Analysis

Listing 3 Assembly code generated by CompCert for the example in Listing 2.
.L116:
; int i = x;

fctiwz f13 , f1
stfdu f13 , -8(r1)
lwz r5 , 4(r1)
addi r1 , r1 , 8

.L117:
; __builtin_ais_annot (" try instruction %here { enter with: %e1 =

↪→ 0..9; };", i);

.L118: .L119:
; return data[i];

addi r3 , r1 , 16
rlwinm r4 , r5 , 3, 0, 28 ; 0 xfffffff8
lfdx f1 , r3 , r4

.L120:
addi r1 , r1 , 96

.L121:
blr

...

. section " __compcert_ais_annotations ",,n

.ascii "# file:test.c line :25 function :func\ntry instruction "

.byte 7,4

.4 byte .L118

.ascii " \{ enter with: reg ("r5") = 0..9; \};"

.ascii "\n"

Listing 4 Annotation extracted by aiT.
# file:test.c line :25 function :func
try instruction 0 x10013c { enter with: reg ("r5") = 0..9; };

Besides its use for the refinement of values, the annotation mechanism can also be used
to insert “assert” annotations about known value ranges of variables or function parameters
(see Listing 5). aiT will then report if any assertion is violated.

Loop and Recursion Bounds

Loop or recursion bounds cannot always be automatically derived by aiT’s value analysis.
A (probably overestimated) annotation can be specified in the source code of a common
library routine to ensure that aiT can compute reasonable results without annotation effort
or to increase analysis precision at specific code locations. If necessary, users of aiT can
improve this annotation by giving more specific annotations for the actual analysis context.
Listing 6 shows a data-dependent loop where the bound depends on the input parameter of
the surrounding function. This fact can easily be expressed with __builtin_ais_annot().
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Listing 5 Assertion of input values of a function to be validated by aiT.
int func(int a, int b, int c)
{

__builtin_ais_annot ("try instruction %here {\n"
" assert always enter with: %e1 in (0..7) ;\n"
" assert always enter with: %e2 in (2..4) ;\n"
" assert always enter with: %e3 in (1..9) ;\n"
"};", a, b, c);

...
}

Listing 6 Specifying a bound for a data-dependent loop.
int strncmp_x (char s[], char t[], int len)
{

int i;
for (i = 0; i < len && ...; i++) {

__builtin_ais_annot ("try loop %here bound: %e1;", len);
...

}
return 0;

}

Sometimes the analysis precision can be greatly improved if the first x iterations of a loop
can be distinguished. aiT supports this via virtual unrolling1. Note that this does not change
the binary, nor does it affect the compilation process in any way. Instead, aiT uses analysis
contexts to distinguish the first n loop iterations from all following ones. An annotation that
enables the virtual unrolling of the first 49 iterations of a loop is shown in Listing 7.

In case of busy-waiting loops, no loop bound can be derived statically. However, it is also
not easy to derive the maximal number of iterations manually, because this number depends
on the execution time of the loop body. aiT supports a way to specify the loop bounds of
busy-waiting loops depending on their worst-case waiting times, see Listing 8.

Finally, in automotive software, it is often the case that some implicit recursion happens
during error handling. For these cases, we need to specify recursion bounds as shown in
Listing 9.

Memory Areas

The properties and contents of memory areas can also be specified for aiT. For example,
special care needs to be taken when accessing memory-mapped sensors and other devices
which provide data via asynchronously updated buffers. We can specify that these buffers
are read-only and volatile, see Listing 10.

1 For historical reasons, aiT uses the name virtual unrolling, but virtual loop peeling might be a better
name.
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Listing 7 Providing unrolling hints for loops for improved precision in aiT.
# define MAX_STR_LEN 50

void strcpy_x (char s[], char t[])
{

int i = 0;
while (( s[i] = t[i] ) != ’\0’) {

__builtin_ais_annot ("try loop %here mapping { default unroll :
↪→ %e1; }", MAX_STR_LEN );

...
}

}

Listing 8 Specifying a time bound for a busy waiting loop.
void openCanSocket ( volatile struct device_t * device )
{

...
// Busy wait for ACK. Assume a worst -case timing of 23 us
while (device -> bus_data != 0x00) {

__builtin_ais_annot ("try loop %here takes: 23 us;");
}
...

}

Another common pattern – shown in Listing 11 – is to copy calibration data from ROM
to RAM once when the system boots. Without further annotations aiT usually cannot know
which data is stored in the calibration vector. With the copy area annotation, the precision
of the analysis can be improved.

4 Interactions with Compiler Optimizations

Compiler optimizations can complicate the transmission of source-level annotations to the
compiled code: if done carelessly, optimizations can remove annotations, or render them
inapplicable to the code after optimization.

Preservation guarantees for annotations

As mentioned in section 2, CompCert’s proof of semantic preservation guarantees that
annotations are not erased during compilation, unless they occurred in parts of the code that
are unreachable during execution, and that they not reordered or moved in the generated
code, relative to each other and relative to other observable actions (such as external
function calls and accesses to volatile variables). The proof does not rule out the possibility
that optimizations would move annotations around pure, non-observable computations.
However, this is not the case for CompCert’s optimizations, which are conservative and
make no attempts to optimize around calls to unknown functions, which include annotation
statements. Another reason why CompCert preserves the position of annotations relative to
the code is that it currently performs no loop optimizations, as discussed below.
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Listing 9 Specifying a recursion bound and an incarnation bound for a recursive routine.
void errorHook ( unsigned char err_code )
{

__builtin_ais_annot ("try routine %e1 {\n"
" recursion bound: 1;\n"
" incarnation limit: 1;\n"
"}", & errorHook );

...
}

Listing 10 Memory areas that are used for external devices can be marked accordingly.
volatile char* device_buffer [128];

void init_device ()
{

__builtin_ais_annot ("area %e1 width %e2 {\n"
" readable : true ;\n"
" writable : false ;\n"
" volatile ;\n"
"};", & device_buffer , sizeof ( device_buffer ));

...
}

Invariance of annotation texts

CompCert is agnostic with respect to the annotation language: it gives no specific meaning
to the annotation strings and never modifies them during optimization. Consequently, an
annotation that mentions functions or variables by their names can become pointless as a
result of optimization.

Consider the example shown in Listing 12. After inlining, the annotation occurs within
function g but still refers to an instruction in function f. The hardcoded reference to f in
the annotation text must be replaced by a relative code position %here.

Similarly, if a static variable is mentioned by name in an annotation but unused anywhere
else, CompCert will remove this variable and make the annotation meaningless. To avoid this
risk, the variable should appear as an explicit argument of the annotation (see Listing 13).

Moreover, dead code elimination may remove annotations that have a global effect (see
Listing 14).

Finally, some AIS annotations about function calls can become inapplicable if the call is
turned into a jump by CompCert’s tail call optimization. The workaround here is to turn
tail call optimization off.

Towards loop optimizations

It is well known that program annotations that bound the number of iterations of a loop are
difficult to maintain in the presence of loop optimizations [12]. CompCert does not address
this problem since currently it does not perform any optimizations over loops. If classic
loop optimizations were added in the future, they would combine poorly with loop count

WCET 2018



8:10 Embedded Program Annotations for WCET Analysis

Listing 11 A source level annotation to specify which data is copied from ROM into RAM.
volatile char calibration_data [ __CALIBRATION_ROM_SIZE ];

// setup at boot time
void init_calibration_data ()
{

__builtin_ais_annot ("copy area %e1 width %e2 from %e3;}",
& calibration_data ,
__CALIBRATION_ROM_SIZE ,
(void *) __CALIBRATION_ROM_START );

memcpy (( void *) calibration_data , (void *) __CALIBRATION_ROM_START ,
↪→ __CALIBRATION_ROM_SIZE );

}

Listing 12 A source level annotation that is not robust regarding inlining.
static inline void f(void)
{

__builtin_ais_annot ("try routine ’f’ ...");
...

}

int g(int x)
{

...
f();
...

}

annotations expressed with __builtin_ais_annot(). First, most optimizations over loop
nests, such as loop interchange or loop blocking, change the order in which iterations are
performed. Hence, they do not apply if the loop body can perform observable operations
such as I/O. CompCert’s annotations being observable operations, the presence of one or
several __builtin_ais_annot() to give loop bounds would inhibit these optimizations.

Second, optimizations such as loop unrolling make upper bounds on the number of loop
iterations inaccurate (unrolling by a factor of k divides the number of iterations by k). Yet,
in the CompCert approach, such an optimization is not allowed to rewrite the annotation to
adjust the loop count, because this would change the observable behavior of the annotation
according to the formal semantics. This is a real conundrum with no easy workaround.

5 Related Work

CompCert [11, 3] already supports an annotation mechanism via __builtin_annot() [6].
There, the annotation string is printed as a comment in the generated assembly code. An
additional tool can be used to parse these comments and to generate annotations, e.g. for
aiT. Our work makes this extra annotation generator superfluous, as we print annotations
that are (a) already in the right syntax to be understandable by aiT and (b) are directly
stored in the executable binary.
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Listing 13 Explicit references to variables increase robustness.
__builtin_ais_annot ("... static_var ..."); // risky
__builtin_ais_annot ("... %e1 ...", & static_var ); // safe

Listing 14 Dead code elimination may remove annotations.
int x = 5;
if (x == 7) {

__builtin_ais_annot ("# some global AIS annotation "); // removed
}

The ENTRA (Whole-Systems ENergy TRAnsparency) Deliverable D2.1 “Common As-
sertion Language” [8] describe a similar mechanism to transfer properties from the source to
the machine level. Pragmas are used to specify properties which are translated to comments
written as inline assembler statements. These comments need to be extracted from the
assembler files, as they are not stored in the final binary.

WCC [9] also uses pragmas to specify properties on the source code level. During
compilation, which also contains steps to optimize the worst-case timing behavior, the
compiler framework translates these properties into annotations for aiT in order to steer the
WCET estimation of intermediate binaries. WCC only covers a subset of the annotations
possible with AIS – loop bounds and linear flow constraints – whereas our approach allows
to exploit the full power of the AIS annotation language. On the other hand, WCC is able
to transform the annotations when applying optimizations like loop unrolling.

Li, Puaut and Rohou [12] present a framework in which annotations on the source
code are transformed into annotations on the binary level in the presence of compiler
optimizations. They focus on loop count annotations and their preservation through classic
loop optimizations. Our approach cannot deal with loop optimizations yet, but supports a
more general annotation language and provides formal correctness guarantees.

aiT allows to extract AIS annotations from source code via special markers in C comments
[1], for example: /* ai: loop here bound: 10; */. However, the special program point
here might not be resolvable due to compiler optimizations. Moreover, whenever source
code annotations are extracted from a source file, the whole file is scanned for AIS comments
independent from any #if, #ifdef, or #ifndef preprocessor directives.

TuBound [13] uses pragmas to annotate additional knowledge for the timing analysis. In
contrast to aiT, which operates on fully linked binaries, TuBound incorporates a compiler
and takes C code as input.

6 Conclusions and Future Work

CompCert’s annotation mechanism via __builtin_ais_annot() enables programmers to
reliably annotate flow facts on C source code level and reason about C variables instead of
using code addresses or processor registers. Its versatility allows to exploit the full power
of the AIS annotation language used by aiT. These annotations are automatically carried
through the compilation chain and the linked executable into aiT without using external
annotation files. Thus, version mismatch between executable and annotations is successfully
prevented, which is especially useful for binary code libraries. Program points and other
addresses survive recompilation, thus easing the maintenance effort needed for annotations.
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There are two shortcomings of the current implementation of __builtin_ais_annot():
First, due to its treatment as a call to an external function, it cannot be placed at the
top-level of a compilation unit, unlike, for example, a variable declaration. Second, since all
annotations are merged in a single section, they cannot be extracted individually. We wish
to address these shortcomings in future work.
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1 Introduction

Real-time systems play an important role in our daily life. In hard real-time systems,
computing correct results is not the only requirement. Results must be also produced within
pre-determined timing constraints, typically deadlines. To obtain strong guarantees on
the system temporal behavior, designers must compute upper bounds of the Worst-Case
Execution Times (WCET) of the tasks composing the system, in order to finally guarantee
that they meet their deadlines. Standard static WCET estimation techniques [18] compute
such bounds from static analysis of the machine code. Their goal is to obtain a safe and
accurate estimation of a task execution time on a given hardware platform. The safety
criterion ensures that the WCET holds for any possible execution of the task on the target
platform, whereas accuracy avoids resource over-provisioning.

WCET analysis is confronted with the challenges of extracting knowledge of the execution
flow of an application from its machine code. In particular, loop bounds are mandatory to
estimate WCETs. Extraction of flow information can be performed automatically by static
WCET analysis tools, or guided by the designer through flow facts (loop bounds, unfeasible
paths) expressed using source-level annotations.

Compiler optimizations are well known to significantly improve the (average-case) per-
formance of programs, but raise issues regarding WCET estimation. On the one hand,
automatic detection of loop bounds may not be feasible anymore because the generated
code is more complex and less amenable to static analysis. On the other hand, manual
annotations may not be valid anymore after the code optimizations (loops may have been
unrolled, re-rolled, split, fused, or may simply have disappeared from the code).

To safely benefit from compiler optimizations, in this paper, we explore the use of iterative
compilation (exploration of the optimization space) to minimize WCETs instead of average-
case in the original use of iterative compilation [6, 2, 4]. More precisely, our contributions
are the following:

We propose and evaluate coarse-grain (application-level) WCET-oriented optimization
exploration strategies. Each of the two proposed strategies selects a sequence of op-
timization passes that (i) allows static WCET analysis tools to automatically detect
loop bounds (i.e. disregards optimizations making the WCET estimation fail because
it is unable to detect some loop bounds without the use of annotations); (ii) results in
the lowest estimated WCET. Two strategies are proposed, the former based on random
selection of optimization sequences and the latter using a genetic algorithm.
We detail and provide preliminary experimental data on a fine-grain (code snippet-level)
WCET-oriented optimization exploration strategy, that allows different optimization
per code snippet. Interesting code snippets (for the scope of this paper, loops) are
outlined, to allow different optimization sequences within a same function. This enables
selective application of optimizations: code snippets for which static WCET estimation
tools can detect loop bounds with optimizations can be aggressively optimized, whereas
the remaining parts can be left un-optimized and later fed with source-level flow fact
annotations [13].

Experiments were conducted using the LLVM [12] compilation framework, that allows fine
control over optimization passes, and aiT [1], the industry standard for static WCET analysis.
The target architecture is the Leon3 core, used to build a predictable multi-core architecture
in the framework of the Argo H2020 project1.

1 The work presented in this paper is part of ARGO (http://www.argo-project.eu/), funded by the
European Commission under Horizon 2020 Research and Innovation Action, Grant Agreement Number
688131.

http://www.argo-project.eu/
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The rest of this paper is organized as follows. We first introduce in Section 2 the
background on compilation optimization and static WCET estimation. Section 3 presents
the coarse-grain and fine-grain strategies to explore the optimization space in order to
both enable automatic flow fact derivation and minimize WCET estimates. Section 4 then
describes the experimental setup used to evaluate their quality. Section 5 is devoted to an
extensive experimental evaluation of the impact of optimizations on WCET estimates, with
and without the proposed techniques. We conclude in Section 6.

2 Background & Related Work

Turning on compiler optimizations impacts static WCET estimation from two respects. First,
automatic detection of flow information, in particular loop bounds that are mandatory for
WCET estimation, may not be feasible anymore because the transformed code is more
complex and less amenable to static analysis. Second, manual source-level annotations may
not be valid anymore after the code transformations, in particular the ones deeply modifying
loops (loop unrolling, re-rolling, fusion, splitting, among others).

To address these issues, one solution would be to use some feedback provided by the
compiler [3] to identify which optimizations were applied, in which ordering and with which
parameter, and to transform manually-provided source-level flow information accordingly.
However, the level of feedback provided by state-of-the-art compilers is still very limited.
Another approach is to instrument the compiler such that it transforms source-level flow
information jointly with code transformations, as done by several authors within gcc [11],
LLVM [14, 15] or WCC [17]. This however imposes to stick to a given compiler version,
or to maintain the flow-fact co-transformation framework along compiler versions. This is
the approach followed by the WCC compiler infrastructure [9], containing WCET-oriented
optimization and flow fact traceability features. Although a compiler designed specifically
for WCET has many benefits, it lacks many optimizations available in standard compilation
toolchains such as gcc/LLVM.

In this paper, we experiment a completely different approach based on the principles
of iterative compilation, which is a now mature technology in compilers for optimizing
(average-case) performance [6, 2]. The benefits of our approach are twofold. First, we rely
on standard industrial strength compiler toolchain to benefit from their large number of
available optimizations. Second, we consider the compiler as a black box and adapt the
optimization sequences to the code under study to minimize the WCET. Our metrics for
evaluating the quality of optimization sequences differ from standard iterative compilation:
WCET is optimized instead of average-case performance, and optimizations sequences may
be regarded as invalid if static WCET estimation fails at determining loop bounds. One
of the hardest challenge in iterative compilation is dealing with the sensitivity of execution
performance to input data. Interestingly, this issue does not manifest in our case, because
WCET estimation is by definition insensitive to input data, making our approach even more
relevant.

3 Proposed WCET-directed Optimization Strategies

Our approaches combine two techniques, with the variation of the optimized code granularity
presented in Section 3.1, and the iterative strategies to explore the resulting optimization
space in Section 3.2.

WCET 2018
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rank rank

Figure 1 Crossover operation in genetic exploration.

3.1 Optimization Granularity
The intuitive way to optimize an application is to compile all its functions with the same
optimization options. We refer to this approach as coarse-grain optimization in the rest of
the paper.

However, a single problem in a part of the application code, due to the application of an
optimization, can forbid the use of that optimization on the whole application. To circumvent
this difficulty, we propose to use different optimizations sequences on different parts of the
code. In order to isolate a block of code to apply different optimizations we use outlining [16].
With this technique, the code snippet to isolate is replaced by a call to a new function that
implement the same functionality. All variables used by the code snippet are passed as
parameters to the generated function. The naive way to pass arguments is to pass everything
by reference, which may significantly increase the average and the worst case execution time.
Using liveness [5] properties of the used variables, we can filter which variable needs to be
passed by reference or value. In our implementation all arrays are passed by reference; scalars
are passed by reference if they are live-out, and by value otherwise; pointers which may be
modified are similarly passed by reference.

In this work we systematically outline all outer loops, using to the GeCoS source-to-source
code transformation framework [10]. Different optimizations sequences are generated, for the
original functions, and also for each new function generated by loop outlining. We refer to
this approach as fine-grain optimization in the rest of the paper.

3.2 Iterative Optimization Space Exploration Strategies
We designed two strategies to explore the optimization space:

Random exploration. For this strategy, for each experiment the number of optimization
passes to be applied is selected randomly. The sequence of passes to be applied is then
constructed, each optimization in the sequence being selected randomly, with no attention
paid to duplicated optimization passes. This random selection of optimizations is repeated
a fixed number of times.
Genetic exploration. A population is set-up, each individual representing a sequence of
optimization passes to be applied. Individuals in the population are selected for breeding.
At every generation, there is a probability of mutation of individuals (here change of
one pass in the optimization sequence, selected randomly). Then, the population is
doubled in size by randomly selecting N pairs of individuals for breeding. Each pair
gives birth to two children by crossover. Figure 1 gives an example of crossover. A rank
in the optimization sequence is selected randomly and the sequences of optimizations
are swapped. Similarly to random exploration, to keep the implementation simple, no
attention is paid to duplicated passes in an optimizations sequence. The optimizations
sequences for the initial individuals are selected randomly (using the same techniques
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as in the random exploration strategy). At each generation, the N best individuals
(optimizations sequences for which aiT succeeds in estimating loop bounds, keeping the
N lower WCET values) are kept.

4 Experimental Setup

This section presents our experimental setup. We first briefly discuss our choice of input
benchmarks. We then describe the compiler and WCET tools used in our experiments, before
detailing the parameters of our optimization space search strategies.

4.1 Corpus of Codes
Experiments were conducted on two image processing data benchmarks (Harris and PIPS,
see description in Table 1) from the Mälardalen WCET benchmark suite2 and from the
PolyBench/C benchmark suite3. We restricted our study to the benchmarks analyzable
by aiT with no additional information when compiled without optimization (-O0). This
excludes the benchmarks that call library functions (libmath, libc) that need manual flow
annotations. The complete list of benchmarks is given in Table 1 with a small description of
each benchmark.

4.2 Compiler and WCET Estimation Tools
Programs are compiled using LLVM [12], version 4.0.0, targeting the Leon3 architecture
(Sparc instruction set). Programs are first compiled into LLVM bitcode using the clang front-
end, before using the opt LLVM optimizer to selectively apply optimization passes and then
generating a Leon3 executable. opt takes as parameters an ordered list of optimization passes.
opt automatically applies any analysis passes required when turning on a given optimization.
The order of application of optimizations is respected unless there are dependencies between
passes, in which case opt reorders the passes to respect the dependencies. At this stage of
our work, we assume the combination of optimization passes to be correct. This will need to
be verified for certification concerns, and is considered outside the scope of the paper.

Programs WCETs are estimated using aiT, the industry standard for static WCET
analysis, version 17.04, for the Leon3 target [1], configured with no cache. No flow annotations
are given to aiT, resulting in situations where the tool is not able to derive them automatically
on the optimized code. The virtual unrolling factor of aiT used by its value analysis is set
to 2.

Detection of loop bounds in aiT uses an interprocedural data-flow based analysis operating
at assembly level. The analysis first searches for loop counters (registers or memory cells
with known value when entering the loop). Potential loop counters are further examined by
a data-flow analysis to derive loop invariants (expressions indicating how the loop counter is
modified at each iteration). More details can be found in [7].

4.3 Parameters of Optimization Exploration Strategies
To provide a fair comparison, the same number of optimization sequences were experimented
on each benchmark. For random exploration, 1000 random optimizations sequences were
generated. By default, our genetic exploration generated optimizations sequences from 10

2 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
3 http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
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Table 1 Corpus of programs.

Harris Classical Harris corner detection algorithm.
PIPS Industrial use case from the ARGO project [8]. Image processing pipeline for

post-processing raw data from a polarized image sensor.
cnt Counts non-negative numbers in a matrix
cover Program for testing many paths.
crc Cyclic redundancy check computation on 40 bytes of data.
des DES and Triple-DES encryption/decryption algorithm.
duff Using “Duff’s device” from the Jargon file to copy 43 bytes array.
expint Series expansion for computing an exponential integral function.
fdct Fast Discrete Cosine Transform.
fir Finite impulse response filter (signal processing algorithm) over a 700 items

long sample.
jfdctint Discrete-cosine transformation on a 8x8 pixel block.
lcdnum Read ten values, output half to LCD.
ludcmp LU decomposition algorithm.
matmult Matrix multiplication of two 20x20 matrices.
ns Search in a multi-dimensional array.
nsichneu Simulate an extended Petri Net.
qurt Root computation of quadratic equations.
sqrt Square root function implemented by Taylor series.
statemate Automatically generated code.
ud Calculation of matrices.
covariance Co-variance computation.
2mm 2 Matrix multiplications.
3mm 3 Matrix multiplications.
atax Matrix transpose and vector multiplication.
bicg BiCG sub kernel of BiCGStab linear solver.
doitgen Multi-resolution analysis kernel (MADNESS).
mvt Matrix vector product and transpose.
gemm Matrix multiply.
gemver Vector multiplication and matrix addition.
gesummv Scalar, vector and matrix multiplication.
symm Symmetric matrix-multiply.
syr2k Symmetric rank-2k operations.
syrk Symmetric rank-k operations.
trmm Triangular matrix-multiply.
durbin Algorithm for solving Yule-Walker equations.
lu LU decomposition without pivoting.
ludcmp Solving a system of linear equations using LU decomposition followed by

forward and backward substitutions.
trisolv Triangular solver.
floyd-warshall Finds the shortest path in a graph.
nussinov Algorithm for predicting RNA folding using dynamic programming.
adi Alternating Direction Implicit solver.
fdtd-2d 2-D finite different time domain kernel.
heat-3d Solving of heat equation over 3D space.
jacobi-1D 1-D Jacobi stencil computation.
jacobi-2D 2-D Jacobi stencil computation.
seidel-2D 2-D Seidel stencil computation.
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Figure 2 Ability to derive WCETs at -O1, -O2 and -O3.

generations of 100 individuals each (same number of distinct optimization sequences as
random exploration). 15% of individuals are mutated at each generation.

In the coarse-grain case, all files are compiled using the same optimizations sequence,
while fine-grain optimization uses different sequences for each file. Regarding the extension of
the genetic exploration strategy to fine-grain, the implemented mutation operator mutates all
files (with a different mutation per file). Similarly, we chose to apply the crossover operation
to all files when breeding two individuals.

5 Experimental Evaluation

In this section, we look at the impact of standard optimizations levels on the WCET estimates,
and then evaluate our coarse-grain and fine-grain optimization selection strategies.

5.1 Impact of Optimizations on the Ability to Derive Flow Information
LLVM comes with four optimization levels -O0 (no optimization applied) to -O3 (highly
optimized code). Figure 2 gives for all optimizations levels beyond -O0 (-O1, -O2, -O3 ) the
ratio WCET−Oi / WCET−O0 expressed in percentage (the lower the better). No bar for a
given optimization level means that aiT was not able to detect loop bounds automatically.

The results show that in most situations, turning on optimizations results in lower WCET
estimates than when compiling with option -O0 (ratio WCET−Oi / WCET−O0 lower than
100 %). However, in some cases (benchmarks qurt and sqrt and des) optimized codes result
in larger WCETs than non-optimized ones. For some benchmarks (harris, pips, trmm, lu,
ludcmp, nussinov), aiT was not able to extract loop bounds when optimizations are turned on

WCET 2018
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Figure 3 Impact of independent optimization passes on estimated WCET (application PIPS).

(depicted as red bars below the x-axis in the figure). Finally and surprisingly, for benchmark
trmm aiT was not able to detect loop bounds at -O1 and -O2 but was able to estimate loop
bounds at -O3. One can also note that the levels of optimization (from -O1 to -O3) have
similar impact on estimated WCETs.

To detect which individual optimizations make automatic for loop bounds detection fail,
we activated each optimization pass individually and estimated the resulting WCET using aiT.
Experimental results are presented in Figure 3, that gives for each optimization WCEToptim

/ WCET−O0, when optimization pass optim is activated on benchmark pips. Results show
that optimization passes, even if only one of them is activated at a time, can significantly
lower estimated WCETs, but may also have a negative impact. For example in benchmark
pips, pass -jump-threading4 makes aiT unable to estimate loop bounds; optimization pass
-loop-rotate (classical loop rotation) reduces the estimate WCET of 15% and optimization
pass -simplifycfg (dead code elimination and basic block merging) augments it of 7%.

Note that this experiment does not allow us to identify optimization passes that made
aiT systematically fail to identify loop bounds. This is because activating an optimization
pass does not imply that the optimization is actually triggered (e.g. pre-conditions are not
always met). Passes -gvn, -jmp-threading, -instcombine, -licm -mem2reg, -sroa, -lowerswitch
when activated made estimation of loop bounds fail for some programs. Pass -jmp-threading
was the most harmful (aiT was unable to estimate a WCET on 20 benchmarks out of 46
when this optimization turned on).

We performed an in-depth analysis of the code generated by LLVM on a very small
code snippet (simple loop initializing an array), with optimization -jmp-threading turned
on, to identify why loop bound estimation fails on the generated code. It turns out that
LLVM duplicates the loop induction variable: the first variable is used to index the array,
whereas the second one is used in the loop exit test; the first variable is incremented, and
then copied into the second one. The initial loop bound analysis of aiT was not able to
demonstrate that the two induction variables were actually a single one and were equal at all
times. The issue was fixed in aiT to correctly detect the loop bound when such a code is

4 This pass looks at blocks that have multiple predecessors and multiple successors. If one or more of the
predecessors of the block can be proven to always cause a jump to one of the successors, it forwards the
edge from the predecessor to the successor by duplicating the contents of this block.
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Figure 4 Coarse grain exploration of optimization space.

generated. Understanding why the optimization passes other than -jmp-threading generate
hard-to-analyze code is left for future work.

5.2 Evaluation of Coarse-Grain Optimization Selection Strategies
Figure 4 presents the experimental results for all benchmarks. The first important remark
on the experimental results is that for all benchmarks aiT was able to derive loop bounds
automatically, even in the situations where some optimization levels made it impossible
before (benchmarks harris, pips, trmm, lu, ludcmp, nussinov). On all benchmarks, exploring
the optimization space using random exploration resulted in WCET estimates lower than the
best WCET possible with -O1, -O2 and -O3. The gain is most of the time significant (21%
on average as compared with the best optimization level). Finally, except for benchmarks crc
and qurt, genetic exploration outperforms random exploration. Preliminary experiments with
genetic exploration made us select large populations and low number of generations, that
turned out to give better WCET estimates than lower population sizes and larger number of
generations.
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5.3 Evaluation of Fine-Grain Optimization Selection Strategies
Due to time constraints, experiments of the proposed fine-grain optimization strategies were
conducted on the image processing benchmarks harris, pips and the Mälardalen benchmarks
only. We further restricted the benchmarks to the ones containing loops, and avoided those
containing a single loop that covers the entire code. Results are given in Figure 5, showing
three values for each benchmark: WCETcoarse/WCET−O0, WCETfine10steps/WCET−O0
(10 generations) and WCETfine20steps/WCET−O0 (20 generations instead of the default
value of 10).

The first results obtained are encouraging (improvement of 37 % of the WCET estimates
on average). On 6 out of the 9 benchmarks analyzed (all but the 3 ones at the right of the
figure), the fine-grain genetic exploration outperforms the coarse-grain exploration. Moreover,
for all benchmarks except one, having 20 generations instead of 10 significantly improves
WCETs, at the cost of an analysis time twice longer. This result is expected, since the
optimization space to be explored is much larger than for the coarse-grain strategy. We
believe there is room left for improvements, by tuning the parameters of the genetic algorithm
to better deal with the very large optimization space to be explored, or avoid the cost of
outlining when not beneficial to the WCET.

6 Conclusion

Compiler optimizations are known to add challenges when estimating the WCET of applica-
tions. Hence it is quite common to disable them when dealing with critical systems. In this
paper, we proposed an iterative compilation workflow to reconcile timing critical applica-
tions with compiler optimizations. Our methods, based on optimization space exploration,
show a significant tightening of the estimated WCETs. Our first exploration of fine-grain
application of optimizations demonstrated opportunities to further reduce WCET estimates
(improvement of 37 % of the WCET estimates on average). Future work is still needed
to take full benefit of fine-grain exploration of optimizations. A first direction is to better
explore the very large optimization space, for example by concentrating the optimization
effort of regions having the most impact on worst-case performance. Another direction is to
develop techniques to better select the code snippets to be outlined: outlining has a cost
(extra function call and parameter passing) that has to be avoided when outlining is not
beneficial to the WCET. Symmetrically, we still need to explore which code sequences would
benefit from being outlined and not optimized, such that manual source-level annotations
can be given when more beneficial to WCET estimates than compiler optimizations and
automatic flow fact extraction.
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