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Preface

Running and optimizing transportation systems give rise to very complex and large-scale
optimization problems requiring innovative solution techniques and ideas from mathematical
optimization, theoretical computer science, and operations research. Since 2000, the series of
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS)
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 17th ATMOS workshop (ATMOS’17) was held in connection with ALGO’17 and
hosted by Technische Universität Wien in Vienna, Austria, on September 7–8, 2017. Topics
of interest were all optimization problems for passenger and freight transport, including,
but not limited to, demand forecasting, models for user behavior, design of pricing sys-
tems, infrastructure planning, multi-modal transport optimization, mobile applications for
transport, congestion modelling and reduction, line planning, timetable generation, routing
and platform assignment, vehicle scheduling, route planning, crew and duty scheduling,
rostering, delay management, routing in road networks, and traffic guidance. Of particular
interest were papers applying and advancing techniques like graph and network algorithms,
combinatorial optimization, mathematical programming, approximation algorithms, methods
for the integration of planning stages, stochastic and robust optimization, online and real-time
algorithms, algorithmic game theory, heuristics for real-world instances, and simulation tools.

All submissions were reviewed by at least three referees and judged on originality, technical
quality, and relevance to the topics of the workshop. Based on the reviews, the program
committee selected seventeen submissions to be presented at the workshop, which are collected
in this volume. Together, they quite impressively demonstrate the range of applicability of
algorithmic optimization to transportation problems in a wide sense. In addition, Daniel
Delling kindly agreed to complement the program with an invited talk.

Based on the program committee’s reviews, Julius Pätzold, Alexander Schiewe, Philine
Schiewe, and Anita Schöbel won the Best Paper Award of ATMOS’17 with their paper
“Look-Ahead Approaches for Integrated Planning in Public Transportation”.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS’17, all the authors who submitted
papers, Daniel Delling for accepting our invitation to present an invited talk, the members
of the Program Committee and the additional reviewers for their valuable work in selecting
the papers appearing in this volume, and the local organizers for hosting the workshop as
part of ALGO’17. We also acknowledge the use of the EasyChair system for the great help
in managing the submission and review processes, and Schloss Dagstuhl for publishing the
proceedings of ATMOS’17 in its OASIcs series.

August, 2017

Gianlorenzo D’Angelo
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Abstract
We study a variation of the Online-Dial-a-Ride Problem where each request comes with not only
a source, destination and release time, but also has an associated revenue. The server’s goal
is to maximize its total revenue within a given time limit, T . We show that the competitive
ratio is unbounded for any deterministic online algorithm for the problem. We then provide a
3-competitive algorithm for the problem in a uniform metric space and a 6-competitive algorithm
for the general case of weighted graphs (under reasonable assumptions about the input instance).
We conclude with an experimental evaluation of our algorithm in simulated settings inspired by
real-world Dial-a-Ride data. Experimental results show that our algorithm performs well when
compared to an offline version of the algorithm and a greedy algorithm.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, G.1.6 Optimization

Keywords and phrases online algorithms, dial-a-ride, competitive analysis, vehicle routing, met-
ric space

Digital Object Identifier 10.4230/OASIcs.ATMOS.2017.1

1 Introduction

In the On-Line Dial-a-Ride Problem (OLDARP), a server travels in some metric space to
serve requests for rides. The server has a capacity that specifies the maximum number of
requests it can serve at any time. The server starts at a designated location of the space, the
origin, and moves along the space to serve requests. Requests arrive dynamically and each
request specifies a source, which is the pick-up (or start) location of the ride, a destination,
which is the delivery (or end) location, and the release time of the request, which is the
earliest time the request may be served. For each request, the server must decide whether to
serve the request and at what time, with the goal of meeting some optimality criterion. In
many variants preemption is not allowed, so if the server begins to serve a request, it must
do so until completion. On-Line Dial-a-Ride Problems have many practical applications in

© Ananya D. Christman, Christine Chung, Nicholas Jaczko, Marina Milan, Anna Vasilchenko, and
Scott Westvold;
licensed under Creative Commons License CC-BY
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1:2 Revenue Maximization in Online Dial-A-Ride

settings where a vehicle is dispatched to serve requests involving pick-up and delivery of
people or goods. Important examples include ambulance routing, transportation for the
elderly and disabled, taxi services, and courier services.

We study a variation of the Online-Dial-a-Ride Problem where in addition to the source,
destination and release time, each request also has a priority and there is a time limit within
which requests must be served. The server has unit capacity and the goal for the server
is to serve requests within the time limit so as to maximize the total priority. A request’s
priority may simply represent the importance of serving the request in settings such as
courier services. In more time-sensitive settings such as ambulance routing, the priority may
represent the urgency of a request. In profit-based settings, such as taxi and ride-sharing
services, a request’s priority may represent the revenue earned from serving the request. For
the remainder of this paper, we will refer to the priority as “revenue,” and to this variant of
the problem as ROLDARP.

1.1 Related Work
The Online Dial-a-Ride problem was introduced by Feuerstein and Stougie [8] and several
variations of the problem have been studied since. For a comprehensive survey on these and
many other problems in the general area of vehicle routing see [11]. The authors of [8] studied
the problem for two different objectives. One was to minimize the time to serve all requests
and return to the origin (also known as completion time); the other was to minimize the
average completion time of the requests (also known as latency). For minimizing completion
time, they showed that any deterministic algorithm must have competitive ratio of at least 2
regardless of the server capacity. They presented algorithms for the cases of finite and infinite
capacity with competitive ratios of 2.5 and 2, respectively. For minimizing latency, they
proved that any algorithm must have a competitive ratio of at least 3. They also presented a
15-competitive algorithm for the infinite capacity problem on the real line.

Ascheuer et al. [1] studied minimizing total completion time for OLDARP with multiple
servers and capacity constraints and presented a 2-competitive algorithm for this problem.
Jaillet and Wagner [10] considered a version of OLDARP where each request consists of one
or more locations, and precedence and capacity requirements for the locations. To serve a
request the server must visit each location, while satisfying the requirements. The authors
provided a non-polynomial 2-competitive algorithm for minimizing completion time.

The Online Traveling Salesperson Problem (OLTSP), introduced by Ausiello et al. [2], is
a special case of OLDARP where for each request the source and destination are the same
location. Krumke [13] studied both OLDARP and OLTSP for the uniform metric space.
Their objective was to minimize the maximum flow time, that is the difference between a
request’s release and service times. They proved that no competitive algorithm exists for
OLDARP and gave a 2-competitive algorithm to solve OLTSP.

Within the last five years many heuristic approaches have emerged as means for tackling
practical variations of Dial-a-Ride problems; for example, see [15, 3, 12, 14, 9]. On the
other hand, provably competitive results on OLDARP have been sparse within the last five
years; we are unaware of any such work, other than [4]. For Revenue-maximizing OLDARP
(ROLDARP), [4] showed that no deterministic online algorithm can be competitive on graphs
with non-uniform edge weights. They therefore focused on the uniform metric and presented
a greedy 2-competitive algorithm for this problem. They also considered two variations of
this problem: (1) the input graph is complete bipartite, and (2) there is a single node that is
the source for every request, and presented a 1-competitive algorithm (optimal to within an
additive factor) for the former and an optimal algorithm for the latter [4].
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1.2 Our Results
In this work we begin by proving that the offline version of ROLDARP is NP-hard. We then
present a greedy algorithm called BestPath (bp) for ROLDARP in the uniform metric.
Although a 2-competitive algorithm has already been found [4], we show that a “smarter”
algorithm like bp is in fact only 3-competitive. The idea of the bp algorithm also forms the
basis for our main result: the algorithm we present in Section 4, Segmented Best Path
(sbp), which we show is 6-competitive for ROLDARP on weighted graphs, provided that
the edge weights are bounded by T/f where T is the time limit and 1 < f < T , and that
the revenue earned by the optimal offline solution in the last 2T/f time units is bounded
by a constant. We show that the competitive ratio is unbounded for any deterministic
online algorithm for the problem, unless we assume edge weights are bounded and discount
the revenue earned by opt in the last T/f time units. We also give a lowerbound of 4
on the competitive ratio of sbp. As far as we know, this is the first work that presents a
competitive algorithm for ROLDARP on weighted graphs. Finally, in Section 5, we present
some experimental results for the sbp algorithm in simulated settings inspired by real-world
Dial-a-Ride data. Our experimental results show that sbp performs well when compared to
an offline version of sbp and a simple greedy algorithm.

2 Preliminaries

Formally, we define the ROLDARP problem as follows. The input is an undirected complete
graph G = (V,E) where V is the set of vertices (or nodes) and E = {(u, v) : u, v ∈ V, u 6= v}
is the set of edges. For every edge (u, v) ∈ E, there is a weight wu,v > 0. (We note that
in fact any simple, undirected, connected, weighted graph is allowed as input, with the
simple pre-processing step of adding an edge wherever one is not present whose weight is
the length of the shortest path between its two endpoints. We further note that the input
can be regarded as a metric space if the weights on the edges are expected to satisfy the
triangle-inequality.) One node in the graph, o, is designated as the origin and is where the
server is initially located (i.e. at time 0). The input also includes a time limit T and a
sequence of requests, σ, that are dynamically issued to the server.

Each request is of the form (s, d, t, p) where s is the source node, d is the destination, t is
the time the request is released, and p is the revenue (or priority) earned by the server for
serving the request. The server does not know about a request until its release time t. To
serve a request, the server must move from its current location x to s, then from s to d. The
total time for serving the request is equal to the length of the path from x to d. We assume
the earliest time a request may be released is at t = 0.

For each request, the server must decide whether to serve the request and if so, at what
time. A request may not be served earlier than its release time and at most one request
may be served at any given time. Once the server starts serving a request, it must serve the
request until completion (i.e. preemption is not allowed). The goal for the server is to serve
requests within the time limit so as to maximize the total earned revenue.

We use R-DARP to refer to the offline version of ROLDARP, which knows all requests
from the start, at time 0.

I Theorem 1. R-DARP is NP-hard.

Proof. R-DARP-D, the decision version of R-DARP, outputs YES on an input instance if
and only if there is a set of requests that can be served to yield a revenue that is greater
than or equal to a given value k.

ATMOS 2017



1:4 Revenue Maximization in Online Dial-A-Ride

We proceed by reducing the Knapsack problem to R-DARP-D. The Knapsack problem is
defined as follows: We are given a set of items S, where item i ∈ S has a positive integer
weight wi and a positive integer value vi, and a knapsack weight limit W and some value
c. We must determine whether there is a subset of S that has total weight at most W and
value at least c.

From an instance of 01-Knapsack we build an instance of R-DARP-D as follows. Create
an empty graph G. For each item i ∈ S, we will make a request ri with a release time of 0
and an arbitrary source si and destination di that have not been used by another request.
Let the revenue pi = vi and add si and di to G as vertices with an undirected edge of weight
wi between them.

After we have created a request as above for each item in S, we add one more vertex, o,
to serve as the origin for the server. We then add an edge of weight 1

n between any pair of
vertices that does not yet have an edge between them. We set T = W + 1 and k = c.

If there is a feasible set of requests with total revenue at least k, serving the set of requests
requires at least one empty move (because no two requests share an endpoint and none
start at the origin). So, the empty moves will take up at least 1

n time units. The lengths
of the edges that represent requests are all positive integers, so the total time to serve the
requests (not including the time to move between requests) is at most T −1 time units. Since
W = T − 1 and the lengths of the requests were determined by the weights of the items in S,
the requests correspond to a set of items S′ with total weight at most W . The revenues of
the requests were determined by the values of the items in S. Thus, the items in S′ have
total value at least c = k.

If there is a subset S′ of S whose items have total value at least c and a total weight at
most W , then it will take at most W = T −1 time units to serve the requests that correspond
to those items, not including the time to move from one request to another. Each move
step will take at most 1/n and there will be at most n of these steps, so the total amount
of time required to move will be no more than 1. Therefore, all of the requests can be
fulfilled in T time units or less. The revenue yielded by each request is equal to the value of
a corresponding item in S′, so the total revenue will be at least k = c. J

We let opt denote an optimal offline algorithm, as in, an algorithm that given any
sequence of requests will serve the requests that return the maximum possible revenue for
that input. Given an input graph G, a sequence σ = r1, . . . rm of requests and an algorithm
alg, we denote alg(G, σ) as the total revenue earned by alg from σ on G. We say that on
is γ-competitive if there exists γ ≥ 1, b ≥ 0 such that for all σ:

opt(G, σ) ≤ γ · on(G, σ) + b . (1)

In [4] it was shown that no deterministic algorithm can be competitive when edge weights
are non-uniform and when revenues can take on any arbitrarily large value. In particular,
it was shown that in Equation 1, if b is set to the last revenue earned by opt, plast, then
γ · on(G, σ) + b < opt(G, σ) for any γ ≥ 1. We now show that the non-competitiveness is
due to arbitrarily large edge weights alone. In other words, if edge weights may be arbitrarily
large, then regardless of revenue values, no deterministic algorithm can be competitive.

For the remainder of this work, we use the terminology “algorithm A serves (or has
served) request r at time t” to indicate that A begins serving request r with source s and
destination d at time t and completes serving r at time t+ ws,d.

I Lemma 2. There is no deterministic algorithm for ROLDARP that is γ-competitive, for
any γ ≥ 1.
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Proof. The adversary will release requests in such a way that regardless of the behavior of
the online algorithm, the optimal offline solution will earn more than γ times the revenue
earned by any online algorithm, for any value of γ ≥ 1. The instance will begin with two
requests, and if the online algorithm chooses to serve either one, the adversary will release a
large number of requests the online algorithm is unable to serve.

Let G denote a complete graph with three nodes s, x, and y, where s is the origin,
ws,x = c where c = 2γ + 3, with γ ≥ 1, ws,y = 1 and wx,y > c, let T ≥ 2c denote the time
limit. The adversary will release two requests: r1 = (s, x, T − 2c, p) and r2 = (x, s, T − c, p),
with p > 0. There are two cases for the online algorithm, on:

Case 1: on serves neither of these requests. Since there is enough time for opt to serve
both requests, opt(G, σ) = 2p while on(G, σ) = 0. For b = plast = p we have 0γ + p < 2p
for any γ ≥ 1 and p > 0, so on is not competitive.

Case 2: on serves at least one of these requests. Suppose on starts serving a request at
time t. Then the adversary will release c requests where c/2 of the requests are (s, y, t+ 1, p)
and the other c/2 are (y, s, t+ 1, p).

We will now show that on will not have enough time to serve any of these requests
but opt will serve all of them and earn revenue opt(G, σ) such that for any γ ≥ 1,
γ · on(G, σ) + plast < opt(G, σ). There are two sub-cases:
1. on serves r1 (and possibly r2). The earliest on may serve any of r1 and r2 is at T − 2c

and in particular, it may serve only r1 at this time. It will complete r1 no sooner than
time T − c. To serve any of the new requests, it must move to either s or y from x. It
will arrive at either s or y no sooner than T and therefore will not have enough time to
complete any of these requests.

2. on serves only r2. The earliest on may serve r2 is at T − c and it will complete it no
sooner than time T and will therefore not have enough time to complete any of the new
requests.

In both cases on earns at most 2p.
Note that the latest that on may serve either r1 or r2 is at T − c (so t ≤ T − c). Therefore

t+ 1 ≤ T − c+ 1 and for every time unit from t+ 1 ≤ T − c+ 1 to T , opt earns revenue p,
so opt earns total revenue at least (T − (T − c+ 1))p = (c− 1)p, so opt(G, σ) > (c− 2)p.
For c = 2γ + 3 we have:

opt(G, σ) > (2γ + 1)p = 2γp+ p ≥ γ · on(G, σ) + p = γ · on(G, σ) + plast (2)

for all γ ≥ 1 and plast > 0. J

Since we have now established that no deterministic online algorithm can be competitive
if edge weights are not bounded, we assume for the remainder of this work that all edge
weights are no more than T/f for some 1 < f < T .

However, even with this restriction we find that no deterministic online algorithm can
serve the requests served by opt during the last T/f time units. Hence the competitive
ratio of any algorithm is still unbounded unless b is set to the revenue earned by opt in last
T/f time units.

I Lemma 3. If the maximum edge weight is T/f for some 1 < f < T , no deterministic
online algorithm can serve the requests served by opt during the last T/f time units.

Proof. Let on denote a deterministic online algorithm. There are two cases:
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Algorithm 1: Algorithm Best Path (BP). Input is complete unit weight graph
G and time limit T .

1: for t = 1 to T do {at each unit of time, do the following}
2: if a request was served at time t− 1 then
3: define P to be the currently available request-path with the highest score.
4: if P does not start at the current server location then
5: move server to the start of P .
6: else
7: serve the first request on the path P
8: end if
9: else {no request was served at time t− 1}

10: serve the first request of P {which was determined in iteration t− 1}
11: end if
12: end for

1. At time T − (T/f), on is at (or moving toward) a node s such that there is an edge (s, x)
where ws,x = T/f . Then the adversary releases the request (x, s, T − (T/f), p) for some
p > 0. on will not be able to serve the request since an online server will arrive at x no
sooner than time T , however an optimal algorithm could serve the request.

2. At time T − (T/f), on is at (or moving toward) a node s such that there is no edge (s, x)
where ws,x = T/f . (So its weight is strictly less than T/f .) Then let u and z denote two
nodes such that wu,z = T/f and ws,u = ε for ε > 0. The adversary releases the request
(u, z, T − (T/f), p) for some p > 0. on will not be able to serve the request since an online
server will arrive at u no sooner than T − (T/f) + ε and would not be able to complete
the request by time T , however an optimal algorithm could serve the request. J

3 The Uniform Metric

In this section we provide a greedy 3-competitive algorithm called Best Path (bp) for
ROLDARP on a complete graph with unit edge weights (or in a uniform metric). We use the
term “empty move” to refer to when an algorithm moves the server from one point in the
metric space to another (expending one unit of time) without serving a request. We use the
term request-path to refer to a path of “connected” requests (with no empty moves required
in between) that are currently outstanding (released but not yet served).

The Greatest Revenue First (grf) algorithm of [4] simply serves the request with the
highest revenue at every other time unit (spending the time units in between either standing
still or on empty moves. In contrast, the bp algorithm takes into account the time it saves
when serving a contiguous sequence of connected requests by finding and choosing the
request-path that has the highest revenue per time unit, which we refer to as the “score”.
Specifically, we let score(P ) of a request-path P be the total revenue of the requests in P
divided by the time it takes to complete P , including the time it takes to move from the
current server location to the start of P .

Although grf was already shown in [4] to be 2-competitive, here we present the 3-
competitiveness of the bp algorithm because (1) it is surprising that the simpler more
“naive” grf algorithm has a better competitive ratio, and (2) the Segmented Best Path (sbp)
algorithm, which we present in Section 4 for weighted graphs, is a hybrid of grf and bp, and
(3) bp out-performs grf in experimental simulations. We note that step 3 of the algorithm
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may not be achieved in strict polynomial time (see the run-time discussion of the analogous
step in our sbp algorithm of Section 4 for more details). We defer the proof of the following
theorem, along with our experimental results on the bp algorithm to the full version of this
work.

I Theorem 4. The Algorithm bp is 3-competitive, and this is tight.

4 Weighted Graphs

4.1 The algorithm
We now describe our online algorithm for weighted graphs (see Algorithm 2 for details).
The algorithm splits the total time T into f segments of length T/f where 1 < f < T . At
the start of every other time segment it considers all the unserved requests that have been
released, finds all sets of requests that can be served within one time segment (i.e. within
T/f amount of time), and determines the set that yields the maximum total revenue. We
refer to this as the max-revenue-request-set. It then moves to the source of the first request
in this set and at the start of the next time segment, serves the requests in this set.

To find the max-revenue-request-set, the algorithm maintains a directed auxiliary graph,
G′, which we refer to as the request graph, to keep track of unserved requests. More specifically,
at the beginning of every other time segment the algorithm does the following:
1. For every unserved request r = (s, d, t, p), add a directed edge (s, d) to G′ (so parallel

edges are allowed) with weight equal to its corresponding weight in G, and label this new
edge (s, d) with the revenue p. We refer to edges added to G′ in this step as request-edges.

2. Add a directed edge labeled with revenue 0 from the destination node of each request-edge
to the source node of every other request edge. The weights of these edges are the same
as in G.

3. For every pair of nodes u, v in G′, find all paths of length at most T/f from u to v.
4. For each path P found in the previous step, let πP denote the sum of revenues earned

from the requests that correspond to the request-edges in P .
5. The max-revenue-request-set is the path that has max πP value.

The bottleneck in the time complexity of the algorithm occurs in step 3 of the above
subroutine. We must enumerate all paths in G′ of length at most T/f , and the number of
possible paths is exponential in the size of G′, which is determined directly by the number
of outstanding requests in the current time segment. In many real world settings, one can
expect the size of G′ to be small relative to the size of G. And in settings where T/f is small,
the run time is further minimized, making it feasible to execute efficiently in many plausible
settings.

4.2 Lowerbound
We prove that sbp has a competitive ratio no better than 4 by providing an instance where
the ratio approaches 4 as T grows (with the additive term b equal to the revenue earned by
opt within the last two time segments).

I Theorem 5. If sbp is c-competitive for ROLDARP, then c ≥ 4.

Proof. Consider an instance (G, σ) of ROLDARP as follows. For some even f , there are T
requests released at time 0 and each request requires (T/(2f)) + 1 time to serve and has
priority/revenue 1. In the first f − 2 time segments, opt serves T−(2T/f)

(T/(2f))+1 requests and earns
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Algorithm 2: Algorithm Segmented Best Path (SBP). Input is complete graph
G with time limit T and maximum edge weight T/f .

1: Let t1, t2, . . . tf denote the time segments ending at times T/f, 2T/f, . . . , T ,
respectively.

2: if f is odd then
3: At t1, do nothing.
4: At the start of every ti for even i ≥ 2 find the max-revenue-request-set and

move to the source location of the first request in this set. Denote this request
set as R. If no unserved request sets exist, do nothing.

5: At the start of every ti for odd i ≥ 3, serve request set R (if it exists) from the
previous step.

6: end if
7: if f is even then
8: At the start of every ti for odd i ≥ 1 find the max-revenue-request-set and move

to the source location of the first request in this set. Denote this request set as
R. If no unserved request sets exist, do nothing.

9: At the start of every ti for even i ≥ 2, serve request set R (if it exists) from the
previous step.

10: end if

this amount of revenue. sbp serves during every odd time segment, and due to the time
required for each request, can serve only one request per time segment. So in total sbp can
serve at most f/2 requests and earns this amount of revenue. We have:

opt(G, σ)
sbp(G, σ) ≥

(
T−(2T/f)

(T/(2f))+1

)
f/2 ≥ 4T (f − 2)

(T + 2f)f (3)

J

For any f > 2, as T →∞, the above expression approaches 4.

4.3 Upperbound
We analyze the revenue earned by Algorithm 2 by considering the time segments in pairs.
We refer to each pair of consecutive time segments as a time window, so if there are f time
segments, there are df/2e time windows. Note that the last time window may have only one
time segment.

For notational convenience, we consider a modified version of the sbp schedule, that we
refer to as sbp′, which serves exactly the same set of requests as sbp, but does so one time
window earlier. Specifically, if sbp serves a set of requests during time window i ≥ 2, sbp′
serves this set during time window i− 1 (so sbp′ ignores the set served by sbp in window 1).
We note that the schedule of requests served by sbp′ may be infeasible, and that it will earn
at most the amount of revenue earned by sbp.

For time window i = 1 . . . df/2e − 1, let S′i be the set of requests served by sbp′, which
by definition will serve requests during one of the two time segments of window i, and will
use the other time segment of window i to move.

Let rev(S) denote the revenue earned from a set of requests S. Let S∗(tj) denote
the set of requests served by opt in time segment tj and let S∗i denote the set of re-
quests served by opt during the time segment of window i with greater revenue, i.e. S∗i =
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arg max{rev(S∗(t2i−1)), rev(S∗(t2i))}. Note this set may include a request that was started
in the prior time segment, as long as it was completed in the time segment of S∗i .

We will first show that over the time windows i = 1 . . . df/2e − 1, opt earns no more
than three times the amount of revenue earned by sbp′.

I Lemma 6.
∑df/2e−1

i=1 rev(S∗i ) ≤ 3
∑df/2e−1

i=1 rev(S′i).

Proof. Let H denote the chronologically ordered set of time windows w where rev(S∗w) >
rev(S′w), and let hj denote the jth time window in H. We refer to each window of H as a
window with a “hole,” in reference to the fact that sbp′ does not earn as much revenue as
opt in these windows.

In each window hj there is some amount of revenue that opt earns that sbp′ does not. In
particular, there must be a set of requests that opt serves in window hj that sbp′ does not
serve in hj . Note that if this set is not available for sbp′ in hj then sbp′ must have served
it in some previous windows. Let S∗hj

= Aj ∪ Bj ∪ C∗j , where Aj is the subset of requests
served by both opt and sbp′ in hj , Bj is the subset of requests served in hj by opt, but
served previously by sbp′, and C∗j is the subset of opt’s requests available for sbp′ but sbp′
chooses not to serve.

Our plan is to build an infeasible schedule sbp that will be similar to sbp′, but contain
additional “copies” of some requests such that no windows of sbp contain holes. We will
make no more than 3 copies of each request in sbp′, so ultimately sbp will have revenue at
most 3 times that of sbp′.

We first initialize sbp to have the same schedule of requests as sbp′. We then add
additional requests to hj for each j = 1 . . . |H|, based on S∗hj

. Recall that in our accounting
of the revenue of opt we have allowed requests to be part of a time segment even if opt
began serving them in the previous time segment (see the definition of S∗i above.) So the set
S∗hj

may not fit within a single time segment. We consider two cases based on S∗hj
:

1. The set S∗hj
can be served within one time segment. In this case we know that there must

be a non-empty subset of S∗hj
, Bj , that is not available for sbp′ to serve in hj (because

if it were available sbp′ would serve it or something better, due to its greediness), so
sbp′ must have served Bj in some set Wj of previous time windows. Specifically, a time
window w is in Wj if and only if a request from Bj was served in w by sbp′.
Let us refer to the set of requests served by sbp′ in hj as S′hj

= Aj ∪ Cj for some set
of requests Cj . Notice that if S∗hj

= Aj ∪Bj ∪ C∗j can be executed within a single time
segment, then rev(Cj) ≥ rev(C∗j ), again by greediness of sbp′.
In this case, in sbp we add an additional “copy” of the set Bj to hj . So the requests in
Bj each appear twice in the sbp schedule. Now, hj will no longer be a hole in sbp since

rev(S∗hj
) = rev(Aj) + rev(Bj) + rev(C∗j ) ≤ rev(Aj) + rev(Bj) + rev(Cj) = rev(Shj ) ,

where Shj
is the set of requests served by sbp in hj .

2. The set S∗hj
cannot be served within one time segment. Let k be the index of the time

segment corresponding to S∗hj
. In this case, opt must have begun serving a request of

S∗hj
in time segment tk−1 and completed this request in time segment tk. Let us use r∗ to

denote this request that “straddles” the two time segments. In addition to the copy of Bj

as in Case 1 above, for this case we will also add to sbp a copy of another set of requests.
Again, let us refer to the set of requests served by sbp′ in hj as S′hj

= Aj ∪ Cj for some
set of requests Cj . There are two subcases depending on whether r∗ ∈ C∗j or not.
a. r∗ ∈ C∗j . In this case we have rev(Cj) ≥ max{rev(r∗), rev(C∗j \ {r∗})} ≥ 1

2rev(C∗j ).
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So, in addition to the copy of Bj as in Case 1, we also add a copy of the set Cj to the
sbp schedule, so it serves two copies of Cj in hj . Note that for sbp, hj will no longer
be a hole since

rev(S∗hj
) = rev(Aj)+rev(Bj)+rev(C∗j ) ≤ rev(Aj)+rev(Bj)+2·rev(Cj) = rev(Shj ) ,

where Shj is the set of requests served by sbp in hj .
b. r∗ /∈ C∗j . In this case C∗j can be served within one time segment but sbp′ chooses to

serve Aj ∪ Cj instead. So we have rev(Aj) + rev(Cj) ≥ rev(C∗j ), therefore we know
either rev(Aj) ≥ 1

2rev(C∗j ) or rev(Cj) ≥ 1
2rev(C∗j ). In the latter case, we can do as we

did in sub-case (a) above and add a copy of the set Cj to the sbp schedule in window
hj , to get rev(S∗hj

) ≤ rev(Shj ), as above. In the former case, we instead add a copy of
Aj to the sbp schedule in window hj . Then again, for sbp, hj will no longer be a hole,
since this time

rev(S∗hj
) = rev(Aj)+rev(Bj)+rev(C∗j ) ≤ 2·rev(Aj)+rev(Bj)+rev(Cj) = rev(Shj

).

For each window w not in H, we already have the property that rev(S∗w) ≤ rev(S′w), by
the definition of H. Therefore, in every window for i = 1 . . . df/2e − 1, sbp earns at least as
much revenue as opt. Let rev(Si) denote the revenue earned by sbp in window i. We have:

df/2e−1∑
i=1

rev(Si) ≥
df/2e−1∑

i=1
rev(S∗i ) . (4)

Also note that sbp serves each request no more than three times, as it makes at most
two additional copies of each request in sbp′ (and this is only in the event the same request
in Cj was also copied to some later set Bi). Therefore:

df/2e−1∑
i=1

rev(Si) ≤ 3
df/2e−1∑

i=1
rev(S′i) . (5)

Combining 4 and 5 yields:

df/2e−1∑
i=1

rev(S∗i ) ≤ 3
df/2e−1∑

i=1
rev(S′i). (6)

J

I Theorem 7. If the revenue earned by opt in the last two time segments is bounded by
some constant, then sbp is 6-competitive, i.e., if rev(S∗(tf )) + rev(S∗(tf−1)) ≤ c for some
constant c, then

f∑
j=1

rev(S∗(tj)) ≤ 6
f∑

j=1
rev(S(tj)) + 2c . (7)

Proof. By Lemma 6 we know that
∑df/2e−1

i=1 rev(S∗i ) ≤ 3
∑df/2e−1

i=1 rev(S′i). Let Si denote
the set of requests served by sbp during time window i. Then since sbp′ earns at most the
revenue of sbp, Lemma 6 implies:

df/2e∑
i=1

rev(S∗i ) ≤ 3

df/2e−1∑
i=1

rev(Si)

+ rev(S∗(tf )) + rev(S∗(tf−1)) . (8)
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Figure 1 Revenue earned for rural setting.

By the definition of sbp, we know:

df/2e∑
i=1

rev(Si) =
f∑

j=1
rev(S(tj)) (9)

and by the definition of S∗i , we have:

f∑
j=1

rev(S∗(tj)) ≤ 2
df/2e∑

i

rev(S∗i ) . (10)

Equations 8, 9, and 10 imply:

f∑
j=1

rev(S∗(tj)) ≤ 6

 f∑
j=1

rev(S(tj))

+ 2rev(S∗(tf )) + 2rev(S∗(tf−1)). J

5 Experimental Results

To evaluate the performance of the sbp algorithm, we simulated three realistic Online Dial-a-
Ride systems. Our experimental settings were informed by data we retrieved from real-world
Dial-a-Ride systems ([5, 6, 7]) and reflected three Dial-a-Ride environments: rural, suburban,
and urban. The problem inputs varied based on the environment type.

We now describe the three settings more specifically. In each setting, a time unit is 10
minutes, so there are 6 time units per hour. The graph is complete and contains 50 nodes
where each is equally likely to be a source or destination of a request (but the same node
cannot be both the source and destination). The origin is randomly chosen from the set
of nodes. The release times of requests are non-integral values uniformly distributed from
t = 0 to t = T − T/f (since no deterministic online algorithm can compete with requests
served by opt during during the last T/f time units; see Lemma 3). Request priorities are
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Figure 2 Revenue earned for suburban setting.

integral values uniformly distributed from 1 to m where m is the number of requests (we
test m = 25, 50, 75, and 100). A request’s priority represents the urgency of the request
(i.e. transport to a pharmacy is more urgent than to a shopping mall).

1. Rural: Time spans 9 hours (from 8:00am to 5:00pm), so T = 54. The maximum distance
between locations is 60 minutes (i.e. 6 time units), so T/f = 6 and f = 9. Edge weights
are chosen uniformly at random from the interval [1, T/f ].

2. Suburban: Time spans 9 hours (from 8:00am to 5:00pm), so T = 54. The maximum
distance between locations is 45 minutes (i.e. 4.5 time units), so T/f = 4.5 and f = 12.
Edge weights are chosen uniformly at random from the interval [1, T/f ].

3. Urban: Time spans 11 hours (from 6:00am to 7:00pm), so T = 66. The maximum distance
between locations is 20 minutes (i.e. 2 time units), so T/f = 2 and f = 33. Edge weights
are chosen uniformly at random from the interval [0.5, T/f ].

Since R-DARP is NP-hard to solve optimally (see Theorem 1), we instead compare our
algorithm, sbp (see Algorithm 2), to an offline version of sbp, as well as to a basic greedy
algorithm. Like sbp, the offline-sbp algorithm serves requests in time segments – i.e. it uses
one time segment to determine and move to the maximum-revenue-request-set and the next
time segment to serve this set. However, unlike sbp, this offline algorithm learns of all the
requests at the start of time (t = 0) and is therefore able to make a more informed decision
about which requests to serve. In contrast, the greedy algorithm does not break time into
segments and instead simply moves to and serves the outstanding request whose revenue is
highest (similar to the grf algorithm of [4]).

Figures 1, 2, and 3 show the results of the experimental simulations. The graphs show
that for all three settings sbp is competitive (colloquially speaking) with the offline and
greedy algorithms. Specifically, in the rural setting, sbp earns approximately 82-86% of the
revenue earned by the offline algorithm and it earns more revenue than the greedy algorithm
when the number of requests is high (100).

Depending on the total number of released requests, sbp earns between 91-95% of the
revenue earned by the offline algorithm in the suburban setting, and between 88-90% in the
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Figure 3 Revenue earned for urban setting.

urban setting. The graphs show that online-sbp improves relative to offline-sbp as the ratio
between the average edge weight and the maximum edge weight (T/f) increases. These
ratios are 58%, 61%, and 63% for the rural, suburban, and urban settings, respectively.
When this ratio is relatively low the offline algorithm is more likely to be able to serve
multiple requests within a single time segment and can better take advantage of having all
the requests available. Specifically for 251 requests, offline serves on average 1.8, 1.2, and 1.2
requests per time segment for rural, suburban, and urban, respectively. Since sbp is unaware
of all the future requests, it is always less likely than offline to serve multiple requests within
a time segment. Specifically, sbp serves on average 1.6, 1.2, and 1 requests per time segment,
respectively. These values show that as the number of requests served per time unit decreases
for offline, the two algorithms’ performances become comparable, but the performance is
most closely matched in the suburban setting when the number of requests served per time
unit is the same for both online and offline-sbp.

While the greedy algorithm often slightly outperforms sbp, it is important to note that
the greedy algorithm has an unbounded competitive ratio, while sbp has both a constant-
competitive worst-case guarantee (as proven in Section 4) and it also performs on par with a
basic greedy algorithm in these “average-case” experimental simulations.

We also determined how our algorithm compares to the overall total revenue released
(i.e. if there are no server capacity or time constraints) and the percentages are as follows. In
the rural setting, sbp earns 34%, 21%, 19%, and 14% of the total revenue for 25, 50, 75, and
100 requests respectively. In the suburban and urban settings, these values are, respectively,
42%, 27%, 21%, and 17% (for suburban) and 81%, 55%, 43% and 36% (for urban). For more
extensive experimental results, including non-uniform distributions, please refer to the full
version of the paper.

1 Similar trends occur for 50, 75, and 100 requests.
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6 Conclusions

In this work we present an initial study on the On-Line Dial-a-Ride Problem with revenues
(ROLDARP) in weighted graphs. We show that the competitive ratio is unbounded for any
deterministic online algorithm for the problem, unless we assume edge weights are bounded
and discount the revenue earned by opt in the last time segment. We provide an algorithm,
sbp, that is 6-competitive with opt, minus the revenue opt earns in the last two time
segments. We also provide a lower bound of 4 on the competitive ratio of sbp. Hence, there
currently remains a gap between the upper and lower bounds on the competitive ratio of sbp.
Other remaining open questions include: whether there are other more efficient and/or more
competitive algorithms for ROLDARP than what we have proposed, both in the uniform
metric as well as for weighted graphs, and whether ROLDARP in the uniform metric is
NP-hard.
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Abstract
We study the game-theoretic task of selecting mobile agents to deliver multiple items on a network.
An instance is given by m packages (physical objects) which have to be transported between
specified source-target pairs in an undirected graph, and k mobile heterogeneous agents, each
being able to transport one package at a time. Following a recent model [6], each agent i has a
different rate of energy consumption per unit distance traveled, i.e., its weight. We are interested
in optimizing or approximating the total energy consumption over all selected agents.

Unlike previous research, we assume the weights to be private values known only to the
respective agents. We present three different mechanisms which select, route and pay the agents
in a truthful way that guarantees voluntary participation of the agents, while approximating the
optimum energy consumption by a constant factor. To this end, we analyze a previous structural
result and an approximation algorithm given in [6]. Finally, we show that for some instances in
the case of a single package, the sum of the payments can be bounded in terms of the optimum.
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1 Introduction

We study the delivery of physical objects (henceforth called packages) by mobile agents.
Regardless of whether large volumes are transported by motor lorries or cargo airplanes, or
whether autonomous drones deliver your groceries, the fuel or battery consumption of the
transporting agent is a major cost factor. The main concern for algorithm-design thus focuses
on an energy-efficient operation of these agents. The primary energy expense is defined
by the movements of the agents; in this paper we consider the energy consumption to be
proportional to the distance traveled by an agent. We assume the agents to be heterogeneous
in the sense of the agents having different rates of energy consumption.

Recent progress in minimizing the total energy consumption in delivery problems has
been made assuming that the agents belong to the same entity which wants to deliver the
packages [6]. It has been shown that there is a polynomial-time constant-factor approximation
algorithm with the ratio depending on the energy consumption rates.
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Figure 1 Delivery of a single package on a path of length k; consecutive agents of weight wi = 1
k+i

.
(left) Optimal solution using all agents; cost =

∑k

i=1 wi · 1 =
∑k

i=1
1

k+i
= H2k −Hk ≈ ln 2 (k →∞).

(right) Any solution using a single agent i has cost wi ·((i− 1) + k) = (k+i−1)/(k+i) ≈ 1 (k →∞).

In the following, however, we assume the agents to be independent selfish agents which
make a bid to transport packages. Think for instance of a cargo company that hires subcon-
tractors (like independent lorry drivers or individual couriers) to outsource the delivery of
packages to these agents. In this scenario, the rate of energy consumption is a private value
known only to the respective agent. Our goal is hence to design a mechanism for the cargo
company to select agents, plan the agents’ routes and reimburse them in a way such that:
1. the energy spent overall is as close to the optimum as possible,
2. each agent announces its true rate of energy consumption in its bid, and
3. each agent is reimbursed at least the cost of energy it needs to deliver all of its packages.

Our model. We are given a connected, undirected graph G = (V,E) on n := |V | nodes
with the length of each edge, together with m packages, each of which is given by a specified
source-target node pair (sj , tj). Furthermore there are k > 1 mobile agents initially located
at distinct nodes of the graph. Each agent i starts at position pi and can carry at most one
package at a time. An agent can pick up a package at some node u and drop the package
again at some other node v. In that sense it is also possible to hand over a package j between
agents if agent a drops it at a node where another agent b later picks up the same package,
in which case we say that the agents collaborate on package j. A scenario in which each
package j is delivered from its source sj to its target tj is called a feasible solution of the
delivery problem. Such a feasible solution x specifies the travel distance di(x) that each agent
i has to travel in this solution.

Each agent consumes energy proportional to the distance it travels in the graph, and we
are interested in optimizing the total energy consumption for the team of agents. Specifically,
we consider heterogeneous agents with different rates of energy consumption (weights wi),
and therefore the energy spent by agent i in solution x is wi ·di(x), while the total energy of a
solution is (see e.g., Figures 1,2): cost(x,w) :=

∑k
i=1 wi ·di(x), where w = (w1, . . . , wk). We

denote by Opt a solution with minimum cost among all solutions, Opt ∈ arg minx cost(x,w).
It is natural to consider the scenario in which every agent is selfish and therefore cares only
about its own cost (energy) and not about the optimum social cost (total energy).

Mechanism design. We consider the scenario in which agents can cheat or speculate about
their costs: each wi is private piece of information known to agent i who can report a possibly
different w′i. For instance, an agent may find it convenient to report a very high cost, in
order to induce the underlying algorithm to assign a shorter travel distance to it (which may
not be globally optimal). To deal with such situations, we introduce suitable compensations
for the agents to incentivize them to truthfully report their costs. This combination of an
algorithm and a payment rule is called a mechanism, and we are interested in the following:

Optimality. The mechanism runs some (nearly) optimal algorithm such that, if agents
do not misreport, the computed solution has an optimal (or nearly optimal) social cost
cost(x,w) with respect to the true weights w.
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Truthfulness. For every agent, truth-telling is a dominant strategy, i.e., in no circumstance
it is beneficial for an agent to misreport its cost. Thus, independently of the other agents,
its utility (payment minus incurred cost) is maximized when reporting the true cost.
Frugality. The total payment to the agents should be nearly optimal, that is, comparable to
the total energy cost. Since agents should be payed at least their own cost when truthfully
reporting (voluntary participation), the mechanism must pay at least cost(x,w).

Intuitively speaking, we are paying the agents to make sure that they reveal their true costs,
and, in this way, we can find a (nearly) optimal solution (w.r.t. the sum of weighted travel
distances). At the same time, we want to minimize our total payments, i.e., we would like
not to spend much more than the actual cost (weighted travel distance) of the solution.

Our results. After some preliminaries on mechanism design and on energy-efficient delivery
in Section 2, we first investigate in Section 3.1 the constant-factor (4 ·max wi

wj
)-approximation

algorithm presented in [6]. We reason why this algorithm cannot be turned into a mechanism
that is both truthful and guarantees voluntary participation. However, using the algorithm as
a black box for a new algorithm A∗ and applying Clarke’s pivot rule for the payments to the
agents, we give a truthful mechanism based on A∗ which guarantees voluntary participation
and incurs a total energy of at most (4 ·max wi

wj
) times the energy cost of an optimal delivery.

In Section 3.2, we consider instances where either the number of packages m is constant or
the number of agents k is constant. For both cases we provide constant-factor approximation
algorithms with approximation factors that are independent of the agents’ weights. Both
of these approximation algorithms satisfy sufficient conditions to be turned into truthful
mechanisms with voluntary participation. The running time of the former algorithm can
be improved to yield a FPT -approximation mechanism, parametrized by the number of
packages; the latter runs in exponential time with k as the base of the exponential term.

Finally, in Section 4, we discuss the frugality of mechanisms for the case of a single
package. In particular, we consider two truthful mechanisms, namely, the optimal one (which
possibly uses several agents), and the one which always uses a single agent only. Although
the latter results in a higher energy cost, it might need a smaller sum of payments. However,
under some assumptions on the input, the payments of both mechanisms are only a small
multiplicative factor larger than the minimum necessary (the cost of the optimum).

Related work. Energy-efficient delivery has not been studied until recently. Most previous
results are based on a model where the agents have uniform rates of energy-consumption but
limited battery [8]. This restricts the possible movements of the agents – one gets the decision
problem of whether the given packages can be delivered without exceeding the available
battery levels. This turns out to be NP-hard even for a single package [9, 4] and even if
energy can be exchanged between the agents [11]. The model of unbounded battery but
heterogeneous weights has been introduced recently [6] (for the full version see [5]). Besides
the mentioned approximation algorithm, it was shown that a restricted solution in which each
package is delivered by a single agent approximates an optimum delivery (in which agents
can handover a package to another agent) by a factor of at most 2. This result has been
named the Benefit of Collaboration. Furthermore, the problem is NP-hard to approximate
to within a small constant, even for a single agent.

Approximating the maximum travel distance of k agents has been studied for other tasks
such as visiting a set of given arcs [17], or visiting all nodes of a tree [16]. Furthermore
Demaine et al. [12] studied fixed-parameter tractability for minimizing both the sum of as
well as the maximum travel distance of agents for several tasks such as pattern formation,
parametrized by the number of agents k. These models consider only unweighted agents.
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The problem of performing some collaborative task using selfish agents is well studied in
algorithmic game theory and, in particular, in algorithmic mechanism design [21] where the
system pays the agents in order to make sure that they report their costs truthfully. The
existence of computationally feasible truthful mechanisms is one of the central questions, as
truthfulness is often obtained by running an exact algorithm [22]. In addition, even for simple
problems, like shortest path, the mechanism may have to pay a lot to the agents [14, 3].
Network flow problems have been studied for the case when selfish agents own edges of the
network and the mechanism pays them in order to deliver packages [1, 19]. A setting where
the transported packages are selfish entities which choose from fixed-route transportation
providers was recently studied in [15]. In a sense, this is the reverse setting of our problem.

2 Preliminaries

Mechanisms. A mechanism is a pair (A,P ) where A is an algorithm and P a payment
scheme which, for a given vector w′ = (w′1, . . . , w′k) of costs reported by the agents, computes
a solution A(w′) and a payment Pi(w′) for each agent i.

I Definition 1 (Truthful mechanism). A mechanism (A,P ) is truthful if truth-telling is
a dominant strategy (utility maximizing) for all agents. That is, for any vector w′ =
(w′1, . . . , w′k) of costs reported by the agents, for any i, and for any true cost wi of agent i,
Pi(w′)−wi · di(A(w′)) ≤ Pi(wi, w′−i)−wi · di(A(wi, w′−i)), where di(x) is the travel distance
of agent i in solution x, and where w′−i := (w′1, . . . , w′i−1, w

′
i+1, . . . , w

′
k) and (wi, w′−i) :=

(w′1, . . . , w′i−1, wi, w
′
i+1, . . . , w

′
k).

Truthfulness can be achieved through a construction known as VCG mechanisms [27, 10,
18], which requires that the underlying algorithm satisfies certain ‘optimality’ conditions:

I Definition 2 (VCG-based mechanism). A VCG-based mechanism is a pair (A,P ) of the
following form: For any vector w′ = (w′1, . . . , w′k) of costs reported by the agents, and for
each agent i, there is a function Qi() independent of w′i such that i is payed an amount of

Pi(w′) = Qi(w′−i)−
(∑

j 6=i
w′j · dj(A(w′))

)
. (1)

Intuitively speaking, these mechanisms turn out to be truthful, whenever the underlying
algorithm minimizes the social cost with respect to a fixed subset of solutions (in particular,
an optimal algorithm always yields a truthful mechanism):

I Theorem 3 (Proposition 3.1 in [22]). A VCG-based mechanism (A,P ) is truthful if algorithm
A minimizes the social cost over a fixed subset RA of solutions. That is, there exists RA
such that, for every w′, A(w′) ∈ arg minx∈RA

{cost(x,w′)}.

The above result is a simple rewriting of the one in [22] which is originally stated for a
more general setting, in which agent i valuates a solution x by an amount vi(x), and vi()
is the private information. Our setting is the special case in which these valuations are all
of the form vi(x) = −wi · di(x) and wi is the private information (this setting is also called
one-parameter [2]).

I Definition 4 (Voluntary participation). A mechanism (A,P ) satisfies the voluntary partici-
pation condition if truth-telling agents have always a nonnegative utility. That is, for every
w′ = (w′1, . . . , w′k), and for every agent i, Pi(w′)− w′i · di(A(w′)) ≥ 0.
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We assume there are at least two agents (otherwise the problem is trivial and there is no
point in doing mechanism design; also one can easily show that voluntary participation and
truthfulness cannot be achieved in this case). Voluntary participation can be obtained by
the standard Clarke pivot rule, setting in the payments (1) the functions Qi() as follows:

Qi(w′−i) := cost(A(⊥, w′−i), w′−i) (2)

where (⊥, w′−i) is the instance in which agent i is not present. Note that, if algorithm A runs
in polynomial time, then the payments can also be computed in polynomial time: we only
need to recompute k solutions using A and their costs. The next is a well-known result:

I Fact 5. The VCG-based mechanism (A,P ) with the payments in (2) satisfies voluntary
participation if the algorithm satisfies the following condition: For any vector w′ and for any
agent i, cost(A(⊥, w′−i), w′) ≥ cost(A(w′), w′).

Proof. Observe that the utility of agent i is

Qi(w′−i)−
(∑
j 6=i

w′j · dj(A(w′))
)
− wi · di(A(w′)) = Qi(w′−i)− cost(A(w′), (wi, w′−i))

= cost(A(⊥, w′−i), w′−i)− cost(A(w′), (wi, w′−i)).

When i is truth-telling we have w′i = wi, and w′ = (wi, w′−i). Also, cost(A(⊥, w′−i), w′−i) =
cost(A(⊥, w′−i), w′) because i is not present in solution A(⊥, w′−i). Hence the utility of i is
cost(A(⊥, w′−i), w′)− cost(A(w′), w′), which is non-negative by assumption. J

I Definition 6 (Approximation mechanism). A mechanism (A,P ) is a c−approximation mech-
anism, if for every input vector of bids w′ its algorithm A computes a solution A(w′) which is
a c−approximation of a best solution Opt(w′), i.e., cost(A(w′), w′) ≤ c ·cost(Opt(w′), w′).

Collaboration of agents. To describe a solution for an instance of the delivery problem, we
can (among other characteristics) elaborate on the following properties of the solution: How
do agents work together on each package (collaboration), how are agents assigned to packages
(coordination) and which route does each agent take (planning). Most of the mechanisms in
this paper are based on the characterizations of the benefit of collaboration:

I Definition 7 (Benefit of collaboration). Define RnoC as the set of solutions x in which there
is no collaboration of the agents, meaning that each package is delivered by a single agent
only. Define R?noC ⊂ RnoC as the subset of solutions x ∈ RnoC in which
(i) every package is transported directly from source to target without intermediate dropoffs,

and
(ii) every agent returns to its respective starting location.
The ratios BoC := min

x∈RnoC

cost(x,w)
cost(Opt,w) and BoC∗ := min

x∈R?
noC

cost(x,w)
cost(Opt,w) are called benefit of

collaboration.

I Theorem 8 (Theorems 5, 6 & 7 in [6]). For the the benefit of collaboration we have
BoC ≤ 1/ ln 2 for a single package (m = 1, for a tight lower bound example see Fig. 1), and
BoC ≤ BoC∗ ≤ 2 in general (m ≥ 1, see for example Fig. 2).

3 Truthful Approximation Mechanisms

In this section, we present two polynomial-time truthful mechanisms. Note that energy-
efficient delivery is NP-hard to approximate to within any constant approximation ratio less
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Figure 2 (left) Optimal solution of cost 2 · 17 + 3 · 4 = 46 with collaboration on packages 1 and 3.
(middle) Optimal solution among all non-collaborative solutions with energy cost 2 · 16 + 3 · 5 = 47.
(right) Optimal non-collaborative solution with direct delivery and return; total energy 2 · 2 · 18 = 72.

than 367/366 [6, Theorem 9]. Hence, even in the best case, our goal can only be to guarantee
a constant-factor approximation of the optimum in a truthful way.

In the first part we present a polynomial-time truthful approximation mechanism with
a constant-factor approximation guarantee depending on the weights of the agents. In the
second part we turn to absolute constant-factor approximation, for which we require the
number of packages m to be constant in order to get a polynomial-time mechanism. Similar
techniques yield a mechanism running in exponential time for a constant number of agents k.

Main algorithmic issue. The two truthful polynomial-time approximation mechanisms we
obtain are based on the following scheme (and the third approximation mechanism follows
the same scheme but takes exponential time):
1. Precompute a feasible subset R of solutions independently of the input weights w′. This

set may depend on the name/index and on the position of the agents.
2. Among all precomputed solutions in R, return the best solution with respect to the input

weights w′, that is, a solution x∗ ∈ arg minx∈R{cost(x,w′)}.
Truthfulness then follows directly by Theorem 3. Note that, since we want polynomial
running time, the first step selects a polynomial number of solutions (thus the second step is
also polynomial). The main crux here is to make sure that, for all possible input weights w′,
the set R contains at least one good approximation (a solution x ∈ R whose cost for w′ is at
most a constant factor above the optimum for w′).

3.1 A polynomial-time approximation mechanism

We start with the general setting of arbitrarily many packages m and arbitrarily many agents
k. Our construction of a truthful approximation mechanism (A∗, P ) for this setting relies on
Theorem 3. To this end, we define a fixed subset of solutions RA∗ and a polynomial-time
algorithm A∗, such that for every vector of reported weights w′, the algorithm A∗ computes
a solution S of optimum cost among all solutions in RA∗ , S ∈ arg minx∈RA∗

cost(x,w′).
In a next step, we show that whenever the agents report truthfully (w′ = w), the computed

solution x ∈ RA∗ has an energy cost that approximates the overall optimum energy cost by
a constant factor of at most 4 · wmax

wmin
, where wmax := maxi wi and wmin := mini wi.

A first approach. We first analyze an existing approximation algorithm Apos presented
in [6], which computes a solution depending only on the position of the agents, but not on
their reported costs. Roughly speaking, Apos connects the agent positions and the package
sources and targets by a minimum spanning forest, subject to the following: In each tree,
there is
(i) an edge between the corresponding source/target nodes sj , tj and
(ii) exactly one agent position pi.
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Algorithm A∗

Input: Connected graph G, k agents, m packages, black box algorithm Apos (Thm. 9).
Output: A solution S with cost at most the cost of Apos.

1: Compute the following k + 1 solutions using Apos as a black box subroutine:

x0 := Apos(w′), and ∀i = 1, . . . , k : x−i := Apos(⊥, w′−i).

All solutions in the set RA∗ := {x0, x−1, . . . , x−k} are feasible by connectivity of G.
2: Define algorithm A∗ as taking the best among all these solutions with respect to the

input weights w′:

A∗(w′) := arg min
x∈RA∗

{cost(x,w′)} .

All edge lengths correspond to the distances in the original instance. Agent i then traverses
its tree in a DFS-like fashion, crossing each edge twice and thus delivering all packages in
the tree. For an example of such a solution, see Figure 3 (left).

I Theorem 9 (Theorem 13 in [6]). For any number of packages m and agents k, there exists
a polynomial-time algorithm Apos which computes a (4 · wmax

wmin
)-approximation. The computed

solution does not depend on the input weights w, only on the position of the agents.

However, there is no mechanism (Apos, P ) which is both truthful and guarantees voluntary
participation: Assume for the sake of contradiction there is such a mechanism. To guarantee
voluntary participation we need the payments to satisfy Pi(w′)−wi ·di(Apos(w′)) ≥ 0 for each
agent i. Consider any agent i which is used in the solution, i.e., di(Apos(wi, w′−i)) > 0. Note
that Apos selected i independent of its weight wi, hence di remains the same for all reported
weights w′i, i.e., we have di := di(Apos(wi, w′−i)) = di(Apos(w′i, w′−i)). Let Pi(wi, w′−i) denote
the payment to agent i when she reports her true weight wi. Now consider a situation where
agent i reports a different value w′i > Pi(wi, w′−i)/di instead: For voluntary participation
of agent i, the payment Pi(w′) needs to satisfy Pi(w′) − w′i · di ≥ 0 ⇔ Pi(w′) ≥ w′i · di,
but w′i · di > Pi(wi, w′−i), contradicting the truthfulness of the mechanism (in other words:
reporting an arbitrary high weight results in an arbitrary high payment).

Refining the approach. In order to obtain a truthful mechanism with voluntary participation
we consider the algorithm A∗ obtained from Apos and a repeated application of algorithm
Apos on all subsets of (k−1) agents (for feasibility recall that G is connected and that k > 1).

I Theorem 10. There exists a polynomial-time truthful VCG mechanism (A∗, P ) satisfying
voluntary participation with approximation ratio of at most the approximation ratio of Apos.

Proof. We use VCG payments (1) with (2) as Qi(w′−i) := cost(Apos(⊥, w′−i), w′−i) =
cost(x−i, w′−i). Since in Step 1 every solution is computed independently of the input
weights, algorithm A∗ satisfies the conditions of Theorem 3, which implies truthfulness. We
show voluntary participation along the lines of Fact 5: First note that by Step 2 in A∗:

cost(A∗(w′), w′) ≤ cost(Apos(⊥, w′−i), w′) , (3)
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Figure 3 (from left to right) Original solution x0 = Apos with energy cost cost(x0, w) = 46,
solutions x−1, x−2, x−3 with energy cost(x−1, w) = 46, cost(x−2, w) = 10 and cost(x−3, w) = 160.

since the solution x−i = Apos(⊥, w′−i) is a feasible solution that A∗ considers on input w′.
By the same argument, the approximation ratio of A∗ is at most the approximation ratio of
Apos(w). For voluntary participation, note that for w′i = wi, i’s utility is

Qi(w′−i)−
(∑
j 6=i

w′j · dj(A∗(w′))
)
− wi · di(A∗(w′))

= Qi(w′−i)− cost(A∗(w′), (wi, w′−i))

= cost(Apos(⊥, w′−i), w′−i)− cost(A∗(w′), (w′i, w′−i))
(3)
≥ 0. J

For an illustration of the computed set RA∗ , see Figure 3: The mechanism (A∗, P ) will
pick solution x−2 and award payments P1 = 46− 10 = 36, P2 = 0, P3 = 160− 10 = 150.

3.2 Absolute constant-factor approximation mechanisms
We now turn to developing truthful mechanisms where the approximation guarantee will
be an absolute constant, therefore independent of the weights (cf. Theorems 9 and 10). To
this end, we provide a polynomial-time truthful approximation mechanism if the number
of packages m is constant. We also show that by slightly deviating from the 2-step scheme
given in the beginning of this section, the running time of the algorithm can be improved to
f(m) · (kn)O(1), where f depends only on m. Hence we get a truthful FPT -approximation
mechanism, parametrized by the number of packages. To the best of our knowledge, the
underlying algorithm is also the first absolute constant-factor approximation for the delivery
problem. For the case of only constantly many agents k, we provide an exponential-time
algorithm, where k is the base of the exponential term.

No collaboration. In the following, we consider only solutions x ∈ R?noC where agents do not
collaborate and follow the two properties given in Theorem 8. We are therefore left with the
tasks of coordinating which agent gets assigned to which packages and planning in which order
she delivers the assigned packages. In other words, in every such solution x ∈ R?noC, each
agent i is assigned a (possibly empty) block of packages Mi(x) = {i1, i2, . . . , i|Mi(x)|}. These
package blocks are disjoint and form a partition of all m packages {1, . . . ,m}. Furthermore,
agent i delivers each of its packages directly after picking it up at its source. These packages
are processed in some order πx(i1), πx(i2), . . . , πx(i|Mi(x)|), where πx is a permutation of
{1, . . . ,m}. Finally, i returns to its starting location pi. Therefore, denoting the distance
between u and v in G by dist(u, v), the travel distance di(x) of agent i can be written as

di(x) = dist
(
pi, sπx(i1)

)
+
|Mi|∑
j=1

dist
(
sπx(ij), tπx(ij)

)
+

|Mi|−1∑
j=1

dist
(
tπx(ij), sπx(ij+1)

)
+ dist

(
tπx(i|Mi|), pi

)
. (4)

I Remark. In the dist(u, v) terms in (4) we are not interested in the actual route agent i
takes, as long as it uses a shortest path between u and v.
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Algorithm Am (for a constant number m of packages)
Input: Connected graph G, k agents, m packages.
Output: An optimal solution S ∈ R?noC.
1: Brute-force enumeration over all lists of exactly k possibly empty lists of the packages.

foreach list of k lists do
Add the corresponding solution (Fact 11) to the set of solutions RAm .

end foreach
2: Define algorithm Am as taking the best among all solutions in RAm with respect to the

input weights w′:

Am(w′) := arg min
x∈RAm

{cost(x,w′)} .

Sets and lists. To clarify the use of package blocks and package orders, we use the standard
notion of sets and lists regarding partitions (see e.g., [7]): If we look at a partition of
{1, . . . ,m} into non-empty disjoint blocks, we can take into account the order of the elements
within blocks, the order of the blocks, or both. We get four cases: sets of sets, sets of lists,
lists of sets and lists of lists ([23, 24, 25, 26]). However, in the delivery setting we can also
have agents which are not used at all and therefore not assigned to any packages – a complete
description (coordination + planning) of a solution x ∈ R?noC is therefore given by a list of
exactly k (possibly empty) lists, M = (M1, . . . ,Mk), where list Mi represents the sequence of
the packages that agent i has to deliver in the order specified by Mi. Hence, we immediately
get a bijection from all lists of exactly k possibly empty lists to R?noC (modulo the equivalence
between shortest paths – see Remark 3.2).

I Fact 11. For every such list of lists M , there is a solution xM ∈ R?noC in which each
agent i delivers the packages in Mi in the order specified by this list and in which the cost is
minimized. Given M , such a solution can be computed in time poly(n,m, k).

Constant number of packages m

We now look at the case of a constant number m of packages. By Theorem 8, the solution
S := arg minx∈R?

noC
cost(x,w) is a 2−approximation of the optimum. First, we present an

algorithm Am which basically enumerates over all lists of exactly k (possibly empty) lists and
adds the corresponding solution to a set RAm (where we get RAm = R?noC), as described in
the first step of our scheme. Then, given an input vector of weights w′, Am chooses the best
solution Am(w′) ∈ arg minx∈R?

noC
{cost(x,w′}.

I Theorem 12. Algorithm Am finds a best solution S ∈ arg min
x∈R?

noC

cost(x,w) and can be
implemented to run in time O (m!(k +m)m · poly(n,m, k)).

Proof. Step 1 of Am produces O(m! ·
(
m+k−1
k−1

)
) many solutions and can be implemented in

time O (m!(k +m)m · poly(m, k)) as follows: Since we look at a list of lists we have a total
order on the packages. Hence we first enumerate in an outer loop over all m! permutations,
which can be done in time O(m!). Each such permutation also needs to be subdivided into
exactly k possibly empty lists. There are

(
m+k−1
k−1

)
≤ (k + m)m many ways to do this (by

placing k − 1 delimiters at m+ k − 1 potential positions in time O (poly(m, k))). Step 2 of
Am consists of computing the cost of each solution x ∈ R?noC in time O (poly(n,m, k)). J
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Algorithm Am (improved version)
Input: Connected graph G, k agents, m packages.
Output: An optimal solution S ∈ R?noC.

Enumerate over all sets of (non-empty) lists of the packages 1, . . . ,m.
foreach set of ≤ k lists do

foreach pair (agent i, list Mj) do
1a: Assume agent i delivers the packages in Mj in their order.
1b: Compute the cost di(Mj) of doing so.
end foreach

2a: Build a complete bipartite graph Agents–Lists
with edge costs wi · di(Mj) for each edge {i,Mj}.

2b: Find the best assignment Agents → Lists
(by computing a maximum weighted bipartite matching).
foreach subset of k − 1 agents do
3: Repeat 2a, 2b for the subset of k − 1 agents.
end foreach

4: Keep track of the best solution(s) found so far.
end foreach

I Theorem 13. For a constant number of packages m, there exists a polynomial-time truthful
VCG mechanism (Am, P ), satisfying voluntary participation, with approximation ratio ≤ 2.

Proof. Theorem 12 says that the algorithm satisfies the conditions in Theorem 3, and thus
truthfulness holds. Theorem 12 also implies the running time. The approximation is due
to Theorem 8 and the definition of the benefit of collaboration BoC∗. We next argue that
the algorithm satisfies the condition in Fact 5, cost(Am(w′), w′) ≤ cost(Am(⊥, w′−i), w′).
Indeed, every solution Am(⊥, w′−i) is also considered by the algorithm when all agents are
present (input w′), since this solution corresponds to some list of k lists M in which agent i is
not given any package (i.e. Mi = ∅). Thus the solution Am(⊥, w′−i) is contained in R?noC. J

We now show that the running time of the mechanism (Am, P ) can be improved. The
main idea is to enumerate in Am over all sets of lists instead of list of lists – i.e. during the
enumeration we do not fix yet which agent gets which list of packages. Rather for each set of
lists, we aim to directly compute an optimal assignment between the agents and the lists,
thus deciding for every fixed set of lists in a parallel way the assigned list for every agent
(instead of enumerating over all possible assignments as well).

I Theorem 14. The running time of the truthful VCG mechanism (Am, P ) can be improved
to a FPT , parametrized by the number of packages, of running time O(f(m) · poly(n, k)),
where f(m) ∈ O

(
e2
√
m−mmm · poly(m)

)
.

Proof. Consider first the running time of the improved algorithm Am, which iterates over all
sets of non-empty lists of the packages 1, . . . ,m. The number of sets of lists is known to be
O(e2

√
m−mmm/poly(m)) [24]. To this end we enumerate over all sets of lists while spending

only an additional O(poly(m))-factor (over the number of sets of lists) on the running time.
This can be done by enumerating over all sets of sets (by considering packages one-by-one
and deciding whether to put them in a previously created subset or whether to start a new
subset), followed by enumerating over all permutations of the packages inside each subset.

For each of the sets of at most k lists, we compute the best assignment of the k agents
to the lists (say l ≤ k many) with a weighted bipartite matching as follows: On one side of
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the bipartite graph, we have k vertices, one for each agent. On the other side, we have one
vertex per list. We take the complete bipartite graph between the two sides. This graph
has at most k · l ≤ k ·m edges. We compute the cost of an (agent, list)-edge as the energy
cost of delivering all packages in the bundle in that order with that agent. This requires
O(poly(n,m)) time per edge and O(poly(n, k,m)) time in total. A maximum matching of
minimum cost in this graph gives the best assignment of agents to bundles and can be found
in polynomial time, e.g., by using the Hungarian method [20] or the successive shortest path
algorithm [13].

It remains to show that truthfulness and voluntary participation also hold for the
improved version of algorithm Am. Truthfulness follows immediately from the fact that Am
still considers all solutions x ∈ R?noC, albeit always several of them in a parallel fashion. To
be able to apply Clarke’s pivot rule to define the payments via Qi(w′−i) we make sure to also
consider all solutions on all k different subsets of k − 1 agents, see Step 3 of the improved
algorithm Am. J

Constant number of agents k

Next, we look at settings with a constant number of agents k but an arbitrary number of
packages m. In this case, even for k = 1 and independent of whether or not we restrict
the packages to be transported from source to target without intermediate drop-offs, it is
NP-hard to approximate minx cost(x,w′) to within any constant approximation ratio less
than 367/366 [6, Theorem 9]. There, the bottleneck lies in finding the optimal permutation
πOpt to minimize the travel distances, see Equation (4). For k > 1, we first have to partition
the packages into (possibly empty) subsets M1, . . . ,Mk. Contrary to A∗ and Am, we will
need exponential time O(km) to enumerate all partitions. Next, for every fixed partition of
the packages into subsets Mi, we look for a package order πx(i1), πx(i2), . . . , πx(i|Mi|) given
by a permutation πx of {1, 2, . . . ,m} such that we get an approximation guarantee on di(x).

Stacker-Crane problem. The latter can be modeled as the Stacker-Crane problem, which
asks for the following: Given a weighted graph GSCP with a set of directed arcs and a set of
undirected edges, find the minimum tour that uses each arc at least once. Since we restrict
ourselves to the two additional conditions (i) direct delivery of each package, (ii) return of
each agent i in the end, we can model the transport of package j along a shortest path by
a directed edge from sj to tj : Hence we choose the graph GSCP to consist of node pi and
all nodes sj , tj , j = i1, . . . , i|Mi|, together with directed arcs (sj , tj) of weight distG(sj , tj)
(corresponding to the length of a shortest path between sj and tj in G) and undirected edges
{tj1, sj2} , {pi, sj} , {pi, tj} of weights corresponding to the original distances distG(tj1, sj2)
between tj1, sj2 (respectively distG(pi, sj), distG(pi, tj)). For the Stacker-Crane problem, a
polynomial-time 1.8-approximation due to Frederickson et al. is known [16]. It remains to
iterate over all assignments of the packages to the k agents as in the presented Algorithm Ak.

I Theorem 15. Algorithm Ak runs in time O (poly(n,m, k) · km) and finds an approximate
solution S of cost(S,w′) ≤ 1.8 ·minx∈R?

noC
cost(x,w′).

Proof. Algorithm Ak first enumerates over all lists of exactly k possibly empty sets of the
packages. This can be implemented to run in time O(km) by choosing for each of the m
packages the subset of packages Mi it belongs to. We know that for each list of exactly k
possibly empty lists there is a corresponding solution x ∈ R?noC and vice versa (Fact 11). In
particular there exists a list M = (M1, . . . ,Mk) of lists M1, . . . ,Mk for each optimal solution
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Algorithm Ak (for a constant number k of agents)
Input: Connected graph G, k agents, m packages.
Output: A 1.8-approximate solution S ∈ R?noC.
1: Brute-force enumeration over all lists of exactly k possibly empty sets of the packages.

foreach list of k sets (M1, . . . ,Mk) do
foreach agent i do
a: Model the delivery of the packages Mi (by agent i) as a Stacker-Crane problem.
b: Compute a solution x|Mi such that di(x) is a 1.8-approximation.
end foreach

c: Add delivery problem solution x, combined from the k Stacker-Crane solutions x|Mi
,

to the set of solutions RAk .
end foreach

2: Define algorithm Ak as taking the best among all solutions in RAk with respect to the
input weights w′:

Ak(w′) := arg min
x∈R

Ak

{cost(x,w′)} .

Opt(R?noC) ∈ arg minx∈R?
noC
{cost(x,w′)}. Algorithm Ak at some point considers the list of

exactly k possibly empty sets M1, . . . ,Mk (where there is no prescribed order of the elements
in each of the Mi, i = 1, . . . , k). Applying the Stacker-Crane approximation algorithm, Ak
approximates each of the travelling distances di(Opt(R?noC)) of the agents by a factor of at
most 1.8. Hence Ak also considers a solution S′ ∈ R?noC of cost

cost(S′, w′) =
k∑
i=1

w′i · di(S′) ≤
k∑
i=1

w′i · 1.8 · di(Opt(R?noC)) = 1.8 · min
x∈R?

noC

cost(x,w′).

Since this solution S′ is contained in the built set RAk , we know that S := Ak(w′) has
cost(S,w′) ≤ cost(S′, w′) ≤ 1.8 ·minx∈R?

noC
cost(x,w′). J

I Theorem 16. For a constant number of agents k, there exists an exponential-time truthful
VCG mechanism (Ak, P ), satisfying voluntary participation, with approximation ratio ≤ 3.6.

Proof. The approximation follows from Theorem 8 and Theorem 15. The latter theorem
also implies the running time of the mechanism. Truthfulness and voluntary participation
can be proved essentially in the same way as for Theorem 13. Indeed, the set of solutions
RAk is computed independently of the input weights w′, and thus the last step defining Ak
satisfy the condition of Theorem 3 (implying truthfulness). As for voluntary participation,
we observe that when Ak is run on input (⊥, w′−i), the computed solution corresponds to
some list of k − 1 sets (agent i is not present), and the same solution is considered on input
w′ as a list of k sets, where one set is empty. This implies that the algorithm satisfies
cost(Ak(w′), w′) ≤ cost(Ak(⊥, w′−i), w′), i.e., Fact 5 and thus voluntary participation. J

3.3 Comparison of the algorithms
We conclude our results on truthful approximation mechanisms with a comparison of the
three given algorithms A∗ (general setting, polynomial time), Am (FPT, parametrized by the
number of packages m) and Ak (exponential time for a constant number of agents k), given
in Figure 4. Each of the three algorithms chooses an optimal solution from a respective set
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Solution space for delivery

RAm = R∗noC

RA∗

RAk

OPT Am(w′)
A∗(w′)

Ak(w′)

cost(Am(w′)) ≤ 2 · cost(Opt, w′)

Ratios between the computed solutions:

cost(A∗(w′)) ≤ 4wmax

wmin
· cost(Opt, w′)

cost(Ak(w′)) ≤ 1.8 · cost(Am(w′), w′)

≤ 3.6 · cost(Opt, w′)

(Benefit of Collaboration)

(Algorithm Apos )

(Benefit of Collaboration)

(Stacker-Crane)

Figure 4 Venn diagram of the subsets of solutions RA∗ , RAm , RAk considered by the given
algorithms. Depending on the actual instance, the intersection of RA∗ and RAk might be empty.

RA∗ , RAm , RAk . To ensure voluntary participation, in each set we include solutions where
individual agents are not present – in this way, we can set the payments according to Clarke’s
pivot rule (2). All three algorithms make use of Theorem 8 which bounds the Benefit of
Collaboration BoC∗ by 2 (this can be seen directly in the definition of the algorithms Am, Ak,
for algorithm A∗ this follows from the black box algorithm Apos [6, Theorem 13]). In fact,
the first version of the algorithm Am computes a set RAm which consists of all the solutions
in R?noC – the improved version of Am discards solutions of high cost early on (while still
considering solutions where individual agents are not present), in order to limit the set RAm

to a small (FPT -) size, parametrized by the number of packages. Finally, we can compare
the approximation guarantees. For algorithm A∗ the approximation ratio of 4 · wmax

wmin
follows

from the (same) approximation ratio of Apos. Both Am and Ak have a factor of BoC∗ ≤ 2,
with an additional factor of 1.8 for Ak since we need to approximate the planning of each
agent’s tour (which we model with stacker-crane).

4 Single Package and Frugality

For the case of a single package, we define two truthful VCG mechanisms. The optimal
mechanism which minimizes the social cost using any number of agents, and the lonely
mechanism which computes the solution of minimal cost under the constraint of using only
one single agent. In both mechanisms, we use the VCG payments (1) with Clarke pivot
rule (2) in order to satisfy voluntary participation.

I Theorem 17 (Theorem 2 in [6]). For m = 1, the optimal solution using a single agent, as
well as the optimal solution using any number of agents, can be computed in polynomial time.

I Fact 18. Both the exact and the lonely mechanisms are truthful since the algorithms are
optimal with respect to a fixed subset of solutions, i.e., they satisfy the condition of Theorem 3.
Moreover, the mechanisms run in polynomial time by Theorem 17.

In the following, we bound the total payments of these mechanisms compared with the cost
of the optimal solution (for the given input). In other words, assuming the reported weights
are the true weights (w′ = w), we would like the mechanism to not pay much more than the
optimum for these weights w = w′. This property is usually termed frugality [14, 3].

We first observe that, if we care more about the total payment made to the agents than
about the optimality of the final solution, then in some instances it may pay off to run
the lonely mechanism instead of the optimal mechanism. However, in other instances, the
converse happens, meaning that neither mechanism is always better than the other.
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w2=6 w3=4w1=9 1 2 4
s1 t1 s1 t1

2 2 2w2=5 w3=5w1=9

Figure 5 Delivery examples and their optimal solution. (left) The optimal mechanism pays more
than the lonely mechanism. (right) The lonely mechanism pays more than the optimal mechanism.

In order to compare the optimal mechanism with the lonely mechanism, it is useful to
define the following shorthands:

OPT = cost(Aopt(w′), w′) , OPT−i = cost(Aopt(⊥, w′−i), w′−i) ,
LOPT = cost(Alon(w′), w′) , LOPT−i = cost(Alon(⊥, w′−i), w′−i) ,

where Aopt is the optimal algorithm, and Alon is the lonely algorithm, that is, the one
computing the optimal solution using a single agent. Then the VCG payments (1) with the
Clarke pivot rule in (2) can be rewritten as follows in the two cases:

Pi(w′) = OPT−i − (OPT − w′i · di(Aopt(w′))) , (5)
Pi(w′) = LOPT−i − (LOPT − w′i · di(Alon(w′))) . (6)

Below, we usually omit the agents’ weights w′ = w whenever they are clear from the context.

I Fact 19. The lonely mechanism pays the selected agent i an amount LOPT−i, and the
other agents get no payment. This is because LOPT = w′i · di(Alon(w′)) when i is selected,
and for all non-selected agent j 6= i, LOPT = LOPT−j and dj(Alon(w′)) = 0.

I Theorem 20. For a single package, there are instances where the optimal mechanism pays
a total amount of money larger than what the lonely mechanism does. Moreover, there are
instances in which the opposite happens, that is, the lonely mechanism pays more.

Proof. First we prove that there are instances, in which the optimal mechanism pays more.
The example in Figure 5 (left) shows an instance and its optimal solution. The optimum
for the instance in which agent 1 is not present has cost OPT−1 = 40 (let agent 3 do the
whole work). More generally, one can check that OPT−1 = OPT−2 = 40 and OPT−3 = 45,
and obviously OPT = 9 + 12 + 16 = 37. Using these values for the payments (5), we get
P1 = 40− (37− 9) = 12, P2 = 40− (37− 12) = 15, P3 = 45− (37− 16) = 24, for a total
amount of 51 payed by this mechanism to the agents. The lonely mechanism will instead
select agent 3 and pay only this agent (see Fact 19) an amount LOPT−3 = 6 · (2+2+4) = 48,
which is the lonely optimum for the instance where agent 3 is not present.

On the other hand, the example in Figure 5 (right) shows an instance in which the
lonely mechanism pays more. The optimal solution has cost is OPT = 18 + 10 + 10 = 38
and we get OPT−1 = 40, OPT−2 = 46 and OPT−3 = 38, resulting in the payments
P1 = 40− (38− 18) = 20, P2 = 46− (38− 10) = 18, P3 = 38− (38− 10) = 10 for a total
amount of 48. The lonely mechanism will instead select agent 2 and pay LOPT−2 = 50. J

We remark that the payments given by (1) and (2) guarantee voluntary participation, and
therefore the mechanism must pay a total amount of at least the optimum. We show that
both mechanisms pay only a small constant factor over the optimum, except when a single
agent can do the work for a much cheaper price than the others (as shown in Example 22):

I Definition 21 (monopoly-free). We say that an instance with a single package is monopoly-
free if there is an optimal solution which uses at least two agents.
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I Example 22. Both the exact and the lonely mechanism perform equally bad if, for instance,
there is only one very cheap agent and another very expensive one. Consider two agents of
weights w1 = ε small, and w2 = L large, both agents sitting on the starting position s1 of the
package. In this case the two mechanisms output the same solution and payment: Agent 1
does the whole work and gets an amount of money given by the best alternative solution. We
have P1 = w2 dist(s1, t1) = Ldist(s1, t1), while the optimum is w1 dist(s1, t1) = εdist(s1, t1).

I Theorem 23. In any single package monopoly-free instance, the optimal mechanism pays
a total amount of money which is at most twice the optimum.

Proof. The optimal solution selects a certain number ` ≥ 2 of agents and assigns to each of
them some path. By renaming the agents, we can therefore assume that the optimum cost is
of the form OPT = w1d1 +w2d2 + · · ·+w`d`, where no agent appears twice and the weights
must satisfy wi ≥ wi+1 and wi ≤ 2wi+1, for otherwise agent i can replace agent i+ 1 or vice
versa. We shall prove below that

OPT−i ≤ OPT + widi. (7)

Using VCG payments (1), we obtain from (7) that every agent is payed at most twice her cost,
Pi ≤ OPT +widi− (OPT −widi) = 2widi, which then implies the theorem. To complete the
proof, we show (7) by distinguishing two cases. For i < `, we can replace agent i with agent
i+ 1 who then has to travel an additional distance of at most 2di to reach i and come back
to its position. This gives an upper bound: OPT−i ≤ OPT −widi +wi+12di ≤ OPT +widi,
where the last inequality is due to wi+1 ≤ wi. For i = `, we replace agent i by agent `−1 who
travels an extra amount d`, and obtain this upper bound: OPT−` ≤ OPT −w`d`+w`−1d` ≤
OPT + w`d`, where the last inequality is due to w`−1 ≤ 2w`. J

I Theorem 24. In any single package monopoly-free instance, the lonely mechanism pays at
most 2BoC times the optimum, where BoC = 1/ ln 2 ≈ 1.44 (by Theorem 8).

Proof. Let i be the selected agent. A crude upper bound on the sum of the payments can be
obtained via Fact 19, where the second inequality requires the instance to be monopoly-free:

Pi = LOPT−i ≤ BoC ·OPT−i
(7)
≤ BoC · (OPT + widi) ≤ BoC · 2 ·OPT . J

5 Conclusion and open questions

This work initiates the study of truthful mechanisms for delivery in a natural setting where
mobile agents are selfish and can speculate about their own energy consumption rate.
We considered mechanisms which are truthful, run in polynomial-time, have a worst-case
approximation guarantee and, possibly, do not pay the agents abnormal amounts (frugality).
We provide such polynomial-time truthful approximation mechanisms for two cases:
1. when the consumption rate of different agents are similar, i.e., the ratio max wi

wj
is bounded

(see Theorem 10) and
2. when the number of packages m is small (see Theorem 14).
For a single package, we also gave bounds on the frugality of two natural truthful mechanisms
which return the optimum or an approximation of the optimum.

The main open question is whether there exists a polynomial-time constant-factor ap-
proximation independent of the weights. This remains an intriguing open question even
for a constant number of agents k, for which we presented an exponential-time truthful
approximation mechanism.
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Abstract
We study the earliest arrival and profile problems in road networks with time-dependent functions
as arc weights and dynamic updates. We present and experimentally evaluate simple, sampling-
based, heuristic algorithms. Our evaluation is performed on large, current, production-grade
road graph data with time-dependent arc weights. It clearly shows that the proposed algorithms
are fast and compute paths with a sufficiently small error for most practical applications. We
experimentally compare our algorithm against the current state-of-the-art. Our experiments
reveal, that the memory consumption of existing algorithms is prohibitive on large instances.
Our approach does not suffer from this limitation. Further, our algorithm is the only competitor
able to answer profile queries on all test instances below 50ms. As our algorithm is simple to
implement, we believe that it is a good fit for many realworld applications.
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1 Introduction

Routing in road networks is an important and well-researched topic [1]. It comes in many
varieties. Nearly all formalize the road network as a weighted, directed graph. Nodes
correspond to positions in the network. Edges correspond to road segments. The weight
of an edge is the travel time a car needs to traverse the corresponding road segment. A
common assumption is that these travel times are time-independent scalars that do not
change throughout the day. With this assumption, the problem boils down to the classical
shortest path problem: Given a weighted graph, a source node s and a target node t, find a
shortest st-path.

A problem is that road networks are huge. Even near-linear-running-time algorithms,
such as Dijkstra’s algorithm [14], are too slow. Therefore, speedup based techniques were
developped [1]: In a first slow preprocessing phase, auxiliary data is computed. In a second
fast query phase, shortest path queries are answered in sublinear time using this auxiliary
data. Contraction Hierarchies (CH) [18] are a popular technique following this setup.

We study extensions of this problem setting: the earliest arrival and profile problems [7].
The input of the earliest arrival problem consists of nodes s, t, and a departure time τ . The
task consists of computing a st-path with minimum arrival time. The input of profile problem
consists only of s and t. The output consists of a function that maps a departure time onto
the corresponding minimum arrival time. Formulated differently, the profile problem solves
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the earliest arrival time problem for every departure time. We refer to the scenario without
congestions as time-independent. Dijkstra’s algorithm [14] can be augmented to solve the
earliest arrival problem [15]. However, it remains too slow.

Predicted congestions are usually modeled using functions as edge weights. Every edge
e is associated with a function fe(x) that maps the entry time x of a car into e onto the
travel time fe(x). Following [26], we require that waiting must not be beneficial. This
property is called the FIFO-property and formally states that x + fe(x) ≤ y + fe(y) for
all x ≤ y. Without this property, the problem is NP-hard. We further assume that the
functions are periodic with a period length of one day. We refer to the lower bound of fe

as e’s freeflow weight. The set of functions is the congestion prediction. The prediction is
often done months in advance. All functions are available during preprocessing. Predictions
are usually derived from past GPS traces or a traffic simulation. Routing with predicted
congestions is a well-researched topic [11, 12, 8, 25, 10, 4, 17, 6, 22].

Predicted congestions give a very rough traffic estimation. Often the actual traffic
situation differs significantly from the prediction. For this reason, we also consider realtime
congestions. We assume that there is a system that measures the current realtime travel time
for every edge. A realtime routing system computes shortest paths according to the realtime
travel times. Such a routing system usually works in three phases. In the first preprocessing
phase, only the road network but not the travel times are known. This phase can be slow.
The second customization phase introducess the travel times. The third phase is the query
phase and computes paths. The customization should run within a few seconds. It is rerun
at regular intervals, such as for example every 10s, to incorporate the current traffic situation.
Solutions to routing with only realtime congestions problem are MLD/CRP [28, 21, 9] and
Customizable Contraction Hierarchies (CCH) [13].

Ideally, we want a routing system that accounts for predicted and realtime congestions.
This scenario is also known as dynamic time-dependent routing. There are on this topic [10, 6].
In this paper, we propose an algorithm TD-S that solves the earliest arrival problem with
predicted congestions. The acronym stands for Time-Dependent Sampling. We extend it to
TD-S+P, which solves the profile problem, and to TD-S+D which additionally takes realtime
congestions into account.

The routing problem with no congestion and with only realtime congestions can be solved
efficiently and exactly, i.e., the computed paths are shortest paths. However, when taking
predicted congestions into account, many proposed algorithms compute paths with an error.
Let d denote the length of the computed path and dopt the length of a shortest path. We
define the absolute error as |d − dopt| and the relative error as |d−dopt|

dopt
. Ideally, we would

like to compute paths with no error but this is not an easy task.
Fortunately, for most applications a small error is acceptable as a traveler will not notice

a slightly suboptimal path. Further, the employed predictions have associated uncertainties.
Minimizing the error when it is below the uncertainty is not useful. A shortest path with
respect to the prediction is not necessarily shortest with respect to reality. Paths with a
small error are therefore indiscernible from “optimal” ones in terms of quality in practice.
Unfortunately, the predictions that we have access to do not quantify these uncertainties.
However, it is easy to see that the uncertainty is huge: The time a typical German traffic
light needs to cycle though its program is between 30s and 120s [16]. Traffic lights often
adapt to the actual realtime traffic. Predictions can therefore not take red light phases into
account as they cannot be predicted months in advance. Every traffic light on a shortest
path thus induces an uncertainty on the same scale as its program cycle length. Consider
a 2h path with a relative error of 1%. The corresponding absolute error is 72s, i.e., one to
three traffic lights. An error of 1% is thus small.
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On sufficiently small instances, the routing problem with predicted congestions can be
solved optimally using TCH [4]. Unfortunately, TCH requires a lot of memory. We compare
against an open-source implementation by the primary author [3]. We cannot answer queries
on a current Europe instance even with a 128GB machine – a show stopper if the program
needs to run on a client’s desktop machine, which usually has far less memory. A further
downside of TCH is its complexity. It also makes extensions, for example realtime congestions,
difficult. Further, TCHs are only optimally if one assumes arbitrary precise numbers with
O(1)-operations. Making sure that numeric instabilities do not get out of hand is possible
but not easy. The simplicity of an algorithm is a huge asset in applications. Unfortunately, it
is difficult to formalize when an algorithm is “simple” and when not. For the context of this
paper, we use the following crude approximation: An algorithm is complex, if it combines
functions using linking and merging operations1. Numeric stability issues are typically caused
by these operations. Avoiding these operations thus also avoids these issues.

Even though a lot of research into time-dependent routing exists, in-depth experimental
studies of the very simple approaches are, to the best of our knowledge, lacking. How good
is an optimal solution to the time-independent routing problem with respect to the routing
problem with predicted congestions? We refer to this simple approach as Freeflow heuristic.
A further interesting question is, how good is an optimal solution to the earliest arrival
problem with predicted congestions with respect to the earliest arrival problem with both
congestion types? We refer to this approach as Predicted-Path heuristic. Both heuristics
obviously compute paths with an error. However, how bad are these errors in practice? To
the best of our knowledge, this fundamental question has not been investigated in existing
papers. One of the objectives of our work is to fill this gap.

Our proposed algorithms are extensions of the Freeflow heuristic that trade an increased
query running time for a significant decrease in error. TD-S and TD-S+P can be implemented
with minimum effort assuming that a blackbox solution to the routing problem with no
congestions is available. TD-S+D additionally needs a blackbox that can handle realtime
congestions. Our program is build on top of the open-source CH and CCH implementations
of RoutingKit [30]. Fortunately, one can swap them out for any other algorithms that fulfills
the requirements. An open-source TD-S implementation is available [31].

An experimental error evaluation crucially depends on high quality realworld data.
Fortunately, PTV [27] has given us access to their current production-grade congestion data
for 2017 specifically to evaluate TD-S. As this data has a significant commercial value, we
are not allowed to freely share it without explicitly consent of PTV. We are not aware of
high-quality open congestion prediction data. OSM does not include predictions.

1.1 Related Work
There exist a lot of papers beside the already mentioned ones. We do not build upon them
nor rerun their experiments. We therefore limit our description to a brief overview. For a
detailed survey, we refer to [2].

The authors of [25] observed that ALT [19], a time-independent speedup technique,
can be applied to the graph weighted with the freeflow weights. This yields the simple
algorithm named TD-ALT. In [10], the technique was extended to TD-CALT by first
coarsening the graph and then applying TD-ALT to the core. TD-CALT was evaluated

1 Definitions: Merge respectively link of f and g is h such that h(x) = min{f(x), g(x)} respectively
h(x) = f(x) + g(f(x) + x)

ATMOS 2017
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with respect to realtime congestion. Coarsening, and thus TD-CALT, requires linking and
merging operations. In [8], SHARC [5] (a combination of Arc-Flags [24] with shortcuts and
coarsening) was extended to the time-dependent setting. SHARC was combined with ALT
yielding L-SHARC [8]. Another technique is FLAT [22]. Here the idea is to precompute the
solutions from a set of landmarks to every node and during the query phase to route all
sufficiently long paths through a landmark. FLAT also works without linking- and merging
operations. In [23], it was extended to CFLAT. In [6], MLD/CRP was combined with travel
time functions yielding TD-CRP, which can also be used in the dynamic scenario.

A deep structural insight was shown in [17]. Graphs and source and target nodes s and
t exist, such that the st-profile contains a superpolynomial number of paths. This implies
that the profile problem cannot be solved on every instance with polynomial running time.
Fortunately, realworld graphs do not have this worst-case structure.

1.2 Outline
We start by describing our implementation of the Freeflow heuristic. We further present
a slight variation called Avgflow heuristic. Afterwards, we describe TD-S and the profile
extension TD-S+P. In the next step, we introduce the dynamic extension TD-S+D. Finally,
we experimentally evaluate all three algorithms on production-grade instances and compare
our results with TCH.

2 The Freeflow and Avgflow Heuristic

The freeflow travel time along an edge assumes that there is no congestion. Formally, the
freeflow travel time of an edge e is the minimum value of e’s travel time function fe. The
Freeflow heuristic works in two steps:
1. Find shortest time-independent path H with respect to the freeflow travel time.
2. Compute the time-dependent travel time along H for the given departure time.
The first step is independent of the edge function weights. The functions are only used in
the second step. The running time is dominated by the first step. Fortunately, this step can
be accelerated using any time-independent speedup technique. In our implementation, we
use a CH. In a preprocessing step, we compute a CH for the road graph weighted by freeflow
travel times. The first step of the Freeflow heuristic computes H using a CH-query.

A slight variation is the Avgflow heuristic. It is exactly the same as the Freeflow heuristic
but uses the average travel time instead of the minimum travel time for every edge.

3 Time-Dependent-Sampling: TD-S

The Freeflow heuristic never reroutes based on the current traffic situation. TD-S tries to
alleviate this problem. Similarly to the Freeflow heuristic, TD+S’s query algorithm works in
two steps:
1. Compute a subgraph H.
2. Run the time-dependent extension of Dijkstra’s algorithm on the subgraph.
If a shortest time-dependent path P is part of H, then P is found by TD-S and the computed
arrival time is exact. Otherwise, TD-S’s solution has an error.

We compute the subgraph using a sampling approach. We define a constant number k of
time-intervals. Within each time-interval, we average the time-dependent travel times. For
every interval, we thus obtain a time-independent graph. For every graph, we compute a
shortest time-independent path. The union of these paths is the subgraph H.
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Figure 1 The st-profile is the solid line. It must be in the orange area. The dashed function is
our approximation.

Similarly to the Freeflow heuristic, the shortest time-independent path computations can
be accelerated using existing speedup techniques. In our implementation, we compute for
each time-interval a time-independent CH. The first step of TD+S executes k CH-queries.
The second step uses the time-dependent extension of Dijkstra’s algorithm restricted to the
subgraph H.

The Freeflow heuristic can be seen as a special case of TD+S, where subgraph consists of
a shortest freeflow path. The number of time-intervals k is a trade-off between query and
preprocessing running times, and space consumption on the one hand, and solution error on
the other hand. We recommend using small numbers below 10 for k. The chosen interval
boundaries should reflect rush hours in the input data.

4 Computing Profiles: TD-S+P

The query algorithm of TD-S+P also works in two steps:
1. Compute a subgraph H.
2. Sample at regular intervals the travel time by running the time-dependent extension of

Dijkstra’s algorithm restricted to the subgraph H.
The subgraph computation step is the same as for TD-S.

We interpolate linearly between the sampled travel times. For a sampling rate of 10
min, our algorithm first computes the subgraph H, then runs Dijkstra’s algorithm with the
departure times 0:00, 0:10, 0:20. . .23:50 restricted to H. Denote by a1, a2, a3 . . . a144 the
computed arrival times. For example, the computed arrival time for departure time 0:07 is
0.3a1 + 0.7a2.

We can bound the error that the profile algorithm induces on top of the error of TD-S
using a theoretical argument: Denote by Λmax the maximum and by −Λmin the minimum
slope of every linear piece in every profile function and by r the sample rate. As shown in
the appendix B, the maximum absolute error is bounded by r(Λmax + Λmin)/4. The proof
idea is illustrated in Figure 1. Following [22], we assume that Λmax and −Λmin are bounded
by a small constant. In the same paper, the values Λmax = 0.19 and Λmin = 0.15 were
experimentally estimated for the Berlin instance. With r = 10min this gives a maximum
error of 51 seconds. Our analysis is very similar to the TRAP oracle from [22]. Unfortunately,
this bounds on the error induced by the profile algorithm. The base algorithm TD-S induces
additional error, which were not able to bound using theoretical arguments.

TD-S+P is faster than iteratively running TD-S as the subgraph is only computed once.
Further, Dijkstra’s algorithm iteratively runs on the same small subgraph H. The first run
loads H into the cache and thus all subsequent runs incur nearly no cache misses.

Figure 2 illustrates a typical profile computed with TD-S+P. The source node of the
example is near the inner city of Stuttgart, a city notoriously known for its large daily traffic

ATMOS 2017
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Figure 2 Example profile over 24h. The red curve (top) was computed with TD-S+P, while the
blue one (bottom) is the exact solution. The middle overlapping curves are the actual profiles. To
improve readability, we plot both curves a second time shifted by one unit on the y-axis.

congestions, in front of the central train station. The target node lies in Denkendorf, a village
about 20min south-east outside of Stuttgart. The computed profile is smoother than the
“exact” profile, which has a lot of small fluctuations. However, this does not mean that the
“exact” profile is more accurate. Most of the small fluctuations are within only a few seconds,
i.e., well below the accuracy of the input data. Formulated differently, these fluctuations
are imprecisions in the input that are propagated to the output. Fortunately, the general
form of both curves is very similar, which is the important information. The largest absolute
error is 19s, respectively 1.17% relative error, at the peak of the evening spike. Recall, that
crossing a single red traffic light can induce a delay of more than 19s.

5 Dynamic Traffic: TD-S+D

TD-S and TD-S+P work with predicted congestions. However, in many applications we must
also take realtime congestions into account. We adapt TD-S by modifying the computation
of the subgraph H yielding TD-S+D. The second step is left unchanged.

The subgraph H is the union of k paths. TD-S+D adds a shortest st-path according to
the current realtime traffic as k + 1-th path to the union. To efficiently determine this path,
a efficient solution to the routing problem with realtime congestions is needed. We use the
CCH algorithm [13] with a FlowCutter contraction order [20].

In the preprocessing step, TD-S+D computes a CCH in addition to the k CHs of TD-S.
At regular time intervals, such as every 10s, TD-S+D updates the CCH edge weights to reflect
the realtime traffic situation. This update involves a CCH customization, which runs within
at most a few seconds. A TD-S+D query consists of running k CH queries and one CCH
query. The subgraph H is the union of the k + 1 shortest paths. Finally, the time-dependent
extension of Dijkstra’s algorithm is run restricted to the subgraph H.

5.1 Simulating Traffic
We have access to production-grade time-dependent edge data. Unfortunately, we do not
have access to good measured realtime traffic. We therefore simulate realtime congestions to
study the performance of TD-S+D.

For an earliest arrival time query from s to t with departure time τ , we first compute the
shortest time-dependent path P with respect to the historic travel times. On P we generate
three traffic congestions by picking three random start edges. From each of these edges we
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Figure 3 Travel-time weight function with simulated congestion.

Table 1 Node count, edge count, percentage of time dependent edges, and number of break
points per time-dependent weight function for all instances.

Nodes Directed TD-Edges avg. Break Points
[K] Edges [K] [%] per TD-Edge

Lux 54 116 34 30.9
Ger 7 248 15 752 29 29.6
OGer 4 688 10 796 7 17.6
CEur 25 758 55 504 27 27.5

follow P for 4min, yielding three subpaths. For every edge e in a subpath, we generate a
congestion according to the construction illustrated in Figure 3. The red line is the original
travel time function f . The blue line is the congested function.

Denote by f the travel time function of e. We modify f by doubling the travel time at
f(τ) and assume that it remains constant for some time. The congestion should be gone at
τ + 1h. To maintain the FIFO-property, the modified function must have slope of -1 before
τ + 1 before joining the predicted travel time. In the awkward and rare situation where
2f(τ) < f(τ + 1h), we do not generate a congestion.

6 Experimental Results

6.1 Setup
We use three production-grade instances (Lux, Ger, CEur) with traffic predictions for the
first half of 2017. To compare with related work, we further include an a decade-old Germany
instance (OGer) in our study. We thank PTV for giving us access to this data. All instances
model a car on a typical Tuesday. The instance sizes are depicted in Table 1. The European
graph contains several central European countries as illustrated in Figure 4. Experiments
on further instances are reported in an older ArXiv version of our work [29]. The results
are essentially comparable to the experiments presented in this paper on all non-synthetic,
realworld instances. Additional experiments that evaluate the achieved errors in detail are in
the appendix.

Our experiments were run on a machine with a E5-2670 processor and 64GB of DDR3-
1600. All reported running times are sequential. For every instance, we generated 105 queries
with source stop, target stop and source time picked uniformly at random. All experiments
use the same set of test queries.

The large instances (Ger, CEur) are useful to investigate scaling behavior. The old
instance (OGer) is useful to compare with related work. The city with periphery instance
(Lux) is useful to investigate errors in urban contexts.

ATMOS 2017
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Figure 4 Central Europe.

Table 2 Number of exact time-dependent queries and absolute and relative errors for Freeflow,
TD-S+4, and TD-S+9. “Q99” refers to the 99%-quantile and “Q99.9” the 99.9%-quantile.

Exact
[%]

Relative Error [%] Absolute Error [s]

Graph Algo Avg Q99 Q99.9 Max Avg Q99 Q99.9 Max

Lux Freeflow 80.0 0.244 5.1 11.5 28.1 5.0 106 235 356
Lux Avgflow 81.0 0.123 2.5 6.4 19.4 2.5 49 143 329
Lux TD-S+4 97.7 0.008 0.2 1.5 4.9 0.2 4 30 141
Lux TD-S+9 99.6 <0.001 0.0 0.1 1.7 <0.1 0 3 27

Ger Freeflow 67.9 0.085 1.5 3.1 12.4 11.1 200 417 825
Ger Avgflow 69.2 0.044 0.8 1.9 10.3 5.9 113 284 587
Ger TD-S+4 94.6 0.005 0.1 1.0 3.0 0.8 17 159 474
Ger TD-S+9 98.2 0.001 <0.1 0.4 3.0 0.3 1 76 374

OGer Freeflow 60.7 0.140 2.0 4.7 12.4 15.9 219 465 1 104
OGer Avgflow 68.8 0.050 0.9 2.2 6.5 5.7 96 227 619
OGer TD-S+4 96.4 0.002 0.1 0.4 2.0 0.3 6 47 333
OGer TD-S+9 98.5 0.001 <0.1 0.2 2.0 0.1 1 24 276

CEur Freeflow 54.9 0.089 1.4 2.7 10.8 26.4 428 833 1 477
CEur Avgflow 55.8 0.048 0.8 1.7 6.6 14.2 235 507 1 069
CEur TD-S+4 91.1 0.006 0.2 0.7 3.8 1.8 47 226 547
CEur TD-S+9 96.8 0.001 <0.1 0.3 1.2 0.5 6 109 397

We evaluate TD-S with two selections of time windows. TD-S+4 uses the windows
0:00–5:00, 6:00–9:00, 11:00–14:00, and 16:00–19:00. TD-S+9 uses the windows 0:00–4:00,
5:50–6:10, 6:50–7:10, 7:50–8:10, 10:00–12:00, 12:00–14:00, 16:00–17:00, 17:00–18:00, and
19:00–21:00. These time windows reflect the rush hours in the dataset and were created using
manual trial-and-error. Developing algorithms to automatically determine time windows
bounds is an interesting avenue for future research.

To provide an in-depth comparison with related work, we run TCH on our test instances
and test machine. The implementation we used is based on KaTCH [3], an open-source reim-
plementation of the algorithm of [4] by the primary author. Unfortunately, it only supports
earliest arrival queries and no profile queries. We do not have access to implementations of
other competing algorithms.

In Table 2, we report the errors for various algorithms and all instances. We report the
percentage of queries that are solved exactly, the average, maximum, and quantiles2 of the

2 Definition x-quantile of n values: Sort n values increasingly, pick the (n·x)-th value. 0-quantile is min.
0.5-quantile is median. 1-quantile is max.
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Table 3 Average preprocessing and running times and memory consumption of various algorithms.

Graph TD-Dijkstra Freeflow Avgflow TD-S+4 TD-S+9 TCH

Average Query Running Time [ms]

Lux 4 0.02 0.02 0.11 0.26 0.18
Ger 1 116 0.19 0.20 0.99 3.28 1.81
OGer 813 0.12 0.14 0.97 2.09 1.12
CEur 4 440 0.42 0.29 3.83 6.85 OOM

Max. Query Memory [MiB]

Lux 13 17 17 29 47 328
Ger 1 550 2 132 2 130 3 630 6 127 42 857
OGer 461 855 854 1 880 3 589 8 153
CEur 4 980 7 058 7 053 12 411 21 336 >131 072

Total Preprocessing Running Time [min]

Lux — <0.1 <0.1 <0.1 0.1 0.6
Ger — 1.6 2.2 7.6 14.7 86.2
OGer — 1.5 1.6 5.9 16.4 26.8
CEur — 8.6 8.1 33.9 70.7 381.4

relative and absolute errors. The number of exactly solved queries decreases with instance
size as the paths lengths grow with size. A longer path has more opportunities for errors.
Similarly, the absolute errors grow with instance size as the paths get longer. The relative
errors quantiles shrink with growing instance size, as individual errors have a smaller impact.
The average errors are very small, as most queries are answered exactly. We report maximum
error values as most related papers report them. However, these values are very sensitive
to the random seed used during the query generation. The Freeflow heuristic achieves
significantly lower error values than we expected at first. The Avgflow heuristic slightly beats
the Freeflow heuristic. For some applications, these errors are low enough. However ideally,
we want to have even lower error values. Fortunately, using TD-S significantly lower values
are achievable. TD-S+9 answers 99.6% of the queries exactly in an urban scenario and 96.8%
on a continental-sized instance. Even the 99.9%-quantiles are well below a relative error
of 0.5%. TD-S+4 has larger errors as it uses fewer time windows. Fortunately, the query
running times and the memory footprint of TD-S+4 are lower.

In Table 3, we compare query and preprocessing running times and memory consumption.
We observe that the lower the solution error of an algorithm is, the more memory it requires.
TCH is guaranteed to be exact. Unfortunately, its memory requirements are prohibitive
on CEur. We tried to run it on a 128GB machine but got out-of-memory crashes while
executing queries. The TCH preprocessing algorithm writes no longer needed data to the
disk and evicts it from main memory. We were therefore able to run the preprocessing step.
However, the whole data structure must be loaded into main memory to answer queries.
TD-S+9 only needs 21GB on the same instance and TD-S+4 only 12GB. The 5GB memory
consumption of TD-Dijkstra consists essentially of the input data. TD-S+4 only needs about
2.4 times the memory required by the input. TD-S+9 needs 4.1 times the memory. TD-S+4
has an about a factor 10 lower preprocessing time than TCH. The Freeflow heuristic has, for
obvious reasons, the fastest query running time. It is followed by TD-S+4 which is about
33% to 50% faster than TCH. TD-S+9 is slightly slower than TCH.
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Table 4 Average 24h-profile running times in milliseconds. “SubG” is the subgraph comp. time.

Freeflow Avgflow TD-S+P4 TD-S+P9

Graph SubG. Total SubG. Total SubG. Total SubG. Total

Lux <0.1 2.6 <0.1 2.6 0.1 3.0 0.3 3.4
Ger 0.2 18.1 0.2 18.3 0.7 19.5 1.7 22.2
OGer 0.1 10.0 0.1 9.5 0.8 11.2 1.8 12.4
CEur 0.4 36.8 0.4 36.8 2.1 49.9 5.3 53.4
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Figure 5 The number of optimal paths (y-axis) in function of number of queries (x-axis) for a
24h-profile of TD-S+P9.

In Table 4, we report profile query running times. In addition to the total running time,
we report the amount of time needed to compute the subgraph. Even with TD-S+P9 on
the large CEur graph the average running times are only slightly above 50ms for a 24h
profile. The query running time of TD-S+P4 is only slightly lower than the running time of
TD-S+P9. However, the later has a significantly lower error. TD-S+P9 is therefore superior
to TD-S+P4 with respect to profile queries, if the larger memory footprint is not prohibitive.

A path can be optimal for several departure times throughout a day. For an st-query, we
can count the number of paths that are optimal for at least one departure time. Two paths
are the same if they have the same sequence of edges. It is not necessary that the travel
times are the same. In Figure 5, we depict the number of optimal paths as function of the
percentage of queries with at most that many paths. For most st-query there are only very
few paths. However, there are outliers for which there can be a significant number of paths.
The maximum number of observed paths on CEur is 34.

In theory, it is possible that the low errors we observe in our experiments are an artifact
of the test query generation method. It is known that uniform random queries are with
near certainty long-distance queries. If only short-distance queries were answered incorrectly,
our evaluation method would not detect these errors. In Appendix A, we investigate this
question using Dijkstra-rank plots and conclude that this effect luckily does not occure and
that the presented results are representative.

6.2 Dynamic Time-Dependent Routing

In the dynamic scenario, we consider two types of congestions: (a) the predicted congestion,
and (b) the realtime congestion. The predicted congestions are formalized as edge weight
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Table 5 Average query running times.

Lux Ger OGer CEur

TD-S+D4 0.3 2.3 1.7 4.3
TD-S+D9 0.5 3.6 2.9 7.8

Table 6 Number of exact dynamic, time-dependent queries and absolute and relative errors for
the predicted path, TD-S+D4, and TD-S+D9. “Q99” refers to the 99%-quantile and “Q99.9” the
99.9%-quantile.

Exact
[%]

Relative Error [%] Absolute Error [s]

Graph Algo Avg Q99 Q99.9 Max Avg Q99 Q99.9 Max

Lux Predict.P 1.6 17.228 56.1 75.0 93.8 323.0 739 826 997
Lux TD-S+D4 94.7 0.017 0.5 2.3 6.2 0.6 15 93 231
Lux TD-S+D9 95.0 0.016 0.5 2.2 6.2 0.5 14 89 231

Ger Predict.P 55.1 1.2 17.9 36.9 79.3 78.5 552 741 1 001
Ger TD-S+D4 90.9 0.032 1.0 2.6 7.0 3.5 116 233 474
Ger TD-S+D9 93.4 0.026 0.9 2.5 6.2 2.8 99 216 469

OGer Predict.P 52.3 1.352 18.7 38.3 65.8 84.9 563 738 934
OGer TD-S+D4 91.5 0.031 1.0 2.6 5.4 3.2 108 224 462
OGer TD-S+D9 92.9 0.028 0.9 2.5 5.4 2.9 102 219 462

CEur Predict.P 72.6 0.392 7.0 25.9 81.9 41.0 443 653 1 870
CEur TD-S+D4 89.5 0.015 0.5 1.6 5.2 3.3 106 244 547
CEur TD-S+D9 94.0 0.011 0.3 1.4 5.2 1.9 69 205 397

functions. The predicted congestions used in our setup come from realworld production-grade
data. The realtime congestions are randomly generated according to the scheme described in
Section 5.1. In Table 6, we compare the errors induced by three approaches: The Predicted
Path heuristic (Predict.P) as baseline, TD-S+D4, and TD-S+D9. The Predicted Path
heuristic computes a shortest path P with respect to only the predicted congestion. P

is then evaluated with respect to both congestion types. In Table 5, we report the query
running times of TD-S+D4 and TD-S+D9. Freeflow and Predicted Path are similar in spirit.
Freeflow solves the time-dependent routing problem with predicted congestions by ignoring
predicted congestions. Similarly, Predicted Path solves the dynamic time-dependent routing
problem by ignoring realtime congestion. The Freeflow heuristic produces surprisingly small
errors. This contrasts with the predicted path heuristic, whose measured errors in Table 6
are very large. On the Luxembourg instance only 1.6% of the queries are solved optimally.
Fortunately, TD-S+D significantly reduces these errors. Over all instances, the minimum
number of optimally solved queries is 92.9%. This is a huge improvement compared to 1.6%.
The errors induced by TD-S+D in the dynamic scenario are larger than those of TD-S in the
static scenario. Fortunately, even the 99%-quantile of TD-S+D9 is well below 1% on all test
instances, which is good enough for many applications.
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Table 7 Comparison of earliest arrival query algorithms. “n/r” = not reported. We report the
running times as published in the corresponding papers (ori) and scaled by processor clock speed.

Numbers
from Li

nk
&

M
er
ge
? Relative Error [%] Run T. [ms]

avg. Q99.9 max. ori scaled

TDCALT-K1.00 [10] OGer • 0 0 0 5.36 3.77
TDCALT-K1.15 [10] OGer • 0.051 n/r 13.84 1.87 1.31
eco SHARC [8] OGer • 0 0 0 25.06 19.7
eco L-SHARC [8] OGer • 0 0 0 6.31 5.0
heu SHARC [8] OGer • n/r n/r 0.61 0.69 0.54
heu L-SHARC [8] OGer • n/r n/r 0.61 0.38 0.30

TCH Tab. 3 OGer • 0 0 0 1.12
TDCRP (0.1) [6] OGer • 0.05 n/r 0.25 1.92
TDCRP (1.0) [6] OGer • 0.68 n/r 2.85 1.66

Freeflow Tab. 2&3 OGer ◦ 0.140 4.7 12.4 0.12
Avgflow Tab. 2&3 OGer ◦ 0.050 2.2 6.5 0.14

FLAT-SR2000 [22] OGer ◦ 1.444 n/r n/r3 1.28 1.18
CFLAT-BC3K+R1K,N=6 [23] OGer ◦ 0.031 n/r 19.154 4.10 4.73

TD-S+4 Tab. 2&3 OGer ◦ 0.002 0.4 2.0 0.97
TD-S+9 Tab. 2&3 OGer ◦ 0.001 0.2 2.0 2.09

Table 8 Comparison of profile query algorithms. We report the running times as originally
reported in the corresponding publications. Further, we report running times scaled by processor
clock speed.

Num-
bers
from

Run T. [ms]

ori scaled

eco SHARC [8] 60 147 47 388
heu SHARC [8] 1 075 847
ATCH ε=2.5% [4] 38.57 30
TD-S+P4 Tab. 4 19.5 19.5
TD-S+P9 Tab. 4 22.2 22.2

6.3 Comparison with Related Work
In Tables 7 and 8, we compare TD-S with related work on the OGer instance. Comparing
the reported error values is very difficult. Many papers report maximum relative error over
uniform 105 random queries. Unfortunately, this value heavily depends on the random seed
used to generate the test queries. Comparing maximum error values across papers is therefore
unfortunately not meaningful unless they differ by orders of magnitude. Average values are
significantly less sensitive to this problem. To mitigate this problem, we also report quantiles.

Besides TD-S, Freeflow, Avgflow, only FLAT and CFLAT do not need link and merge op-
erations. As the reported maximum error values are very similar, a detailed error comparison
is not meaningful. A limitation of FLAT and CFLAT are is large memory consumption: For
OGer 51 GB respectively 16.1 GB are reported [22] and [23]. TD-S4 only needs 1.8 GB. We

3 It was clarified in [23] and in personal communication that the reported numbers are average values.
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doubt that FLAT or CFLAT scales in terms of memory consumption to CEur. Compared
with link- and merge-based techniques TD-S is highly competitive. TD-S4’s average error
is smaller than the average error of every non-exact competitor that reports average errors.
TD-S4’s query running time is only beat by Freeflow and heu L-SHARC. A major downside of
L-SHARC is that it is complex. Not only is linking and merging needed. L-SHARC combines
A*/ALT, Arc-Flags, and contraction. None of these components is easy to implement. TCH
has, in addition to being complex, a large memory consumption.

Profile queries have not been described and evaluated for all competitors. Only [8] and
[4] report experiments. We present an overview in Table 8. ATCH is a TCH variant. We
do not expect ATCH to scale to CEur because of memory restrictions. We believe that
SHARC would run on CEur but the query running times could significantly increase. On
OGer, TD-S+P clearly wins in terms of query running time. Eco SHARC and ATCH, but
not heu SHARC, are exact and therefore the comparison with TD-S+P is not completely
fair. However, to compute profiles on CEur, ATCH is not an option because of memory
constraints. Further, eco SHARC likely has query running times above a minute and is
therefore too slow for many applications. There are thus no alternatives to TD-S+P.

7 Conclusion

We introduce TD-S, a simple and efficient solution to the earliest arrival problem with
predicted congestions on road graphs. We extend it to TD-S+P which is the only algorithm
to solve the profile variant in at most 50ms on all test instances. Further, we demonstratd
with TD-S+D that additional realtime congestions can easily be incorporated into TD-S.

Acknowledgments. I thank Julian Dibbelt, Michael Hamann, Stefan Hug, Alexander Kleff,
and Frank Schultz for fruitful discussions.
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A Dijkstra Rank Plots

In theory, it is possible that the low errors we observe in our experiments are an artifact of
our test query generation method. The employed generation method is the current state-
of-the-art and is used in all competitor papers. However, it has a bias and maybe this bias
is exploited by TD-S. Picking the source and the target nodes uniformly at random nearly
always yields a long-distance query. This means that, on the Europe instance, it is very
unlikely that a test query is generated, such that the resulting path has a running time of for
example 30min, which is short compared to the diameter of the instance. In theory, it is
possible that only short-distance queries have a significant error but we do not generate such
test queries. We demonstrate in this section that this effect does not occur.

That this effect does not occur can be seen from our experiments in the main part.
All queries generated on the Luxembourg instance are local compared to the diameter of
Europe or Germany. If short-distance queries were harder to solve than long-distance queries,
the achieved errors on the Luxembourg instance should be higher than those achieved on
the Europe or Germany instance. Fortunately, this is not the case and we can therefore
conclude that short-distance queries are not inherently harder than long-distance queries. It
is possible though that Luxembourg is in some sense special and short-distance queries are
only easy on the Luxembourg instance. To show that this also does not occur, we investigate
short-distance queries in a more systematic setup in this section.

We compute Dijkstra-rank plots in Figure 6. Dijkstra-rank queries are generated as
follows: We pick a random source node s uniformly at random. In the next step, we order
all other nodes by freeflow distance from s using Dijkstra’s algorithm. The query from s to
the 2i-th node in this order has Dijkstra-rank i. We generated 1 000 random source nodes s
for our experiments. The intuition is that a query with a low Dijkstra-rank is more local
than a query with a high Dijkstra-rank.

We plot the number of queries that were answered optimally by TD-S+4. We further
plot the relative and absolute errors of TD-S+4. It is usual to use a box plot to visualize
Dijkstra-rank results. However, because of the low errors of TD-S the boxes of our plots are
degenerate and squashed onto the x-axis. As most errors are zero, zooming into the plots
does not help. All observable dots are outliers. To emphasize the low achieved errors and
because the squashed boxes do not cover the outliers, we decided to stick with a degenerate
box plot representation.

One can observe that on every instance the number of correct queries shrinks with growing
Dijkstra-rank. Similarly, the absolute error grows with a growing a Dijkstra-rank. This is
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Figure 6 Percentage of correct queries (top), relative error (mid), and absolute error (bottom).
Columns correspond to instances: Leftmost ist Lux, left middle is CEur, right middle ist Ger, and
rightmost ist OGer.
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Figure 7 Proof Illustration. The optimal function must be in the orange area. e is the maximum
error of our estimation.

non-surprising as the path length also grows with Dijkstra-ranks. The relative error seems to
be independent of the Dijkstra-rank.

As the number of optimally solved queries is minimum with a large Dijkstra-rank, we
conclude that TD-S is not exploiting the test query generation and our experimental results
from the main part of this paper are representative.

B Profile Error Guarantee

The proof is sketched in Figure 1. The solid line is the unknown optimal function. The
dashed function is the computed approximative function. As the slopes are bounded, we know
that the unknown optimal function is inside of the orange area. The maximum difference
between the approximative function and the boundary of the orange area therefore bounds
the error induced by the profile algorithm.

Consider the situation depicted in Figure 7. Our objective is to compute the maximum
vertical distance from the dashed line inside of the orange region. As the triangle below
the dashed line is the same as the triangle above it rotated by 180°, we can focus solely on
the upper triangle OAB. As the distance grows from O to A and decreases from A to B
we know that the distance is maximum at x = Ax, i.e., the maximum vertical distance is
the length e of the dotted segment. From the application we know that Bx = r, and that
the slope of the line OA is Λmax, and that the slope of AB is −Λmin. We denote by h the
y-position of B. Our objective is to compute the maximum value of e over all values of h.
We start by computing e and then maximize the resulting expression over h.
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The line OA is described by y = Λmaxx, and the line OB is described by y = h
r x, and

the line AB is described by y = −Λminx + (rΛmin + h). By intersecting OA and AB we
get ΛmaxAx = −ΛminAx + (rΛmin + h) which can be solved for Ax yielding Ax = rΛmin+h

Λmax+Λmin
which leads to

e = ΛmaxAx −
h

r
Ax

= (Λmax −
h

r
)Ax

=
(Λmax − h

r )(rΛmin + h)
Λmax + Λmin

which is an expression for the desired vertical height. As 0 < Λmax and 0 < Λmin the value
of e is maximum if and only if

(Λmax −
h

r
)(rΛmin + h) = −h

2

r
+ (Λmax − Λmin)h+ rΛminΛmax

is maximum. As −h2 < 0 this parabola is maximum when its derivative is zero. We therefore
compute the derivative − 2h

r + (Λmax − Λmin) which is zero for h = r(Λmax−Λmin)
2 which we

can insert into the expression of e to obtain

max
h

e =
(Λmax − r(Λmax−Λmin)

2r )(rΛmin + r(Λmax−Λmin)
2 )

Λmax + Λmin

=
(Λmax+Λmin

2 )( r(Λmax+Λmin)
2 )

Λmax + Λmin

= r(Λmax + Λmin)
4

which was the absolute error bound we needed to compute.
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1 Introduction

The surge for efficient solutions (min-cost paths) in networks with temporal characteristics is
a highly challenging research goal, due to both the large-scale and the time-varying nature of
the underlying arc-cost metric. Along this line, the development of practical algorithms for
providing earliest-arrival-time route plans in large-scale road networks accompanied with a
time-dependent arc-travel-time metric (known as Time-Dependent Route Planning – TDRP),
has received a lot of attention in the last decade. TDRP is a hard challenge, both theoretically
and in practice. For certain tractable cases, there is an analogue of Dijkstra’s algorithm
(called Time-Dependent Dijkstra – TDD) to solve the problem in quasi-linear time, which is
already too much for a route-planning application supporting real-time query responses in
large-scale road networks. Time-dependence is also by itself a quite important degree of
complexity, both in space and in query-time requirements. These two challenges have been
tackled in the past either by oracles, or by speedup heuristics. An oracle is a preprocessed
and succinctly stored data structure encoding min-cost path information for carefully selected
pairs of vertices. This data structure is accompanied with a query algorithm, which responds
to arbitrary queries in time provably better than the corresponding Dijkstra-time and, if
approximate solutions are also an option, with a provable approximation guarantee (stretch).
Analogously, a speedup heuristic preprocesses arc-cost metrics which are custom-tailored to
road networks, and then uses a query algorithm for responding to (exact or approximate)
min-cost path queries in time that is in practice several orders of magnitude faster than the
running time of Dijkstra’s algorithm.

Modeling Instances, Problem Statement & Related Work. We model road network
instances by directed graphs in which every arc a = uv depicts an uninterrupted portion
of a road segment and is accompanied by an arc-travel-time function D[a] determining the
time to traverse a, given the departure-time from its tail u. These functions are assumed
to be continuous, piecewise-linear (pwl), periodic with one-day period, and are succinctly
represented as sequences of consecutive breakpoints, i.e., (departure-time,arc-travel-time)
pairs. This model is typical in the literature when we seek for route plans for private cars (e.g.,
[8, 9, 5, 20, 6, 2, 11, 21, 18, 17, 14, 3, 15]). For an arbitrary pair (o, d) of origin-destination
points, there are two main algorithmic challenges:
(i) TDRP (o, d, to) concerns the computation of a minimum travel-time od-path for a given

departure-time to, i.e., the evaluation of the minimum-travel-time function D[o, d](to)
from o to d;

(ii) TDRP (o, d) concerns the construction and succinct representation of the entire function
D[o, d], for all possible departure-times (e.g., for future instantaneous evaluations).

A crucial property that makes TDRP (o, d, to) tractable is the FIFO property, according to
which delaying the departure-time from the tail of an arc cannot possibly cause an earlier
arrival at its head (i.e., the arcs behave as FIFO queues). For FIFO-abiding instances, a
time-dependent variant of Dijkstra’s algorithm (TDD) running in quasi-linear time is known
[10, 22]. Without the FIFO property the problem can become extremely hard, depending
on the adopted waiting policy at the vertices of the network [22]. As for TDRP (o, d),
this is known to be hard even when the FIFO property holds [11]. Fortunately, if (good)
upper-approximations ∆[o, d] of the minimum-travel-time functions D[o, d] are an option,
then there exist polynomial-time and space-efficient one-to-one [4, 11, 21], or one-to-all
[15, 17, 18] approximation algorithms.
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As a quality measure, independent of the query at hand, the relative error is typically
used, i.e., the maximum absolute error (MAE) divided by the optimal travel-time; the MAE
is the worst-case difference of an optimal travel-time from the proposed (path’s) travel-time.

Several speedup heuristics, with remarkable success in road networks possessing scalar
arc-cost metrics, have been extended to the case of TDRP. Some of them [6, 7, 20] are based
on (scalar) lower bounds of travel-time functions (e.g., free-flow travel-times) to orient the
search for a good route. TDCALT [6] yields reasonable query-response times for TDRP (o, d, to),
and TDSHARC [5] provides in reasonable time solutions to TDRP (o, d), even for continental-
size networks. TDCRP [3] is currently one of the most successful speedup heuristics, whose
main feature is customizability, i.e., almost real-time adaptation to changes in the arc-cost
metric. TCH [2] also achieves remarkable query times, both for TDRP (o, d, to) and for
TDRP (o, d), even for continental-size networks. All the above mentioned heuristics only
compute (estimations of) erarliest-arrival-times, excluding the overhead for constructing the
corresponding connecting path. The only heuristics that also account the path construction
in their query-times are provided in [23], with quite competitive performances.

In parallel to speedup heuristics, there has been a recent trend to provide oracles for
TDRP, with provable theoretical performance and approximation guarantees [17, 18], which
have been experimentally evaluated on real-world instances [14, 15]. The most successful
one, FLAT [15, 17], demonstrated in practice noticeable query times and relative errors, much
better than the theoretical guarantees, thus being competitive to the aforementioned speedup
heuristics, justifying further research on providing even better oracles for TDRP, for the
additional reason that oracles also ensure scalability.

Contributions and Outline. We present, engineer and experimentally evaluate CFLAT (Sec-
tion 2), a novel landmark-based oracle for TDRP whose objective is to tackle the main
burden of such oracles, the large preprocessing requirements, without compromising either
the preprocessing scalability, the competitiveness of query-times, or the stretch. To our
knowledge, CFLAT is the first oracle for time-dependent networks that preprocesses only time-
evolving combinatorial structures: it maintains a carefully selected collection of time-stamped
min-cost-path trees which can assure good approximation guarantees while minimizing the
required space. Computing (and storing) less during preprocessing, unavoidably leads to
more demanding work per query in real-time. Nevertheless, our novel query algorithm (CFCA)
manages to achieve better query times and significantly improved practical performance
compared to previous oracles, despite the fact that it accounts also the path construction1.
Our specific contributions are threefold:
(i) We propose CTRAP (Section 2.2.1), a novel approximation method which stores only

min-cost-path trees for carefully selected landmark vertices and sampled departure-
times. Apart from the obvious economy of space due to omitting certain attributes
(travel-time values), the novelty of this approach is that it exploits the fact that there
are significantly fewer changes in the combinatorial structure, than in the functional
description of the optimal solution. Moreover, we avoid multiple copies of the same
preprocessed information, by organizing the destinations from a landmark into groups
of (roughly) equidistant vertices, for which the common departure-times sequence is
stored only once. We then proceed with the landmark selection policies (Section 3)

1 Most of the existing oracles and speedup techniques in the literature only account for the estimation of a
good upper bound on the minimum travel-time for the query at hand. Nevertheless, for time-dependent
instances the path construction is not negligible, as is the case for static instances.
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considered by CFLAT. Apart from the most successful ones in [15], we also consider new
policies based on the betweeness-centrality measure. Due to the significant reduction in
space requirements, we are able to select much larger landmark sets, which allows us to
showcase the full scalability of CFLAT in trading smoothly preprocessing requirements
with query performance (response time and stretch).

(ii) We propose CFCA(N) (Section 2.2.2), a novel query algorithm that exploits the prepro-
cessed information of CFLAT: For a query (o, d, to), it starts by growing a TDD ball from
o at time to, until the N closest landmarks are settled. It then marks a small subset of
relevant arcs, using the N settled landmarks as “attractors” that orient the discovery
of certain paths from d back to o. This is reminiscent of the ARCFLAGS algorithm for
static metrics [12], but the choice of the relevant arcs is done “on the fly”, since this
information is also time-dependent. In the final step, it continues growing the initial
TDD ball, but only within the subgraph of marked arcs, until d is settled within this
subgraph. CFCA(N) achieves the same theoretical approximation guarantee with the
query algorithm FCA(N) of FLAT; the observed stretch though, is in practice much better
than the one of FCA(N).

(iii) We conduct a thorough experimental evaluation of CFLAT (Section 3), on two well
established real-world instances, the urban area of Berlin and the national road network
of Germany. Our findings are perceptible. For Berlin, the preprocessing requirements
are 3.14sec and 0.7MB per landmark. Thus, if space is our primary concern, we can
preprocess 250 random landmarks in about 13min, consuming 0.17GiB space, whereas
the query performance (average query time and relative error) varies from 0.486msec
and 0.02418 (for N = 1), to 2.758msec and 0.00136 (for N = 6). With 16K landmarks
the query performance varies from 0.064msec and 0.00227 (for N = 1), to 0.214msec and
0.00019 (for N = 6). As for Germany, the preprocessing requirements are 26.052sec and
8.466MiB per landmark. For 4K landmarks, we achieve a query performance varying
from 0.585msec and 0.0079 (for N = 1), to 3.434msec and 0.00047 (for N = 6).
Details omitted due to space limitations as well as further experiments can be found in

the full version [16].

2 The CFLAT Oracle

A landmark-based oracle selects a set L ⊆ V of landmarks and preprocesses travel-time
information (summaries) between them and all (or some) reachable destinations. A query
algorithm exploits these summaries for responding to earliest-arrival-time queries (o, d, to),
from an origin o and departure-time to to a destination d, in time that is provably efficient
(e.g., sublinear in the size of the instance). The oracle is also accompanied with a theoretically
proved approximation guarantee (a.k.a. stretch) for the quality of the recommended routes.

In Section 2.2 we present our novel oracle, CFLAT. Before doing that, we recap in
Section 2.1 FLAT, an oracle upon which CFLAT builds and achieves remarkable improvements.

2.1 Recap of FLAT
FLAT is, to date, the most successful oracle for TDRP in road networks, and was originally
presented and analyzed in [17]. A variant of FLAT was implemented and experimentally
evaluated in [15]. In this work, we consider (and refer to as FLAT) to that variant. Its
main building block is the TRAP approximation method: Given a landmark `, the period
[0, T ) is split into intervals of an (arbitrarily chosen) length 3, 200sec. The endpoints of
these intervals are used as sampled departure-times. The corresponding min-cost-path trees
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Figure 1 Upper-approximation δk[`, v] (thick-orange) and lower-approximation δk[`, v] (thick-
green) of D[`, v] (blue), within [ts, tf ).

rooted at ` are computed, producing travel-time values for all reachable destinations v. For
each interval [ts, tf ), an upper-approximating function δ is considered, which is the lower-
envelope of a line of max slope (Λmax) passing via 〈ts, D[`, v](ts)〉 and a line of min slope
(−Λmin) passing via 〈tf , D[`, v](tf )〉 (cf. Figure 1). Observe that δ considers an intermediate
breakpoint 〈tm, Dm〉, the intersection of the two lines, which is not the outcome of an actual
sampling. This intermediate breakpoint is only stored when v becomes deactivated (i.e.,
within this interval there is no need for further sample points, see next paragraph). A similar
lower-approximating function δ is considered, which is the upper-envelope of a min-slope line
passing via 〈ts, D[`, v](ts)〉 and a max-slope line passing via 〈tf , D[`, v](tf )〉.

A closed-form expression of the worst-case error (maximum absolute error – MAE) is
used to determine whether δ is a sufficient upper-approximation of D[`, v] within [ts, tf ),
given a required approximation guarantee ε > 0. If this is the case, v becomes deactivated
for this subinterval, meaning that no more sampled trees will be of interest for v within it.
TRAP continues by choosing finer sampling intervals, first of length 1, 600sec, then 800sec,
400sec, etc., computing min-cost-path trees only for the new departure-time samples in each
round, until eventually there is no active destination for any of subintervals of the currently
chosen length. The concatenation of all the upper-approximations for the smallest active
subintervals of v is considered by TRAP as the required (1 + ε)-upper-approximation ∆[`, v]
(called a travel-time summary) of D[`, v] within [0, T ). ∆[`, v] is stored as a sequence of pairs
of breakpoints, i.e., (departure-time,travel-time) pairs, in increasing order w.r.t. departure-
times. During the preprocessing, FLAT calls TRAP to produce travel-time summaries, from a
carefully selected set of landmark vertices towards all reachable destinations.

Upon a query (o, d, to) FLAT calls FCA(N)2, a query algorithm which grows a TDD ball from
o with departure-time to, until either d or the first N landmarks are settled. It then returns
either the exact route (when d is settled), or the best-of-N (w.r.t. the theoretical guarantees)
od-path passing via one of the N settled landmarks and being completed (from ` to d) by
exploiting the preprocessed summaries for d. Since FCA(N) does not need all summaries to

2 In [15] it was called FCA+, with a fixed number N = 6 of landmarks to settle.
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be concurrently available in memory, the preprocessed data blocks representing travel-time
summaries of FLAT were compressed, and only summaries of the landmarks required per
query were decompressed on the fly. The zlib library was used for this purpose, leading to
a reduction of 10% in the required space. More details on FLAT are provided in [15, 17].

2.2 Description of CFLAT
We now present CFLAT, which can be considered as the combinatorial analogue of FLAT. At
a high level, CFLAT works as follows. In a preprocessing phase, it constructs and compactly
stores min-cost-path trees at carefully sampled departure-times, rooted at each landmark
` ∈ L. A query (o, d, to) is answered by first growing a TDD ball from o at time to, until either
d or a small number of landmarks are settled. In the latter case, starting from d, a suitably
small subgraph is constructed (consisting of certain paths going from d back to o, using the
settled landmarks as “attractors”), until a settled vertex of the initial TDD ball is reached.
Then, a continuation of growing the initial TDD ball on the resulted small subgraph returns
an od path that turns out to approximate very well the optimal od path.

2.2.1 The Approximation Method CTRAP and CFLAT Preprocessing
CTRAP computes and stores only min-cost-path trees at carefully sampled departure-times,
rather than actual breakpoints of the corresponding minimum-travel-time functions. The
algorithm’s pseudocode is provided in the full version of the paper [16]. We present here
only a sketch of the main steps as well as the key new insights, compared to TRAP. CFLAT
preprocessing consists simply in calling CTRAP(`, ε) for each landmark ` ∈ L.

procedure CTRAP(`, ε)
STEP 1: Keep sampling finer departure-times from [0, T ), as in TRAP, until all destinations
achieve relative error less than ε and become inactive.
1.1: Store (pruned at inactive nodes) min-cost-path trees from `, for all departure-times.
1.2: Omit intermediate breakpoints.

STEP 2: Merge consecutive breakpoints with identical predecessors.

STEP 3: Avoid multiple copies of common departure-time sequences.

When executed from a landmark `, CTRAP works as follows: Step 1 resembles TRAP, the
only difference being that CTRAP keeps only the immediate predecessors (parents) per active
destination v in the sampled min-cost-path trees. In particular, a pair of sequences is created,
PRED[`, v] for predecessors and DEP [`, v] for the corresponding sampled departure-times,
per landmark-destination pair (`, v) ∈ L× V . Step 2 cleans up each pair of sequences, by
merging consecutive breakpoints for which the predecessor is the same. Step 3 organizes the
destinations from a landmark ` into groups with the same departure-times sequence, so that
multiple copies of the same sequence are avoided. In the rest of this section, we describe in
more detail the key new insights and algorithmic steps of CTRAP, compared to TRAP [15, 17].

Store min-cost-path trees. For each leg of ∆[`, v], we store pairs 〈t`, PRED[`, v](t`)〉 of
departure-times t` from ` and the predecessor of v in the corresponding min-cost-path tree
rooted at (`, t`), omitting the actual min-travel-time values D[`, v](t`). This modification
makes the oracle aware only of the min-cost-path-tree structures created during the repeated
sampling procedure. Additionally, rather than storing repeatedly the IDs of predecessors,
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which would be space consuming in networks with millions of vertices, we only store the
position of the corresponding arc in the list of incoming arcs to a vertex v. Since the maximum
in-degree in the road instances we have at our disposal is at most 7, we only need to consume
1 byte per storage for a predecessor. We could even consume 3 bits per predecessor, which
could then be packed into only two bytes containing also the corresponding departure-time
value (by an appropriate discretization of the departure-time values). We prefer not to
combine predecessors with departure-times in the same bit string, because we shall exploit
later the extensive repetition of identical sequences of departure-times, which nevertheless
would be lost for strings also containing the predecessors. It was observed in both benchmark
instances that about one half of all possible destinations per landmark ` appear to have a
unique predecessor throughout the entire period of departure-times, [0, T ). For them we
store their unique predecessor only once. For the remaining destinations though, even with
only two possible predecessors, we have to store the entire sequence of predecessor-changes.

Omit intermediate breakpoints. TRAP computes, and explicitly stores, intermediate break-
points (tm, Dm) between consecutive sampled breakpoints of D[`, v], as the intersection
points of the two legs involved in the definition of δ[`, v](t) (cf. Figure 1), for each pair
(`, v) and those intervals where the MAE is sufficiently small and v becomes deactivated. In
CTRAP we choose not to keep these intermediate breakpoints and restrict the preprocessed
information only to the actual samples. We let the query algorithm deal with the missing
information, whenever needed. This way we avoid storing approximately 10M (for Berlin)
and 100M (for Germany) of intermediate breakpoints per landmark.

Merge sequences of breakpoints with identical predecessors. CTRAP’s next algorithmic
intervention is based on the observation that the vast majority of all destinations appear to
have on average 2 alternating predecessors throughout the entire period [0, T ). To save space,
we choose to merge consecutive sampled breakpoints for v of the form 〈t`, x = PRED[`, v](t`)〉
and 〈t′`, x = PRED[`, v](t′`)〉, i.e., possessing the same predecessor. This leads to a reduction
in the number of breakpoints to store, but also has a negative influence on the similarities of
the departure-times sequences, and thus on the repetitions that we could avoid (see next
heuristic). However, there is still positive gain by applying both this heuristic and that for
avoiding multiple copies of departure-times sequences.

Avoid multiple copies of common departure-time sequences. CTRAP’s next key insight
is based on the fact that it is a repeated-sampling method which probes (at common
departure-times for all destinations) min-cost-path trees from a landmark `, starting from a
coarse-grained sampling towards more fine-grained samples of the entire period [0, T ), until
the MAE guarantee is satisfied for all reachable destinations from `. A destination v may not
care for all these departure-times, because the value of MAE may be satisfied at an early stage
for it. This indeed depends on the actual minimum travel-time min{D[`, v](ts), D[`, v](tf )}
at the endpoints of each given subinterval [ts, tf ). For each landmark-destination pair
(`, v), we store the sequences DEP [`, v] of necessary departure-times and PRED[`, v] of
the corresponding predecessors. The crucial observation is that destinations which are
(roughly) at the same distance from ` are anticipated to have the same sequence of sampled
departure-times, possibly differing only in their sequences of predecessors. It is clearly a
waste of space to store two identical sequences DEP [`, v] = DEP [`, u] more than once, even
if the corresponding sequences of predecessors differ. Thus, we store each departure-times
sequence as soon as it first appears for some destination v, and consider v as the representative
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of all other destinations u for which DEP [`, u] = DEP [`, v]. For each non-representative
destination u, we store PRED[`, u] and the corresponding representative v. Our next
challenge is to efficiently compare departure-times sequences. To avoid a potential blow-up
of the preprocessing time, we do not compare them point-by-point. Instead, we assign to
every sampled departure-time t` two iuar3 chosen floating-point numbers w1(t`), w2(t`) from
the interval [1.0, 100.0]. Each destination u adds the two values w1(t`) · t` and w2(t`) · t`
to its own hash keys, i.e., H1[u] = H1[u] + w1(t`) · t` and H2[u] = H2[u] + w2(t`) · t`, only
when t` is indeed a necessary sample for u. Otherwise, the hash keys of u remain intact. At
the end of the sampling process, we sort lexicographically the hash pairs of all destinations,
in order to discover families of common departure-times sequences. We deduce that two
destinations possess the same sequence when both their hash pairs match, in which case
we verify this allegation by comparing them point by point. We observed that, for both
benchmark instances, 80% of all destinations with at least two predecessors can be represented
w.r.t departure-times by the remaining 20% of (representative) destinations.

Indexing preprocessed information. For retrieving efficiently the summaries from a land-
mark ` to each destination v, we maintain a vector of pointers per landmark, one pointer
per destination, providing the address for the starting location of the summary for v. The
pointers are in ascending order of vertex ID. The lookup time is O(1) and the required space
for this indexing scheme is O(n · |L|) additional bytes, where L is the chosen landmark set.

Speeding up preprocessing time. Handling only min-cost-path trees also has a collateral
effect of speeding up the required preprocessing time. The reason for this is that we do
not compute explicitly, each and every time that we sample travel-time values from `, the
exact shapes of the corresponding minimum-travel-time functions per destination. The
travel-time summaries provided by FLAT were created based on this explicit computation of
all the earliest-arrival functions per destination v, from each landmark `. In contrast, the
min-cost-path summaries of CFLAT are created without having to compute earliest-arrival
functions. This leads to a reduction in the preprocessing time of more than 60%.

2.2.2 The Query Algorithm CFCA(N)
CFCA(N) is based on FCA(N) [15], but is fundamentally different from it in the sense that it
exploits min-cost-path trees, and also considers the od-path construction as part of it, which
was not the case for FCA(N), and indeed for most of the query algorithms in the literature.
N indicates the number of landmarks to be settled by CFCA(N) around the origin o. The
pseudocode of the algorithm is presented in the next paragraph. CFCA(N) works as follows.
In case that the destination d is already settled in Step 1, the resulting (exact) od-path can
be computed by backtracking towards the origin, following the pointers to all predecessors.
Otherwise, we proceed as follows. For each settled landmark `, we have an optimal o`-path
guaranteeing arrival-time t` = to + D[o, `](to) at `. Since we do not have at our disposal
travel-time values from ` towards d, or any other vertex, we are not able to compare `v-paths
based on their (approximate) lengths. On the other hand, for the given departure-times t`
and any vertex v, we can tell the predecessor(s) of v in the (at most two per landmark) most
relevant min-cost-path trees, the ones at the consecutive sampled departure-times t−` and t+`
of each DEP [`, v] for which it holds that t` ∈ [t−` , t

+
` ).

3 iuar = independently and uniformly at random, without repetitions.
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procedure CFCA(N)
STEP 1: A TDD ball is grown from (o, to), until N landmarks are settled.
1.1: if d is already settled then return optimal solution.
1.2: For each settled landmark `, t` = to +D[o, `](to).

STEP 2: An appropriate subgraph is recursively created from d.
2.1: Q = { d } /∗ Q is a FIFO queue ∗/
2.2: while ¬Q.Empty() do :
2.3: if v = Q.Pop() is not explored from STEP 1’s TDD ball then :
2.4: for each settled landmark ` of STEP 1 do :
2.5: Mark the arcs 〈PRED[`, v](t−` ), v〉 and 〈PRED[`, v](t+` ), v〉 leading

to v, where [t−` , t
+
` ) is the unique interval in DEP [`, v] containing t`.

2.6: Q.Push(PRED[`, v](t−` )); Q.Push(PRED[`, v](t+` ))
2.7: end for
2.8: end while

STEP 3: return optimal od-path in the induced subgraph by (TDD ball of) STEP 1 and
STEP 2.

CFCA(N) marks (per settled landmark `) the connecting arcs from these most relevant prede-
cessor(s) PRED[`, v](−` ) and PRED[`, v](+

` ), towards v. All these discovered predecessors
w.r.t. the N settled landmarks are inserted (if not already there) in a FIFO queue, which was
initialized with d, so that, upon their extraction from the queue, they can provide in turn
their own predecessors, etc. The recursive search for predecessors stops as soon as a vertex
x in the explored area of the initial TDD ball of Step 1 is reached. CFCA marks then also
the arcs of the corresponding short (not necessarily the shortest though, since x is explored
but not necessarily settled) ox-path. This way we are guaranteed that in the subgraph of
marked arcs there is already an od-path which has been oriented by (`, t`) and passes via
x. Step 2 of CFCA(N) terminates when the FIFO queue becomes empty, i.e., we no longer
have to process intermediate vertices which are unexplored by Step 1. The actual path
construction takes place in Step 3, which considers the subgraph induced by the marked arcs
and continues growing the TDD ball from (o, to) within this subgraph. This path construction
indeed leads to significantly smaller relative errors, since the resulting od-path is not only
the best prediction among a given set of N paths induced by the N settled landmarks (as in
FLAT), but actually the optimal od-path within the induced sugbgraph.

The worst-case approximation guarantee of CFCA(1) is (1 + ε+ψ) (identical to that of FCA
[17]), where ε is CTRAP’s approximation guarantee and ψ is a constant depending on ε and
the travel-time metric (but not on the size) of the network. Note that we could theoretically
improve the stretch of CFCA(N) to (1 + σ), for any constant σ > ε, and get a PTAS, by using
in Step 1 the RQA algorithm [17]. We choose not to do so, because our previous experimental
evaluation with FLAT [15] has shown that FCA(N) in practice dominates RQA.

3 Experimental Evaluation

Experimental Setup and Goal. Our algorithms were implemented in C++ (GNU GCC
version 5.4.0) and Ubuntu Linux (16.04 LTS). All the experiments were conducted on a
6-core Intel(R) Xeon(R) CPU E5-2643v3 3.40GHz machine, with 128GB of RAM. We used
12 threads for the parallelization of the preprocessing phase. CFCA was always executed on
a single thread. For the sake of comparison, we used the same set of 50, 000 queries, iuar
chosen from V × V × [0, T ) in each instance, for all possible landmark sets. The PGL library
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[19] was used for graph representation and operations. Two benchmark instances were used,
the first concerning the city of Berlin, and the second the national road network of Germany.

The main goal of our experimental evaluation was to investigate the scalability of CFLAT:
how smoothly does it trade higher preprocessing requirements for better approximation
guarantees and query-times. To demonstrate this, we aim at showcasing the performance of
CFCA(N) for several types and sizes of landmark sets. We have also increased the typical size
of the used landmark sets in our comparison of different landmark selection policies.

Landmark Selection Policies. Although the preprocessing requirements are proportional
to |L| (number of landmarks), they are essentially invariant of the landmark selection policy.
However, as previous experimental evaluation indicated [15], the performance of the query
algorithms has a strong dependence on the type of the landmarks. A key observation
was that the sparsity of landmarks (not being too close to each other) as well as their
importance, are crucial parameters. Therefore, in this work we insist in almost all cases
(except for the random landmark sets which are used as baseline) on selecting the landmarks
sparsely throughout the network. As for their importance, when such information is available,
we also consider the selection of landmarks at junctions of an important road segment
(as in [15]). Finally, we consider a new measure of vertex significance, the (approximate)
betweeness-centrality measure. In particular, we consider the following landmark selection
policies:
� random (R): iuar choice of landmarks.
� sparse-random (SR): Incremental iuar choice of landmarks, where each chosen landmark

excludes a free-flow neighborhood of vertices around it from future landmark selections.
� important-random (IR): A variant of R which moves each random landmark to its

nearest important vertex within a free-flow neighborhood of size 100. This policy is only
applicable for the instance of Berlin which provides road-segment importance information.

� sparse-kahip (SK): We use the KaFFPa algorithm of the kahip partitioning software
(v1.00) [13], setting the parameters so that there are many more boundary vertices than
the required number of landmarks. The landmarks are incrementally and iuar chosen
among the boundary vertices. Each landmark excludes a free-flow neighborhood from
future selections.

� kahip-cells (KC). Starting with a kahip partition, one landmark per cell is incrementally
and iuar chosen, excluding a free-flow neighborhood from future selections.

� betweeness-centrality (BC): Vertices are ordered in non-increasing approximate
betweeness-centrality (ABC) values [1]. Landmarks are selected incrementally according
to ABC values, excluding a free-flow neighborhood from future selections.

� kahip-betweeness (KB): For a kahip partition, incrementally choose as landmark
the vertex with the highest ABC value in a cell, excluding a neighborhood from future
selections.

We finally consider the following systematic naming of the landmark sets. Each set is
encoded as XY , where X ∈ {R,SR, IR, SK,KC,BC,KB} determines the type of landmark
set, and Y ∈ {250, 500, 1K, 2K, 3K, 4K, 8K, 16K, 32K} determines its size.

3.1 Evaluation of CFLAT @ Berlin
For Berlin we have considered all types of landmarks. For each of them, we have used as
baseline the size Y = 4K. {R,SR, IR, SK} were considered also in [15] (but for smaller
sizes), whereas {KC,BC,KB} are new types. Especially for R we tried all possible values
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Figure 2 Performance of CFCA(N) in Berlin, for random landmarks and 50, 000 random queries.
In the graph of relative errors, all values are multiplied by 100.
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Figure 3 Performance of CFCA for mixtures (BC- and R-landmark types) of 16K landmarks in
Berlin, and a query set of 50, 000 random queries. All relative errors are multiplied by 100.

for Y , in order to showcase the scalability of CFLAT and its smooth trade-off of preprocessing
requirements, query-times and stretch factors. Concerning vertex-importance (only available
in Berlin), we considered as important those vertices which are incident to roads of category
at most 3. As for sparsity, we set the sizes of the excluded free-flow ball per selected landmark
to 150 vertices for SR, 100 for IR, 50 for SK, 20 for KC, 150 for BC, and 20 for KB. For
kahip based landmark sets (SK, KC and KB) we used the following parameters: The
number of cells to partition the graph was set to 4, 000, having 13, 256 boundary vertices in
total. For SK we chose randomly 4, 000 boundary vertices as landmarks. For KC and KB
we chose one landmark per cell.

We first conducted an experiment to test the scalability of CFCA’s performance as a
function of N and the number of landmarks, always for R-type landmarks. As is evident from
Figure 2, the average errors decrease linearly and the query-times decrease quadratically, as
we double the number of landmarks. Additionally, notable “quick-and-dirty” answers are
possible with only 250 landmarks, which require space 0.17GiB; cf. [16]. In particular, the
query performance (average query time and relative error) varies from 0.486msec and 0.02418
(N = 1), to 2.758msec and 0.00136 (N = 6). If query time is the main goal then, for R32K,
the query performance of CFCA varies from 0.065msec and 0.0018 (N = 1), to 0.191msec and
0.00032 (N = 6). The best performance (cf. Figure 3) is achieved by BC16K, varying from
0.064msec and 0.00227 (for N = 1), to 0.214msec and 0.00019 (for N = 6). Since the average
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Figure 4 Performance of CFCA(N) in Berlin, for 4K landmarks and 50, 000 random queries. In
the graph of relative errors, all values are multiplied by 100.

query-time for TDD is 110.02msec4, the speedup of CFCA(1) with BC16K is 1, 719.
Our next experiment compares landmark types of size 4K each (cf. Figure 4). Concerning

query-times, the best curve is that of SK4K. As for relative errors, SR4K and BC4K are
clear winners. Further experiments are reported in [16]. In comparison with FLAT, the
query-performance of CFCA(1) for BC4K (0.075msec and 0.00521) dominates that of FCA(1)
(0.081msec and 0.00771, cf. [15]). It is worth mentioning that, with only one fourth of the
required space (e.g. using SR4K) we can achieve the best observable average error (0.00019)
for Berlin. Of course, the query time deteriorates from 0.214msec (for BC16K) to 0.377msec.
It is also observed that mixing BC-landmarks with R-landmarks is not indeed a good idea.
For example, the pure BC16K and R16K landmark sets dominate all the mixed landmark
sets we have tried, both w.r.t. the error and the query time (cf. Figure 3).

3.2 Evaluation of CFLAT @ Germany
We considered R-landmark sets of sizes from 1K to 4K. The rest of the landmark sets were of
size 3K, with excluded neighborhood size 1, 200 vertices for SR3K, 350 for SK3K, and 1, 000
for BC3K. We started again with a demonstration of the scalability of CFCA on R-landmark
sets, as a function of the number of landmarks (cf. Figure 5). The relative errors decrease
linearly and the running times decrease quadratically, as we increase the number of landmarks.
Relative errors of 0.00065 are achieved for CFCA(6) even with 1K landmarks which require
8.3GiB space, with query-time 9.151msec. Moreover, a “quick-and-dirty” answer of error at
most 0.01615 is returned in only 1.631msec. As for the query performance of R4K, CFCA(1)
achieves 0.685msec and 0.00909, and CFCA(6) has 3.434msec and 0.00047.

We proceeded next with a comparison of various landmark types of size 3K each (cf. Fig-
ure 6). For Germany we have a clear winner, SR3K, w.r.t. relative errors. As for query times,
BC3K is preferable for N ≥ 4 and SR3K is better for N ≤ 2.

The best query performance for CFCA (see Table 1) is achieved for SR4K, and varies from
0.585msec and 0.007913 (for N = 1), to 3.572msec and 0.000177 (for N = 6). Thus, the
best achieved speedup over TDD (whose average running time is 1, 1190.873msec) is more
than 2035 in this case. As for Berlin, mixing BC-landmarks with R-landmarks does not

4 TDD is executed here on the original instance, even before the vertex contraction. In [15] it was executed
on the contracted graph, hence the slightly smaller execution times of TDD in that work. Nevertheless,
we believe that this is the appropriate measurement to make for TDD, for sake of comparison with other
works, and also since the contraction of degree-2 vertices is part of the preprocessing phase.
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Figure 5 Performance of CFCA(N) in Germany, for random landmarks and 50, 000 random queries.
In the graph of relative errors, all values are multiplied by 100.
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Figure 6 Performance of CFCA(N) in Germany, for 3K landmarks and 50, 000 random queries. In
the graph of relative errors, all values are multiplied by 100.

really make a difference in the Germany instance. This and further experiments are reported
in [16].

3.3 Exploring Outliers in Relative Errors
The purpose of our next experiment was to delve into the details of the relative error of
CFCA(N). We study the quantiles of the relative error for serving 50, 000 random queries,
for BC16K at Berlin, and for SR4K at Germany. Figure 7 presents the results of this
experimentation.

It is worth mentioning for Berlin that, with the BC16K-landmark set, we had 99.47% of
queries (i.e., only 265 out of the 50K queries exceeded it) with error less than 0.01. Moreover,
97.81% of queries have error less than 0.001. The maximum observed error for SR4K at
Berlin was 0.1728.

The picture is analogous also for Germany: With the SR4K-landmark set we can have
99.5% of the queries answered with an error less than 0.01, i.e., only 250 of the 50K queries
exceeded it. Moreover, 97.57% of them with error less than 0.001. The maximum observed
error for SR4K at Germany was 0.079821.

3.4 Comparison with State-of-Art
Table 1 provides a comparison of CFLAT with the most prominent oracles and speedup
techniques for the two benchmark instances. In particular, we compare the performances of
the following algorithms, on the instances of Berlin and Germany:
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Table 1 Comparison with State-of-Art; [?]: evaluated in this work on exactly the same benchmark
instances and for the same sets of 50K iuar chosen queries.

Algorithm Preprocessing Performance Query Performance
Name [ref.] Param. Time Work Space Path Time Relative Error

h:m (#cores) h:m B/node N/Y msec avg max

G
ER

(4
,6
92
,0
91

n
o
d
es
;
10
,8
05
,4
29

ar
cs
)

TDD [?] – – – – • 1,190.873 0 0

inex.TCH [2]

(0.1)

06:18 (8) 50:24

286

◦

0.70 0.02 0.10
inex.TCH (1.0) 214 0.69 0.27 1.01
inex.TCH (2.5) 172 0.72 0.79 2.44
inex.TCH (10.0) 113 1.06 3.84 9.75
KaTCH [?] – 00:05 (6) 00:26 881 ◦ 0.84 0 0
TDCRP [3] (1.0) 00:13 (16) 03:28 77 ◦ 1.17 0.68 3.60

FreeFlow [23]
–

< 00:02 (16) 00:24
n/r •

0.12 0.14 12.4
TD-S+4 [23] < 00:06 (16) 01:34 0.97 0.002 2
TD-S+9 [23] < 00:17 (16) 04:23 2.09 0.001 2
DijFF [?] – – – – • 905.31 0.134 11.7

FLAT [15]

SR2K,
N=1 42:42 (6) 256:12

11,625 ◦

1.275 0.01444

n/r
FLAT SR2K,

N=6
9.952 0.00662

SK2K,
N=1 44:06 (6) 264:36

1.269 0.01534

FLAT SK2K,
N=6

9.689 0.00676

CFLAT [?] SR4K,
N=1 28:57 (6) 173:42 7,387 •

0.585 0.0079 0.918

CFLAT SR4K,
N=6

3.572 0.000177 0.079821
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ER

(4
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,9
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n
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d
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–
1,
12
6,
46
8
ar
cs
)

TDD [?] – – – – • 110.02 0 0
KaTCH [?] – < 00:01 (6) < 00:04 851 ◦ 0.339 0 0
TDCRP [3] (1.0) 00:02 (16) 00:28 67 ◦ 0.28 1.47 2.69

FreeFlow [23]
– < 00:01 (16) 00:07 n/r •

0.09 0.0012539 15.574
TD-S [23] 0.23 0.0000153 1.851

TD-S+A [23] 3.01 0.00000584 1.029
DijFF [?] – – – – • 80.32 0.365 21.67
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SR2K,
N=1 05:12 (6) 31:12

61,198 ◦

0.081 0.00771

n/r
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N=6

0.586 0.00317
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SK2K,
N=6

0.616 0.00227

CFLAT [?]

BC4K,
N=1 03:44 (6) 22:23 6,353

•

0.075 0.00521 0.4115

BC4K,
N=6

0.338 0.0002 0.3148

BC16K,
N=1

14:42 (6) 88:12 26,900

0.064 0.0023 0.3855

BC16K,
N=6

0.214 0.00019 0.1728
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Figure 7 Tails of the error percentages of CFCA(N), for 50, 000 randomly chosen queries in the
instance of Berlin with the BC16K landmark set, and for the instance of Germany with the SR4K
landmark set.

(1) TDCRP, tested on a 16-core Intel Xeon E5-2670 clocked at 2.6 GHz, with 64GB of DDR3-
1600 RAM, 20 MB of L3 and 256 KB of L2 cache. The reported numbers are from
[3];

(2) FreeFlow, TD-S and TD-S+A, tested on a 16-core Intel Xeon E5-1630 v3 clocked at
3.70GHz with 128GB of 2133GHz DDR4 RAM. The reported numbers are from [23];

(3) inex.TCH, tested on an 8-Core Intel i7, clocked at 2.67 GHz, with 64 GB DDR4 RAM.
The reported numbers are from [3];

(4) an open-source version of TCH (KaTCH5), tested (with compilation parameters -O3 and
-DNDEBUG, and its default values) on our machine;

(5) our own implementation of the FreeFlow heuristic (called DijFF), tested on our machine
(it is a static-Dijkstra execution on the Free Flow instance, with no exploitation of any
speedup heuristic, and then computation of the time-dependent travel-time along the
chosen path); and

(6) FLAT and CFLAT, which were tested on our machine. The reported numbers for FLAT are
from [15].

All the reported times are unscaled (i.e., as they have been reported) and include both
metric-independent and metric-dependent preprocessing of the instances. Work is measured
as the product of the running time with the number of cores. The “path” column indicates
whether the explicit construction of a connecting path is accounted for in the reported query
times: ◦ is a NO-answer, • means YES. It is worth noting at this point that, despite the fact
that path construction takes a negligible fraction of the execution time in the static case, this
is not true for time-dependent instances. This is due to the fact that, as we move backwards
from the destination towards the origin, we have to deal with evaluations of functions (rather
than just labels). An additional complication is that time is continuous, therefore it is not
always clear which is the most appropriate parent to consider. In certain cases one needs
to choose more than one parents, in order to avoid cycling. Thus, the path construction is
not a negligible fraction of the overall effort of a query algorithm. For example, in our case
this task (consisting of Steps 2 and 3 in our query algorithm) consumes more than 30% of
the overall computational effort (cf. [16]). “n/r” means that a particular value has not been
reported.

5 https://github.com/GVeitBatz/KaTCH, with checksum 70b18ad0791a687c554fbfe9039edf79bc3a8ff3.
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As is shown in the table, CFLAT dominates the performance of FLAT [15] for both instances.
We therefore focus on the comparison of CFLAT with state-of-art speedup heuristics. In
particular, we consider the speedup heuristics inex.TCH [2] (only for Germany), TDCRP [3],
KaTCH, FreeFlow [23], TD-S [23], and TD-S+A [23]. The algorithms TDD, KaTCH, DijFF and
CFLAT, marked in Table 1 with [?], were evaluated in the present work, on exactly the
same benchmark instances and for the same sets of 50K iuar chosen queries. For the
other algorithms we report (unscaled) the measurements of the original experimentation by
their authors. For the sake of comparison and a posteriori verification, we provide the two
random query sets that we have used in http://150.140.143.218:8000/public/. CFLAT is
certainly significantly more demanding in preprocessing requirements than the other state-of-
art techniques, which is typically anticipated by any landmark-based technique. Nevertheless,
it is noted that, if one considers dynamic updates of the instance, e.g. unforeseen road
blockages due to unforeseen incidents, CFLAT is remarkably fast in updating the preprocessed
information. For example, if one considers 15-minute road blockages, then the procedure for
updating the affected landmarks’ summaries requires less than 10sec on both instances [16].

Concerning the observed relative errors, first note that KaTCH is an exact heuristic
achieving essentially optimal solutions in all cases (although when it is used, it also reports
its relative error with TDD; using our implementation of TDD, the reported max relative errors
were indeed negligible: 1.4 · 10−6 for Germany and 2.4 · 10−5 for Berlin; these errors probably
have to do with numerical precision issues). The reported errors for TD-S are noticeable. The
average and worst-case errors of CFLAT are higher than those of KaTCH on both instances,
but are better (e.g., for SR4K, N=6), almost by an order of magnitude, than those of TD-S
for Germany. They are higher than those of TD-S for Berlin6. It is mentioned though that
the achieved errors of CFLAT are of the same order for both instances, which seems not to be
the case for TD-S.

Concerning the (unscaled) query times, CFLAT is the fastest technique for Berlin (e.g., for
BC16K and N = 1) and the second fastest technique for Germany (e.g., for SR4K and N=1).
Of course, absolute running times on different machines are hard to compare. Nevertheless,
since all the used machines are essentially of comparable computational capabilities, this
makes CFLAT a highly competitive route planning algorithm for time-dependent instances.

Finally, we note that we have also conducted preliminary experimentation on the time-
dependent synthetic instance of Central Europe that is typically used for experimentation
of the state-of-art techniques. Our findings are quite encouraging: Using only 800 random
landmarks, we observed average query times of 15.4msec and average relative error 0.01339.
More details about this experiment will appear in the journal version of this paper.

Acknowledgements. The authors wish to thank G. Veit Batz, Julian Dibbelt and Ben
Strasser for valuable and fruitful discussions.
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Abstract
Finding a line plan with corresponding frequencies is an important stage of planning a public
transport system. A line plan should permit all passengers to travel with an appropriate quality
at appropriate costs for the public transport operator. Traditional line planning procedures
proceed sequentially: In a first step a traffic assignment allocates passengers to routes in the
network, often by means of a shortest path assignment. The resulting traffic loads are used in
a second step to determine a cost-optimal line concept. It is well known that travel time of the
resulting line concept depends on the traffic assignment. In this paper we investigate the impact
of the assignment on the operating costs of the line concept.

We show that the traffic assignment has significant influence on the costs even if all passengers
are routed on shortest paths. We formulate an integrated model and analyze the error we can
make by using the traditional approach and solve it sequentially. We give bounds on the error
in special cases. We furthermore investigate and enhance three heuristics for finding an initial
passengers’ assignment and compare the resulting line concepts in terms of operating costs and
passengers’ travel time. It turns out that the costs of a line concept can be reduced significantly
if passengers are not necessarily routed on shortest paths and that it is beneficial for the travel
time and the costs to include knowledge on the line pool already in the assignment step.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases Line Planning, Integrated Public Transport Planning, Integer Program-
ming, Passengers’ Routes

Digital Object Identifier 10.4230/OASIcs.ATMOS.2017.5

1 Introduction

Line planning is a fundamental step when designing a public transport supply, and many
papers address this topic. An overview is given in [18]. The goals of line planning can roughly
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5:2 Integrating Passengers’ Assignment in Cost-Optimal Line Planning

be distinguished into passenger-oriented and cost-oriented goals. In this paper we investigate
cost-oriented models, but we evaluate the resulting solutions not only with respect to their
costs but also with respect to the approximated travel times of the passengers.

In most line planning models, a line pool containing potential lines is given. The cost
model chooses lines from the given pool with the goal of minimizing the costs of the line
concept. It has been introduced in [5, 26, 25, 6, 12] and later on research provided extensions
and algorithms.

Traditional approaches are two-stage: In a first step, the passengers are routed along
shortest paths in the public transport network, still without having lines. This shortest
path traffic assignment determines a specific traffic load describing the expected number of
travelers for each edge of the network. The traffic loads and a given vehicle capacity are
then used to compute the minimal frequencies needed to ensure that all passengers can be
transported. These minimal frequencies serve as constraints in the line planning procedure.
We call these constraints lower edge frequency constraints. Lower edge frequency constraints
have first been introduced in [24]. They are used in the cost models mentioned above, but
also in other models, e.g., in the direct travelers approach ([7, 4, 3]), or in game-oriented
models ([15, 14, 20, 21]).

If passengers are routed along shortest paths, the lower edge frequency constraints ensure
that in the resulting line concept all passengers can be transported along shortest paths.
Although the travel time for the passengers includes a penalty for every transfer, routing
them along shortest paths in the public transport network (PTN) guarantees a sufficiently
short travel time. However, routing passengers along shortest paths may require many
lines and hence may lead to high costs for the resulting line plan. An option is to bundle
the passengers on common edges. To this end, [13] proposes an iterative approach for the
passengers’ assignment in which edges with a higher traffic load are preferred against edges
with a lower traffic load in each assignment step. Other papers suggest heuristics which
construct the line concept and the passengers’ assignment alternately: after inserting a new
line, a traffic assignment determines the impacts on the traffic loads ([23, 22, 17]).

Our contribution: We present a model in which passengers’ assignment is integrated into
cost-optimal line planning. We show that the integrated problem is NP-hard.

We analyze the error of the sequential approach compared to the integrated approach: If
passengers’ are assigned along shortest paths, and if a complete line pool is allowed, we show
that the relative error made by the assignment is bounded by the number of OD-pairs. We
also show that the passengers’ assignment has no influence in the relaxation of the problem.
If passengers can be routed on any path, the error may be arbitrarily large.

We experimentally compare three procedures for passengers’ assignment: routing along
shortest paths, the algorithm of [13] and a reward heuristic. We show that they can be
enhanced if the line pool is already respected during the routing phase.

2 Sequential approach for cost-oriented line planning

We first introduce some notation. The public transport network PTN=(V,E) is an undirected
graph with a set of stops (or stations) V and direct connections E between them. A line is a
path through the PTN, traversing each edge at most once. A line concept is a set of lines
L together with their frequencies fl for all l ∈ L. For the line planning problem, a set of
potential lines, the so-called line pool L0 is given. Without loss of generality we may assume
that every edge is contained in at least one line from the line pool (otherwise reduce the set



M. Friedrich, M. Hartl, A. Schiewe, and A. Schöbel 5:3

Algorithm 1: Sequential approach for cost-oriented line planning.
Input: PTN= (V,E), Wuv for all u, v ∈ V , line pool L0 with costs cl for all l ∈ L0

1 Compute traffic loads we for every edge e ∈ E using a passengers’ assignment
algorithm (Algorithm 2)

2 For every edge e ∈ E compute the lower edge frequency fmin
e := d we

Cape
3 Solve the line planning problem LineP(fmin) and receive (L, fl)

Algorithm 2: Passengers’ assignment algorithm.
Input: PTN= (V,E), Wuv for all u, v ∈ V
for every u, v ∈ V with Wuv > 0 do

Compute a set of paths P 1
uv, . . . , P

Nuv
uv from u to v in the PTN

Estimate weights for the paths α1
uv, . . . , α

Nuv
uv ≥ 0 with

∑Nuv

i=1 α
i = 1

end
for every e ∈ E do

Set we :=
∑
u,v∈V

∑
i=1...Nuv :
e∈P i

uv

αiuvWuv

end

of edges E). If the line pool contains all possible paths as potential lines we call it a complete
pool. For every line l ∈ L0 in the pool its costs are

costl = ckm
∑
e∈l

de + cfix, (1)

i.e., proportional to its length plus some fixed costs, where de denotes the length of an edge.
Without loss of generality we assume that ckm = 1.

The demand is usually given in form of an OD-matrix W ∈ IR|V |×|V |, where Wuv is the
number of passengers who wish to travel between the stops u, v ∈ V . We denote the number
of passengers as |W | and the number of different OD pairs as |OD|.

The traditional approaches for cost-oriented line planning work sequentially. In a first
step, for each pair of stations (u, v) with Wuv > 0 the passenger-demand is assigned to
possible paths in the PTN. Using these paths, for every edge e ∈ E the traffic loads are
computed. Given the capacity Cap of a vehicle, one can determine fmin

e := d we

Cape, i.e., how
many vehicle trips are needed along edge e to satisfy the given demand. These values fmin

e

are called lower edge frequencies. They are finally used as input for determining the lines
and their frequencies, Algorithm 1.

The problem LineP(fmin) is the basic cost model for line planning:

min
{∑
l∈L0

fl · costl :
∑

l∈L0:e∈l

fl ≥ fmin
e for all e ∈ E, fl ∈ IN for all l ∈ L0

}
. (2)

Cost models (and extensions of them) have been extensively studied as noted in the intro-
duction.

Step 1 in Algorithm 1 is called passengers’ assignment. The basic procedure is described
in Algorithm 2.

There are many different possibilities how to compute a set of paths and corresponding
weights αiuv; we discuss some in Section 5. In cost-oriented models, often shortest paths
through the PTN are used. I.e., Nuv = 1 for all OD-pairs {u, v} and P 1

uv = Puv is an
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Algorithm 3: Sequential approach for cost-oriented line planning.
Input: PTN= (V,E), Wuv for all u, v ∈ V , line pool L0 with costs cl for all l ∈ L0

1 Compute traffic loads we for every edge e ∈ E using a passengers’ assignment
algorithm (Algorithm 2)

2 Solve the line planning problem LineP(w) and receive (L, fl)

(arbitrarily chosen) shortest path from u to v in the PTN. We call the resulting traffic loads
shortest-path based. Furthermore, let SPuv :=

∑
e∈Puv

de denote the length of a shortest
path between u and v.

In order to analyze the impacts of the traffic loads we on the costs, note that for integer
values of fl we have for every e ∈ E:

∑
l∈L0:e∈l

fl ≥
⌈
we

Cap

⌉
⇐⇒ Cap

∑
l∈L0:e∈l

fl ≥ we,

hence we can rewrite (2) and receive the equivalent model LineP(w) which directly depends
on the traffic loads:

LineP(w) min gcost(w) :=
∑
l∈L0

flcostl

s.t. Cap
∑

l∈L0:e∈l

fl ≥ we for all e ∈ E (3)

fl ∈ IN for all l ∈ L0

We can hence formulate Algorithm 1 a bit shorter as Algorithm 3.
Note that the paths determined in Algorithm 3 will most likely not be the paths the

passengers really take after (3) is solved and the line concept is known. This is known
and has been investigated in case that the travel time of the passengers is the objective
function: Travel time models such as [19] intend to find passengers’ paths and a line concept
simultaneously. The same dependency holds if the cost of the line concept is the objective
function, but a model determining the line plan and the passengers’ routes under a cost-
oriented function simultaneously has to the best of our knowledge not been analyzed in the
literature so far.

3 Integrating passengers’ assignment into cost-oriented line planning

In this section we formulate a model in which Steps 1 and 2 of Algorithm 3 can be optimized
simultaneously. Our first example shows that it might be rather bad for the passengers if we
optimize the costs of the line concept and have no restriction on the lengths of the paths in
the passengers’ assignment.

I Example 1. Consider Figure 1a with edge lengths dAD = dBC = 1, dAB = dDC = M , a
line pool of two lines L0 := {l1 = ABCD, l2 = AD} and two OD-pairs WAD = Cap− 1 and
WBC = 1.

For a cost-minimal assignment we choose PAD = (ABCD), PBC = (BC) and receive an
optimal solution fl1 = 1, fl2 = 0 with costs of gcost = cfix + 2M + 1. The sum of travel
times for the passengers in this solution is gtime = (Cap− 1) ∗ (2M + 1) + 1.
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(a) Infrastructure network for Example 1.
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(b) Infrastructure network for Example 3.

Figure 1 Example infrastructure networks.

For the assignment PAD = (AD), PBC = (BC) we receive as optimal solution fl1 =
1, fl2 = 1 with only slightly higher costs of gcost = 2cfix + 2M + 2. but much smaller sum
of travel times for the passengers gtime = (Cap− 1) ∗ 1 + 1 = Cap.

From this example we learn that we have to look at both objective functions: costs
and traveling times for the passengers, in particular when we allow non-shortest paths in
Algorithm 2. When integrating the assignment procedure in the line planning model we
hence require for every OD-pair that its average path length does not increase by more than
β percent compared to the length of its shortest path SPuv. The integrated problem can be
modeled as integer program (LineA)

(LineA) min gcost :=
∑
l∈L0

fl

(∑
e∈E

de + cfix

)
s.t. Cap

∑
l∈L0:e∈l

fl ≥
∑
u,v∈V

xuve for all e ∈ E

Θxuv = buv for all u, v ∈ V∑
e∈E

dex
uv
e ≤ βSPuvWuv

fl ∈ IN for all l ∈ L0

xuve ∈ IN for all l ∈ L0

where
xuve is the number of passengers of OD-pair (u, v) traveling along edge e
Θ is node-arc incidence matrix of PTN, i.e., Θ ∈ R|V |×|E| and

Θ(v, e) =


1 , if e = (v, u) for some u ∈ V,
−1 , if e = (u, v) for some u ∈ V,
0 , otherwise

buv ∈ R|V | which contains Wuv in its uth component and −Wuv in its vth component.

Note that β = 1 represents the case of shortest paths to be discussed in Section 4. For β
large enough an optimal solution to (LineA) minimizes the costs of the line concept.

Formulations including passengers’ routing have been proven to be difficult to solve (see
[19, 2]). Also (LineA) is NP-hard.
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5:6 Integrating Passengers’ Assignment in Cost-Optimal Line Planning

I Theorem 2. (LineA) is NP-hard, even for β = 1 (i.e. if all passengers are routed along
shortest paths).

Proof. See [9]. J

The sequential approach can be considered as heuristic solution to (LineA). Different
ways of passengers’ assignment in Step 1 of Algorithm 3 are discussed in Section 5.

4 Gap analysis for shortest-path based traffic loads

In this section we analyze the error we make if we restrict ourselves to shortest-path based
assignments in the sequential approach (Algorithm 3) and in the integrated model (LineA).
More precisely, we use only one shortest path Puv for routing OD-pair (u, v) in Algorithm 2
and we set β = 1 in (LineA). The traffic loads in Step 2 of Algorithm 2 are then computed
as

we :=
∑

u,v∈V :e∈Puv

Wuv. (4)

Assigning passengers to shortest paths in the PTN is a passenger-friendly approach since we
can expect that traveling on a shorter path in the PTN is less time consuming in the final line
network than traveling on a longer path (even if there might be transfers). It also minimizes
the vehicle kilometers required for passenger transport. Hence, shortest-path based traffic
loads can also be regarded as cost-friendly. Nevertheless, if we do not have a complete line
pool or we have fixed costs for lines, it is still important to which shortest path we assign
the passengers as the following two examples demonstrate.

I Example 3 (Fixed costs zero). Consider the small network with stations A,B,C,D, and E
depicted in Figure 1b. Assume that all edge lengths are one. There is one passenger from B
to E.

Let us assume a line pool with two lines L0 = {l1 = ABCE, l2 = BDE}. Since the lines
have different lengths their costs differ: costl1 = 3 and costl2 = 2 (for cfix = 0).

For the passenger from B to E, both possible paths (B-C-E) and (B-D-E) have the same
length, hence there exist two solutions for a shortest-path based assignments:

If the passenger uses the path B-C-E, we have to establish line l1 (fl1 := 1, fl2 := 0) and
receive costs of 3.
If the passenger uses B-D-E, we establish line l2 (fl1 := 0, fl2 := 1) with costs of 2.

Since in this example l1 could be arbitrarily long, this may lead to an arbitrarily bad solution.

This example is based on the specific structure of the line pool. But even for the complete
pool the path choice of the passengers matters as the next example demonstrates.

I Example 4 (Complete Pool). Consider the network depicted in Figure 1b. Assume, that
the edges BC, CE, BD and DE have the same length 1 and the edge AB has length ε. We
consider a complete pool and two passengers, one from A to E and another one from B to E.
The vehicle capacity should be at least 2. If both passengers travel via C, the cost-optimal
line concept is to established the dashed line l1 with costs cfix + 2 + ε. For one passenger
traveling via C and the other one via D, two lines are needed and we get costs of 2cfix + 4 + ε.
For ε→ 0 the factor between the two solutions hence goes to 2cfix+4+ε

cfix+2+ε → 2 which equals the
number of OD pairs in the example.

The next lemma shows that this is, in fact, the worst case that may happen.
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Algorithm 4: Passengers’ Assignment: Shortest Paths.
Input: PTN= (V,E), Wuv for all u, v ∈ V
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path Puv from u to v in the PTN, w.r.t edge lengths d
end
for every e ∈ E do

Set we :=
∑
u,v∈V
e∈Puv

Wuv

end

I Lemma 5. Consider two shortest-path based assignments w and w′ for a line planning
problem with a complete pool L0 and without fixed costs cfix = 0. Let fl, l ∈ L, be the
cost optimal line concept for LineP(w) and f ′l , l ∈ L′, be the cost optimal line concept for
LineP(w′). Then gcost(w) ≤ |OD|gcost(w′).

Proof. See [9]. J

If we drop the assumption of choosing a common path for every OD-pair, the factor increases
to the number |W | of passengers. However, if we solve the relaxation of LineP(w) the
passengers’ assignment has no effect:

I Theorem 6. Consider a line planning problem with complete pool and without fixed costs
(i.e. cfix = 0). Then the objective value of the LP-relaxation of LineP(w) is independent of
the choice of the traffic assignment if it is shortest-path based. More precisely:

Let w and w′ be two shortest-path based traffic assignments with g̃cost(w), g̃cost(w′) the
optimal values of the LP-relaxations of LineP(w) and LineP(w′). Then g̃cost(w) = g̃cost(w′).

Proof. See [9]. J

5 Passengers’ assignment algorithms

We consider three passengers’ assignment algorithms. Each of these is a specification of Step
1 in Algorithm 2. Each algorithm will be introduced in one of the following subsections.
They differ in the objective function used in the routing step, i.e., whether we need to iterate
our process or not.

5.1 Routing on shortest paths
Algorithm 4 computes one shortest paths for every OD pair, i.e., all passengers of the same
OD pair use the same shortest path.

5.2 Reduction algorithm of [13]
Algorithm 5 uses the idea of [13]. It is a cost-oriented iterative approach. The idea is to
concentrate passengers on only a selection of all possible edges. To achieve this, edges are
made more attractive (short) in the routing step if they are already used by passengers.

The length of an edge in iteration i is dependent on the load on this edge in iteration
i − 1, higher load results in lower costs in the next iteration step. This is iterated until
no further changes in the passenger loads occur or a maximal iteration counter max_it is
reached. When this is achieved, the network is reduced, i.e., every edge that is not used by
any passenger is deleted. In the resulting smaller network, the passengers are routed with
respect to the original edge lenghts.
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5:8 Integrating Passengers’ Assignment in Cost-Optimal Line Planning

Algorithm 5: Passengers’ Assignment: Reduction.
Input: PTN= (V,E), Wuv for all u, v ∈ V
i := 0
w0
e := 0∀e ∈ E

repeat
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P iuv from u to v in the PTN, w.r.t.

costi(e) = de + γ · de

max{wi−1
e , 1}

end
for every e ∈ E do

Set wie :=
∑
u,v∈V
e∈P i

uv

Wuv

end
i = i + 1

until
∑
e∈E(wi−1

e − wie)2 < ε or i > max_it;
Compute a shortest path Puv from u to v in the PTN, w.r.t.

cost(e) =
{
de, wie > 0
∞, otherwise

Set we :=
∑
u,v∈V
e∈Puv

Wuv

5.3 Using a grouping reward
Algorithm 6 uses a reward term if the passengers can be transported without the need of a
new vehicle. Again, we want to achieve higher costs for less used edges. We reward edges,
that are already used by other passengers. In order to fill up an already existing vehicle
instead of adding a new vehicle to the line plan we reward an edge more, if there is less space
until the next multiple of Cap. To achieve a good performance, we update the edge weights
after the routing of each OD pair and not only after a whole iteration over all passengers.

5.4 Routing in the CGN
For line planning, usually a line pool is given. In particular, if the line pool is small, it has a
significant impact on possible routes for the passengers, since some routes require (many)
transfers and are hence not likely to be chosen. Moreover, assigning passengers not only to
edges but to lines has a better grouping effect. We therefore propose to enhance the three
heuristics by routing the passengers not in the PTN but in the co-called Change&Go-Network
(CGN), first introduced in [19]. Given a PTN and a line pool L0, CGN=(Ṽ , Ẽ) is a graph
in which every node is a pair (v, l) of a station v ∈ V and a line l ∈ L0 such that v is
contained in l. An edge in the CGN can either be a driving edge ẽ = ((u, l), (v, l)) between
two consecutive stations (u, v) ∈ E of the same line l or a transfer edge ẽ = ((u, l1), (u, l2))
between two different lines l1, l2 passing through the same station u. In the former case we
say that ẽ ∈ Ẽ corresponds to e ∈ E. We now show how to adjust the algorithms of the
previous section to route the passengers in the CGN in order to obtain a traffic assignment
in the PTN. For this we rewrite Algorithm 4 and receive Algorithm 7.

We proceed the same way to rewrite the routing step in the repeat-loop of Algorithm 5,
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Algorithm 6: Passengers’ Assignment: Reward.
Input: PTN= (V,E), Wuv for all u, v ∈ V
i := 0
repeat

i = i + 1
wie := wi−1

e ∀e ∈ E
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P iuv from u to v in the PTN, w.r.t.

costi(e) = max{de ·
(
1− γ · (wi−1

e mod Cap)/(Cap)
)
, 0}

for every e ∈ P i−1
uv do

Set wie := wie −Wuv

end
for every e ∈ P iuv do

Set wie := wie +Wuv

end
end

until
∑
e∈E(wi−1

e − wie)2 < ε or i > max_it;

Algorithm 7: CGN routing for Algorithm 4.
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P̃uv from u to v in the CGN, w.r.t.

cost(ẽ) =
{
de if ẽ is a driving edge which corresponds to e
pen if ẽ is a transfer edge, where pen is a transfer penalty

end
for every e ∈ E do

Set we :=
∑

ẽ∈Ẽ:
ẽ corr. to e

∑
u,v∈V :
ẽ∈P̃uv

Wuv

end

where we use

cost(ẽ) =
{
costi(e) if ẽ is a driving edge which corresponds to e
pen if ẽ is a transfer edge, where pen is a transfer penalty

as costs in the CGN. We still compare the weights wie and wi−1
e in the PTN for ending

the repeat loop, also the reduction step, i.e., the routing after the iteration in Algorithm 5
remains untouched. For the detailed version see Algorithm 8 in Appendix A.

Finally, we consider Algorithm 6. Here routing in the CGN is in particular promising
since a line-specific load is more suitable to improve the occupancy rates of the vehicles. In
the routing version of 6 we construct the CGN already in the very first step in the same
way as in Algorithm 7. We then perform the whole algorithm in the CGN, but compute the
traffic loads wie in the PTN at the end of every iteration in order to compare the weights wie
and wi−1

e in the PTN for deciding if we end or repeat the loop. For the detailed version see
Algorithm 9 in Appendix A.
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(a) Solution results for a line pool with 33 lines.
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(b) Solution results for a line pool with 275 lines.

Figure 2 Solution results for a small and a big line pool.

6 Experiments

For the experiments, we applied the models introduced in Section 5 on the data-set from [8],
a small but real world inspired instance. It consists of 25 stops, 40 edges and 2546 passengers,
grouped in 567 OD pairs. We started with five different line pools of different sizes, ranging
from 33 to 275 lines, using [10] and lines based on k-shortest path algorithms. We use a
maximum of 15 iterations for every iterating algorithm. For an overview on runtime, see [9].

6.1 Evaluation of costs and perceived travel time of the line plan
We first evaluate a line plan by approximating its cost and its travel times. Both evaluation
parameters can only be estimated after the line planning phase since the real costs would
require a vehicle- and a crew schedule while the real travel times need a timetable. We use
the common approximations:

gcost =
∑
l∈L0 fl · costl, i.e., the objective function of (LineP(w)) and (LineA) that we

used before, and
gtime =

∑
u,v∈V SPuv+pen ·#transfers, describing the sum of travel times of all OD-pairs

where we assume that the driving times are proportional to the lengths of the paths and
we add a penalty for every transfer.

Comparison of the three assignment procedures

We first compare the three assignment procedures. Figure 2a and 2b show the impact of the
assignment procedure for a small line pool (33 lines) and for a large line pool (275 lines).
For both line pools we computed the traffic assignment for Shortest Paths, Reduction, and
Reward, both in the PTN and in the CGN. This gives us six different solutions, for each of
them we evaluated their costs gcost and their travel times gtime.

Figure 2a shows the typical behaviour for a small line pool: We see that Shortest Path
leads to the best results in travel time, i.e., the most passenger friendly solution. Routing
in the CGN is better for the passengers than routing in the PTN, the PTN solutions are
dominated. Reward, on the other hand, gives the solutions with lowest costs. Also here, the
costs are better when we route in the CGN instead of the PTN. Note that the travel time of
the Reward solution in the CGN is almost as good as the Shortest Path solution.
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Figure 3 Travel time and cost of Shortest Path solutions for increasing line pool size.
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Figure 4 Cost of Reward and Reduction solutions for increasing line pool size.

Figure 2b shows the behaviour for a larger line pool. Still, the solution with lowest travel
time is received by Shortest Path, and it is still better in the CGN than in the PTN but the
difference is less significant compared to the small line pool. The lowest cost for larger line
pools are received by Reduction. Note that both Reduction solutions have lower cost than the
Reward solution. This effect increases with increasing line pool.

Dependence on the size of the line pool

We have already seen that for larger line pools, cost optimal solutions are obtained by
Reduction and for smaller line pools by Reward. Figures 3 and 4 now study further the
dependence of the line pool.

In all our experiments, the best travel time was achieved by Shortest Paths. In Figure 3
we see that the travel time is lower if we route in the CGN compared to routing in the PTN
for all instances we computed. The difference gets smaller with an increasing size of the line
pool; for the complete line pool routing in the CGN and in the PTN would coincide.

For Reward and Reduction we see two effects: First we see a decrease in the costs when
we have more lines in the line pool. This is to be expected, since the line concept algorithm
used profits from a bigger line pool. Furthermore, we see the for Reduction there are cases,
where the cost optimal solution can be found with the PTN routing.

ATMOS 2017
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(a) Iterations for Reduction, γ = 75, 186 lines. (b) Solution evaluated by VISUM.

Figure 5

Tracking the iterative solutions in Reduction and Reward

Reduction and Reward are iterative algorithms. They require an assignment in each iteration.
For each of these assignments we can compute a line concept and evaluate it. Such an
evaluation is shown in Figure 5a where we depict the line concepts computed for the passengers’
assignments in each iteration for Reduction. For Reward, see [9]. For Reduction we see that
the rerouting in the reduced network in the end is crucial. In most of our experiments the
resulting routing dominates all assignments in intermediate steps with respect to costs and
travel time of the resulting line concepts. For Reward we observe no convergence. It may
even happen that some of the intermediate assignments lead to non-dominated line concepts.

6.2 Using the line plan as basis for timetabling and vehicle scheduling
In this section we exemplarily evaluate the line concept obtained by Reduction with routing
in the PTN for a large line pool of 275 lines in more detail. The line plan is depicted in
Figure 5b. For its evaluation we used LinTim [1, 11] to compute a periodic timetable and
a vehicle schedule. The resulting public transport supply was evaluated by VISUM ([16]).
More precisely, we computed

the cost for operating the schedule given by the number of vehicles, the distances driven
and the time needed to operate the lines, and
the perceived travel time of the passengers (travel time plus a penalty of five minutes for
every transfer) when they choose the best possible routes with respect to the line plan
and the timetable.

The resulting costs are 1830 which leads to be best completely automatically generated
solution obtained so far for this example (for other solutions, see [8]) and shows that the low
costs in line planning lead to a low-cost solution when a timetable and vehicle schedule is
added. As expected, the travel time for the passengers increased (by 18%).

7 Conclusion and Outlook

We showed the importance of the traffic assignment for the resulting line concepts, regarding
the costs as well as the passengers’ travel time. We analyzed the effect of different assignments
theoretically as well as examined three assignment algorithms numerically. As further steps



M. Friedrich, M. Hartl, A. Schiewe, and A. Schöbel 5:13

we plan to analyze the impact of the passengers’ assignment together with the generation of
the line pool. We also plan to develop algorithms for solving (LineA) exactly with the goal of
finding the cost-optimal assignment in the line planning stage, and finally a lower bound on
the costs necessary to transport all passengers in the grid graph example. Furthermore, more
optimization in the implementation is necessary to solve the discussed models on instances
of a more realistic size.
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A Algorithms

Algorithm 8: CGN routing version of Algorithm 5.
Input: PTN= (V,E), Wuv for all u, v ∈ V
Construct the CGN (Ṽ , Ẽ) with

dẽ =
{
de, for drive edges ẽ, where e is the corr. PTN edge
pen, for transfer edges ẽ, where pen is a transfer penalty

i := 0
w0
e := 0∀e ∈ E

repeat
i = i + 1
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P̃ iuv from u to v in the CGN, w.r.t.

costi(ẽ) = dẽ + γ · dẽ

max{wi−1
e , 1}

,

where e is the PTN edge corresponding to ẽ.
end
for every e ∈ E do

Set wie :=
∑

ẽ∈Ẽ
e corr. to ẽ

∑
u,v∈V
ẽ∈ẽi

uv

Wuv

end
until

∑
e∈E(wi−1

e − wie)2 < ε or i > max_it;
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path Puv from u to v in the PTN, w.r.t.

cost(e) =
{
de, wie > 0
∞, otherwise

end
for every e ∈ E do

Set we :=
∑
u,v∈V
e∈Puv

Wuv

end
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Algorithm 9: CGN routing version of Algorithm 6.
Input: PTN= (V,E), Wuv for all u, v ∈ V
Construct the CGN (Ṽ , Ẽ) with

dẽ =
{
de, for drive edges ẽ, where e is the corr. PTN edge
pen, for transfer edges ẽ, where pen is a transfer penalty

i := 0
w0
ẽ := 0∀ẽ ∈ Ẽ

repeat
i = i + 1
wiẽ := wi−1

ẽ ∀ẽ ∈ Ẽ
for every u, v ∈ V with Wuv > 0 do

Compute a shortest path P̃ iuv from u to v in the CGN, w.r.t.

costi(ẽ) = max{dẽ ·
(

1− γ · w
i−1
ẽ mod Cap

Cap

)
, 0}

for every ẽ ∈ P̃ i−1
uv do

Set wiẽ := wiẽ −Wuv

end
for every ẽ ∈ P̃ iuv do

Set wiẽ := wiẽ +Wuv

end
end
for every e ∈ E do

Set we :=
∑

ẽ∈Ẽ:
ẽ corr. to e

∑
u,v∈V :
ẽ∈P̃uv

Wuv

end
until

∑
e∈E(wi−1

e − wie)2 < ε or i > max_it;
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Abstract
The classical planning process in public transport planning focuses on the two criteria operating
costs and quality for passengers. Quality mostly considers quantities like average travel time
and number of transfers. Since public transport often suffers from delays caused by random
disturbances, we are interested in adding a third dimension: robustness. We propose passenger-
oriented robustness indicators for public transport networks and timetables. These robustness
indicators are evaluated for several public transport plans which have been created for an artificial
urban network with the same demand. The study shows that these indicators are suitable to
measure the robustness of a line plan and a timetable. We explore different trade-offs between
operating costs, quality (average travel time of passengers), and robustness against delays. Our
results show that the proposed robustness indicators give reasonable results.
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1 Introduction

The planing process for public transport involves many stages. We here focus on the planning
stage where the infrastructure (stops, available tracks or roads) is already fixed and planners
are interested in the generation of a public transport plan. By that, we mean a line network
with a corresponding timetable. The primary optimization goals for public transport plans
are operating costs on the one side, and quality criteria like average travel time and number
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of transfers on the other. The effect of possible disturbances on passengers is often not
considered at this stage of the planning process.

Goals and contribution. Given the same infrastructure and identical passenger demands,
we aim at analyzing robustness indicators which allow for a comparison of different line plans
and timetables with respect to their vulnerability to delays and disturbances. The results
of the robustness test should provide planners information concerning the robustness and
identify shortcomings in the line plan and timetable of the examined instance.

We propose robustness indicators which consider several types of small and large disturb-
ances, ranging from delays for single vehicles, slow-downs of certain network sections, and
temporary blockings of stops. The impacts of each test are quantified by a set of robustness
indicators.

In a pilot study, we compare a set of hand-made and automatically optimized public
transport plans on an artificial grid network representing an urban bus or tram network.

By comparing the characteristics of the public transport plans and the corresponding
values of the robustness indicators, we aim at answering the following questions:

Are the indicators suitable to replicate the expected shortcomings of a plan?
How important is the choice of the line network for the robustness of the timetable?
Do we observe a trade-off between robustness and travel times on the basis of timetables
which are optimized for the respective line plan?
Which planning method leads to more robust schedules?

Related work. Punctuality of public transport is of high importance for passengers. There-
fore, a plenitude of methods exist to quantify the deviation of the realized schedule from
the planned schedule. Reports often provide the percentage of services which arrive on time,
where being on time is defined as to arrive not later than within a given margin (e.g., 5 or 15
minutes for long distance trains) of the planned arrival time. In a Dagstuhl seminar in 20161,
Dennis Huisman coined the phrase “passenger punctuality 2.0” for measuring the (weighted)
total passenger delay at the destination for all passengers. The latter has, for example, been
used by [15, 16], then also used in [10] and others. Less sophisticated indicators include
the mere number of delayed departure and arrival events [4]. Alternatively, Acuna-Agost et
al. [1] propose to count every time unit of delay at every planned stop and at the last stop.

Robust timetabling has been considered a lot. From an operational point of view, it is
desirable that a timetable can absorb delays and recover quickly (thus avoiding penalties for
the operator). To this end, inserting buffer times in the timetable may help to reduce the
effect of disturbances, but may have a negative effect on the realized travel times. Not only the
total amount of buffer times, but also their distribution along the lines is important. These
aspects have been studied intensively in operations research. For example, Kroon et al. [11]
use stochastic optimization to allocate time supplements to make the timetable maximally
robust against stochastic disturbances. They use the expected weighted delay of the trains
as indicator. Using mixed integer linear programming, Sels et al. [19] improve punctuality
for passenger trains in Belgium by minimizing the total passenger travel time as expected
in practice. Quite recently, Bešinović et al. [3] optimized the trade-off between minimal
travel times and maximal robustness using an integer linear programming formulation which
includes a measure for delay recovery computed by an integrated delay propagation model in
a Monte Carlo setting. In these works, the line network is usually already fixed.

1 http://www.dagstuhl.de/16171

http://www.dagstuhl.de/16171
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Robustness of timetables was empirically investigated (with respect to different robustness
concepts) in [8], robustness of lines has been studied in [7]. A general survey of line planning
in public transport can be found in [17]. A recent integrated approach combines line planning
and timetabling, but without considering robustness [18].

Overview. The remainder of this paper is structured as follows. In Section 2, we develop
three different robustness tests for public transport plans. Afterwards, in Section 3, we
sketch the algorithmic framework needed to compute the indicators for these tests. Then,
in Section 4, we conduct an experimental study on 12 artificial public transport plans and
discuss their robustness. Finally, we summarize and conclude with future work.

2 Robustness Tests

In this section, we propose three robustness tests for public transport. These robustness
tests are intended to help planners in the a priori evaluation of the robustness of timetables.
With this main goal in mind, our tests shall have the following key features.

The robustness tests shall be applicable to all possible line networks and corresponding
timetables in public transport and for general demand patterns varying within the course
of a day.
They should capture different types of scenarios, ranging from small to more severe
disturbances and occurring at different elements of the public transport plan (vehicles,
network sections, stops).
They can be parameterized by severeness (how long does the disturbance take or how
large are delays).
Moreover, they can also be parameterized by additional assumptions about

delay propagation and the catch-up potential of vehicles. To increase the robustness
of timetables, the planned time for driving from one stop to the next or the dwelling
time at stops includes some buffer time which can be used to catch-up some delay.
The catch-up potential for a delayed service, can be set by a parameter α ∈ R. Given
for each network section e a lower bound for the travel time `e and a planned travel
time of te, a delayed service can reduce its delay by α · (te − `e).
the disposition policy of the operating companies reacting on disturbances. For example,
in an urban bus or tram network a no-wait policy might be appropriate, while in
long-distance train networks certain standard waiting time rules may be used. It is also
possible to use more sophisticated disposition policies by simulating the propagation
of delays and the decisions of dispatchers.

In general, we take a passenger-oriented view and focus on the delay at the destination, that
is, the difference between the actual arrival time and the originally planned arrival time. For
measuring the impact of disturbances we distinguish four robustness indicators:
1. total delay time: the sum of all positive delays over all passengers at their destinations;
2. number of affected passengers: Every passenger arriving with a positive delay at his

destination is counted as affected;
3. average delay time per affected passenger : total delay time divided by the number of

affected passengers.
4. share of passengers who need to adapt their initial route: the number of passengers

arriving at their destination by using a route different to the initially planned.

ATMOS 2017
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Disturbances may occur simultaneously at different locations or may affect subsequent
runs of a vehicle schedule. To allow for a fair comparison across different line networks,
different frequencies, and timetables, but fixed travel demand, the proposed indicators average
over many simple scenarios with just one disturbance event. We consider three types of
tests each addressing one type of disturbance. For each test, we compute the impact on the
passengers, in particular, we approximate their expected delay.

Robustness test 1: Delays of single service runs. The first robustness test considers the
effect of the delay of a single service run in isolation. We evaluate many distinct scenarios,
one for each service run of the given timetable. Every service run is delayed by x1 minutes
at its first stop. Such a delay may occur due to technical problems of some specific vehicle or
due to the late arrival of some feeder vehicle causing a departing vehicle to wait for changing
passengers.

Robustness test 2: Slow-down of singe networks section. A second robustness test models
scenarios where a certain network section invokes a certain delay. For example, temporary
speed restrictions may occur because of construction work or for safety reasons. Whenever a
service run passes this section, it catches a delay of x2 minutes. Optionally, this index can
be refined by either considering bidirectional or unidirectional delays on the section.

Robustness test 3: Temporary blocking of single stop. Finally, we model the temporary
blocking of a whole stop. Such a disturbance has a starting point tstart and a duration x3.
During the blocking phase, we assume that vehicles may still enter the stop but no vehicle
can leave it. For simplicity, we further assume that the capacity to hold all vehicles at the
stop is sufficient. For long-term blockings, a more detailed model would be required. When
the blocking phase is over, vehicles restart from this stop one after another in the order of
their scheduled departure with a constant headway of headway minutes.

3 Algorithmic Framework

Next we sketch the basics of our simulation framework.

Event-activity network. A public transport timetable can be modeled as a so-called event-
activity network (EAN) N = (V,A), i.e. a directed acyclic graph with vertex set V and arc
set A. The vertices of the network correspond to the set of all arrival and departure events
of the given timetable. Each event is equipped with several attributes: its type (arrival
or departure), the id of the corresponding service, the stop, and several timestamps. In
this context we distinguish between the planned event time according to schedule, and the
realized time after the event has occurred. In an online scenario, one also has to consider the
estimated event times with respect to the current delay scenario. Arcs of the network model
order relations between events. We distinguish between different types of arcs (“activities”):

driving arcs, modeling the driving of a specific vehicle from one stop to its very next stop,
dwelling arcs, modeling a vehicle standing at a platform and allowing passengers to enter
or leave it, and
transfer arcs, modeling the possibility for passengers to change from one vehicle to
another.

Every arc (activity) has an attribute which specifies its minimum duration. For driving arcs
we thereby model the catch-up potential between two stops under optimal conditions. For
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dwelling arcs the minimum duration corresponds to the minimum time needed for boarding
and deboarding or to the setup time needed if the driving direction is changed. For transfer
arcs, the minimum duration models the time which a passenger will need for the transfer.

Disposition policies. For all non-direct travelers, the effect of some delay on their arrival
time at the destination depends on the chosen delay management policy of the responsible
transport operator. Waiting time rules specify how long a vehicle will wait at most for
a delayed feeder service. Such rules may depend on the involved lines, the time when to
be applied, and other criteria. For this framework we use PANDA [14], a tool originally
developed for optimized passenger-friendly disposition. This tool can be instantiated in
a flexible way with almost arbitrary fixed waiting time strategies, in particular with the
extreme cases of NO-WAIT and ALWAYS-WAIT.

Delay propagation. Given the source delay of some service, it will propagate from the
current event to forthcoming events of the same service. Depending on the disposition policy,
it may also propagate to other services. Delay propagation due to capacity restrictions of the
infrastructure is not considered. New timestamps for events are derived though a propagation
in breadth-first search order in the event activity network [13].

Passenger routing and rerouting. In our framework, we assume that passengers prefer to
use a fastest route in their preferred starting time interval from their origin to their planned
destination. Among all fastest routes they use one with the minimum number of transfers. A
route is called infeasible if a transfer is missed. In our model passengers have full information
about all current delays. Therefore, in the beginning of their route they do not board a
vehicle if it is not on their optimal route even if they had initially planned to take this
vehicle. If some intended route becomes infeasible due to delays, we assume for simplicity
that passengers choose alternative routes again with the same principle (fastest routes with
fewest number of transfers). Such routes can efficiently be computed by some variant of
Dijkstra’s algorithm, see [2] for a recent survey on fast approaches. For large networks with
many origin-destination pairs, a sufficiently fast method is needed to achieve reasonable
simulation times.

Computation of robustness indicators. The computation of the proposed robustness in-
dicators requires the following basic steps for each line plan and timetable to be evaluated:
1. Build up the event-activity network for the given line plan and timetable.
2. Compute for all groups of passengers (i.e., for all origin-destination pairs and all desired

start times) optimal routes in the event-activity network and store them.
3. For each delay scenario

a. propagate the source delays through the network;
b. for each passenger group check whether the planned route is still feasible; if not,

compute an alternative route;
c. evaluate the difference in arrival time for the updated route and the originally planned

arrival time.
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(a) Lines of P_1. (b) Lines of P_2.

Figure 1 Lines of the manually created instance and their frequencies per hour (in brackets).

Figure 2 Travel demand.

4 Experimental Study

4.1 Test instances
For the experiments we use the instances for line plans and timetables created in [5]. Here,
an infrastructure network of 25 stops and 40 edges is considered, arranged in a grid network,
see Figure 1 for two examples. All other instances are shown in the Appendix. Fig. 2 shows
the travel demand (in morning peak hours) common to all instances. All instances were
created in an effort to minimize travel time, number of transfers and operating costs. The
impact of disturbances was neglected.

The first instances, depicted in Figure 1, are created by hand, using the experience of
public transport planners. They are constructed using a system-wide frequency of 20 minutes.
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(b) Average number of transfers per route.

Figure 3 Quality indicators of the examined public transport plans in the undisturbed case.

The other instances contain components which are automatically generated using routines of
LinTim [12, 7] where the lines and their frequencies were optimized with respect to their costs,
timetables were optimized heuristically with respect to the traveling time of the passengers
(using the modulo simplex in [9]) and the vehicle schedules are again optimized with respect
to their costs. For a clear notation, A_x_y denotes algorithmic solution y, based on the
manual solution P_x.
A_x_1: The lines and frequencies are fixed as in the manual plan, the timetable and vehicle

schedule are automatically optimized.
A_x_2: Only the lines are fixed as in the manual plan while their frequencies, the timetable,

and the vehicle schedule are automatically optimized.
A_x_3: Here only vertical and horizontal lines were allowed. Based on these lines, the line

plan, the frequencies, the timetable and the vehicle schedules are automatically optimized.
A_x_4: Here, everything is calculated automatically including the line pool which is

generated by the algorithm presented in [6].
A_x_5: Everything is calculated automatically, but using a combination of the manual line

pool and the line pool of A_x_4.
Some quality indicators of these test instances in the undisturbed planning case are shown
in Figures 3 and 4. We show the average undisturbed travel time, the average number of
transfers per route for the given demand, and the average transfer buffer time per transfer.
The transfer buffer time is defined as the difference between the departure time of the leaving
service and the arrival time of the feeder service minus the walk from the arrival to the
departure platform.

4.2 Results of the robustness tests
The proposed robustness tests are applied to the grid networks. Since these instances model
urban bus or tram networks, we instantiate our simulation model with a no-wait policy (as
this might be most common). The parameter for the catch-up potential is set to α = 0, i.e.
it is assumed to be negligible.
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Figure 4 Average transfer buffer time in minutes for the examined public transport plans in the
undisturbed case.

Test 1: Delays of single service runs. We first evaluate the delay of single service runs.
As parameter of the delay size we use x1 = 10 minutes. Results are shown in Figure 5.

Test 2: Slow-down of single network sections. Each network section with temporary
speed restrictions requires additional x2 = 3 minutes. Restrictions apply for the period of
one day. Results are shown in Figure 6.

Test 3: Temporary blocking of a single stop. For the robustness indicator measuring the
effect of blocked stops, we use as parameters that each stop is blocked by x3 = 10 minutes.
After the restart, the required headway is assumed to be 2 minutes. As starting times of
these blockings we consider every 15 minutes, giving four different scenarios for each hour.
Results are shown in Figure 7.

Discussion of results. This section interprets the robustness indicators computed above
considering the form of the line network and the timetable. Table 1 summarizes the selected
characteristics of the examined line networks, which can be derived directly from the network.
It also verbally lists expectations why one instance should be more or less robust. These
expectations can be compared to the actual performance of each instance, which is quantified
in Table 1 as the overall rank over all tests, i.e., the average rank over all three tests concerning
the total delay time. Some findings of this comparison are following:

Line networks with a large number of transfer points and with lines covering many or all
edges of the network provide several alternative routes for one pair of origin and destinations
(OD-pair). Demand is only bundled to a small extent. Thus disturbances of one single stop
affects only a relatively small amount of the demand. Demand affected by a disturbance
can be diverted to alternative routes. For this reason network A_2_3 provides good results
concerning the number of affected passengers and the total delay time but such a network
with redundant lines comes with relative high operation costs. Line network with short line
routes are less vulnerable to disturbances on single runs as one disturbance affects only few
network sections. This is reflected in test 1, where most networks with short line routes
perform better than networks with longer line routes. Line networks relying on one backbone
line are expected to be more vulnerable. These central network elements are critical for
the performance of the network making the network vulnerable if disturbances occur at
single, critical network elements. Despite this expectation, most networks relying on one
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Table 1 Main characteristics of examined line networks influencing the robustness.

line lines lines line characteristics characteristics rank
network per per length increasing increasing test 1-3

stop edge vulnerability redundancy
one network section high frequency lines

P1, 1.7 1.5 12.0 serving as backbone, and overlapping lines 2
A_1_1 low edge coverage compensate delays 5

of other lines
low service frequency

A_1_2 1.7 1.5 12.0 reduces probability of 3
being affected by

short disturbances , high
transfer buffers

one backbone line, short line length
A_1_3 1.2 1.0 8.0 only one transfer reduces impacts of 8

point per feeder line service run delays
one network section

A_1_4 2.2 1.8 9.8 serving as backbone, 9
low edge coverage,
short transfer buffer

time
A_1_5 2.5 2.2 13.9 one network section 6

serving as backbone
few OD-pairs high buffer time

P2 1,6 1.4 14.4 with alternative routes, for transfers 11
low edge coverage,
long line length
few OD-pairs

A_2_1 1.6 1.4 14.4 with alternative routes, 7
low edge coverage,
long line length
few OD-pairs low service frequency

A_2_2 1.6 1.4 14.4 with alternative routes, reduces probability of 10
low edge coverage, being affected by
long line length short disturbances

no critical network
A_2_3 2.0 1.0 8.0 elements, all edges are 1

served by a line,
short line length

A_2_4 3.4 2.4 11.1 12
long line length high frequency lines

A_2_5 2.7 1.9 15.0 increases impacts of and overlapping lines 4
service run delays compensate delays , high

transfer buffer times
lines per stop: average number of lines serving a stop
lines per edge: average number of lines serving an edge
line length: average length of all line routes, weighted with service frequency
overall rank: average rank over all three tests concerning the total delay time
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Figure 5 Robustness indicators for Test 1: Delays of single service runs.

north-south network section as backbone (P_1, A_1_1, A1_2, A_1_5) perform better than
the average. This can be explained by the setup of test 2, which slows down single network
sections. The test assumes that the probability of a slow-down event does not depend on
the number of lines or runs using a network section. This is not a realistic assumption. For
this reason Test 2 should be modified in later tests. Service runs of overlapping lines can
compensate delays of single service runs. P_1, A_1_1 and A_2_5 are examples of such a
networks.

Line networks with timetables providing sufficient buffer time for transfers can compensate
small or medium delays in the network. This partly explains the good performance of line
network A_1_2 and A_2_5 in the case of delays on one edge. Lines with low frequencies
have a lower probability of being affected by short disturbances. This effect explains the
good performance of line networks A_1_2 and A_2_5 in case of disturbances at stops.
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(a) Test 2: total delay per simulation in
minutes.
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per disruption.
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Figure 6 Robustness indicators for Test 2: Slow-down of single network sections.

5 Summary and Future Work

In this paper we have proposed three robustness tests for the comparison of public transport
plans. We provided a proof of concept by evaluating and comparing public transport plans for
an artificial grid network. The robustness indicators showed significant differences between
instances. For example, the average delay per affected passenger varies by a factor of two in
Tests 2 and Test 3. Moreover, all three robustness tests are needed since they reveal different
vulnerabilities.

It is well-known that the selection of the line network has a significant impact on the
robustness of the corresponding public transport service. An important finding of our
experiments is that the robustness tests are suitable to detect the expected shortcomings of
line plans.
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(a) Test 3: total delay per simulation in
minutes.
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(b) Test 3: average delay of affected passengers
in minutes.
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(c) Test 3: number of affected passengers
per disruption.
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(d) Test 3: number of rerouted passengers.

Figure 7 Robustness indicators for Test 3: Temporary blocking of a single stop.

For the three types of delay scenarios, our robustness indicators approximate the expected
delay of passengers by averaging over possible disturbances as if they occur with equal
probability. Clearly, if pre-knowledge is available from past observations or more detailed
models about the distribution of disturbances exist, they should be used to refine the proposed
indicators to weighted ones.

Future work may include several issues:
1. Can we identify hotspots where disturbances lead to a large increase in travel time?
2. For the grid networks, it has been computationally feasible to generate delay scenarios

for all stops and network sections. For large scale networks, it might be necessary to use
a sampling approach.

3. Do urban bus networks and long-distance train networks behave similarly?
4. What are the impacts of disturbances on the operating costs?
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A Test instances

(a) Lines of A_1_1 (b) Lines of A_1_2

(c) Lines of A_1_3 (d) Lines of A_1_4

(e) Lines of A_1_5

Figure 8 Lines and their frequencies (in brackets) based on P_1.
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(a) Lines of A_2_1 (b) Lines of A_2_2

(c) Lines of A_2_3 (d) Lines of A_2_4

(e) Lines of A_2_5

Figure 9 Lines and their frequencies (in brackets) based on P_2.



Public Transit Routing with Unrestricted Walking∗

Dorothea Wagner1 and Tobias Zündorf2

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
dorothea.wagner@kit.edu

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
zuendorf@kit.edu

Abstract
We study the problem of answering profile queries in public transportation networks that allow
unrestricted walking. That is, finding all Pareto-optimal journeys regarding travel time and
number of transfers in a given time interval. We introduce a novel algorithm that, unlike most
state-of-the-art algorithms, can compute profiles efficiently in a setting that allows arbitrary walk-
ing. Using our algorithm, we show in an extensive experimental study that allowing unrestricted
walking, significantly reduces travel times, compared to settings where walking is restricted. Bey-
ond that, we publish the transportation networks of Switzerland that we used in our study, in
order to encourage further research on this topic.
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1 Introduction

Research on efficient route planning algorithms has seen remarkable advances in recent
years, leading to speedup techniques for road networks that allow to compute optimal routes
within microseconds [2]. Unfortunately, techniques that perform well on road networks often
perform poor on public transit networks [5]. This lead to the development of specialized
techniques like RAPTOR, CSA, and Transfer Patterns, which enable efficient route planning
in public transit networks. However, these techniques are often only suitable in settings
where transferring is not possible between arbitrary stops.

A common restriction in public transit routing is the requirement that the footpaths
graph has to be transitively closed. One of the first techniques based on this restriction is
the RAPTOR algorithm [9], which applies a dynamic programming approach to efficiently
process timetable information. A transitively closed graph is also required for CSA [10],
which utilizes clever memory management in order to enable journey computation within a
single scan over the memory. The same holds true for the accelerated version of CSA [17].
Another technique depending on transitively closed footpaths is trip-based public transit
routing [18], which is based on a graph search algorithm similar to Dijkstra’s algorithm [14].

Other approaches to the public transit route planning problem do not state explicit
requirements on the footpaths graph. However, the problems arising from detailed footpath
graphs are often neglected. Either the used footpath graph is not specified, or the algorithms
are only evaluated on rather sparse and unconnected footpath graphs. In both cases it is
unknown how the techniques would perform on a public transit network in conjunction with

∗ This work was supported by DFG Research Grant WA654/23-1.

© Dorothea Wagner and Tobias Zündorf;
licensed under Creative Commons License CC-BY

17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017).
Editors: Gianlorenzo D’Angelo and Twan Dollevoet; Article No. 7; pp. 7:1–7:14

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


7:2 Public Transit Routing with Unrestricted Walking

a complete footpath graph. An example of a technique where no information about the
size of used footpath graph is known, was presented in [15]. Another technique where the
used footpath graph is not specified, is transfer patterns [1]. However, for the accelerated
version of this technique, called scalable transfer patterns [3], it was specified that stops
are connected by a footpath if their distance lies below 400 meters. This corresponds to a
walking time of 6 minutes or less (assuming a walking speed of 4 km/h), which leads to a
rather sparse footpath graph. Similarly, frequency-based search for public transit [4] was
only evaluated using a limited number of footpaths. Here, two variants, one allowing up to
5 minutes walking, the other up to 15 minutes, were evaluated. Even fewer footpaths are
considered if the evaluation relies on the footpath specified in the source of the public transit
network. This is the case for public transit labeling (PTL) [8], SUBITO [6], or graph based
techniques presented in [16]. Finally there are algorithms, like delay robust routing using
MEAT, that omit footpaths altogether [12].

The utilization of a sparse footpaths graph is most often justified by arguing that walking
for more then a few minutes does not improve overall travel times in practice. However,
this claim has never been proven. Furthermore, it is questionable whether the decision that
walking is unnecessary should be part of the problem modeling. Preferably, the model does
not include artificial restrictions and an algorithm decides whether walking is reasonable or
not. Another argument against unrestricted walking is, that the users of public transportation
systems do not want to walk far. While this might be true for some users, it cannot be
generalized to all users. Furthermore, in order to make an informed decision, it is essential
that the user knows about alternative options. However, if walking is restricted, then some
alternatives cannot be found. If, for example, an algorithm with a walking limit of ten
minutes does not find any journey, then the user does not know if he would have to walk
for an hour, or if eleven minutes of walking suffice. The only techniques that can handle
unrestricted walking so far, are multimodal techniques, such as MCR [7] or UCCH [11]. These
techniques can handle several modes of transportation, and restricting them to the timetable
data as well as the footpath graph would solve the public transit problem. However, both
MCR and UCCH can only solve queries with a fix departure time, but not profile queries.

In this work, we reevaluate the common practice of restricting the footpaths graph. To
this end, we present a novel algorithm that can compute profiles for public transit networks
with unrestricted walking. Using this algorithm we can efficiently evaluate the travel times
between given source and target stops over the course of a whole day. Next, we prepare
and compare three variants of public transit networks: The first one uses a footpaths graph
that only contains transfers specified by the source of the public transit network. The
second variant uses additional footpaths, which are chosen such that the transitively closed
graph still has a practical size. The third variant uses an unrestricted footpaths graph. By
evaluating the same set of profile queries for all variants of the network, we show that travel
times are significantly improved by allowing unrestricted walking. To allow reproducibility of
our results, and because recent publications do not use standardized public transit networks,
we make our instances representing the network of Switzerland publicly available1.

Our paper is organized as follows: In Section 2 we formally define public transit networks
and introduce the basic notation used throughout the paper. Next, in Section 3 we present
our new profile algorithm for public transit networks with unrestricted walking. We continue,
in Section 4 with a detailed description of the public transit networks we will use in our
evaluation, and how we combined them with unrestricted footpath graphs. Finally, we
conduct an extensive experimental evaluation in Section 5, where we analyze the performance
of our algorithm as well as the impact of the unrestricted footpath graph.

1 http://i11www.iti.kit.edu/PublicTransitData/Switzerland/

http://i11www.iti.kit.edu/PublicTransitData/Switzerland/
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2 Preliminaries

We define public transit networks using a format that is typical to the RAPTOR algorithm [9].
Here, a public transit network (S, T ,R) consists of a finite set of stops S, a finite set of
trips T , and a finite set of routes R. Each stop in S represents a location within the
network, where passengers can enter or disembark from a vehicle (vehicles being buses,
trains, etc.). Associated with a stop u ∈ S is its minimum change time τch(u), which
defines the minimum time required between disembarking one vehicle and entering another
vehicle at the stop u. A trip in T is a sequence of stops which are served consecutively
by a vehicle. The arrival time of the vehicle serving the trip T ∈ T at the stop u in T

is denoted by τarr(T, u), the corresponding departure time is denoted by τdep(T, u). The
quadruple (T, u, τarr(T, u), τdep(T, u)) is called a stop event of trip T at stop u. Naturally,
the departure time τdep(T, u) has to be greater or equal to the arrival time τarr(T, u) at the
same stop. The routes in R describe a partition of the trips. Two trips are part of the same
route, if they serve the same stops in the same order and do not overtake one another. A
trip T1 ∈ T overtakes the trip T2 ∈ T if two stops u, v ∈ S exist, such that T1 arrives or
departs from u before T2 and T1 arrives or departs from v after T2.

The public transit network is complemented by a weighted footpath graph G = (V, E , τw)
with S ⊆ V. The footpath graph describes the time needed to walk between different
locations. Each edge e = (u, v) in E ⊆ V × V represents a street from u to v that can be
traversed by walking. The walking time τw(e) specifies the time required to traverse e.

The objective of a public transit route planning algorithm is to compute journeys between
a given pair of vertices. A journey is a sequence of stop events, sorted by time (departure
time and arrival time of the stop events). Additionally, if two consecutive stop events of
a journey are part of different trips, then transferring between them has to be possible
with respect to minimum change time and the footpath graph. Formally, transferring from
stop event (T1, u1, τarr(T1, u1), τdep(T1, u1)) to stop event (T2, u2, τarr(T2, u2), τdep(T2, u2)) is
possible if u1 = u2 and τarr(T1, u1) + τch(u1) < τdep(T2, u2) or if there exists a path P in
the footpath graph such that τarr(T1, u1) + τw(P ) < τdep(T2, u2). A journey has several
properties that can be used to measure the quality of the route. In this paper we consider
two properties: the travel time of the journey, as well as the number of transfers. The travel
time τt is the difference between the arrival time of the last stop event of the journey and the
departure time of the first stop event. The number of transfers of a journey is the number of
consecutive stop events with different trips.

An s-t-profile for the time interval I = [τmin, τmax] represents all optimal journeys
(regarding travel) from s to t that have a departure time within I. In general the profile
can be represented as a piecewise linear function that maps departure time to travel time.
As such, the segments of a profile can only have a slope of −1 or 0. Each optimal journey
contributes one break point to the piecewise linear function (defined by the departure time
and travel time of the journey). For an arbitrary departure time τdep, the value of the profile
function is defined as the travel time of the earliest journey departing after τdep plus the
time that has to be waited until the journey actually departs. This results in segments
of the profile function with slope −1. A slope of 0 indicates a time independent part of
the profile, i.e. walking from the source to the target is optimal. In order to represent all
Pareto-optimal journeys (regarding travel time and number of transfers) within a certain
time interval, several profiles can be used, one for every number of transfers.

The Round-bAsed Public Transit Optimized Router (RAPTOR) [9] and variations
thereof [7] are algorithms that enables efficient journey computation in public transit networks.
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The multimodal multicriteria RAPTOR starts with Dijkstra’s algorithm on the footpath
graph, in order to determine all stops that can be reached from the source by walking.
Afterwards, the algorithm operates in rounds, where each round extends partial journeys
by one trip. Each round consists of two phases: the first round explores the routes of the
public transit network, while the second phase explores the footpath graph. In the first phase
of each round all routes are scanned that contain a stop that was reached in the previous
round (or by the initial Dijkstra in the first round). Afterwards, a multi source Dijkstra is
used in order to find all stops that can be reached by walking from stops that were scanned
during the first phase. The algorithm terminates, if during one round no new stops were
reached or updated. A profile search algorithm based on this technique is called rRAPTOR.
This algorithm is based on the observation that a profile cannot contain more journeys then
the number of trips departing from the source (each departing trip is part of at most one
journey). Thus, the algorithm simply collects all possible departure times at the source stop,
followed by one execution of RAPTOR for each departure time in decreasing order. During
the repeated executions of RAPTOR, labels do not need to be cleared. Since queries are
performed in decreasing order regarding departure time, labels of the previous RAPTOR
search can be used to prune the current search, this process is called self pruning. However,
rRAPTOR loses its efficiency in networks that allow unrestricted walking. In such networks
every stop can be reached by walking, therefore rRAPTOR would perform one RAPTOR
query for every departure in the entire network.

Another efficient algorithm for public transit routing is the Connection Scan Algorithm
(CSA) [10]. Using CSA requires a slightly different representation of the public transit
network, which is based on connections. A connection represents a vehicle driving from
one stop to another without intermediate stops. As such, a connection can be constructed
from two consecutive stop events of the same trip. The number of connections needed to
represent the network is equal to the number of stop events minus the number of trips (since
a trip with n stop events contains n− 1 consecutive pairs of stop events). The connection
scan algorithm computes journeys as well as profile while performing a single scan over the
sorted array of all connections. However, the algorithm requires that the footpath graph is
transitively closed, and is therefore not applicable in scenarios with unrestricted walking.

3 Profile Algorithm

We now introduce our new profile algorithm for public transit networks with unrestricted
walking, which is based on the multimodal multicriteria RAPTOR (MCR) [7]. As mentioned
before, we cannot use rRAPTOR since every trip in the network could potentially be the
first trip of an optimal journey. However, we can still use repeated executions of the basic
MCR algorithm in order to compute a complete profile.

In what follows, we assume that source and target vertices s, t ∈ V, as well as a time
interval I = [τmin, τmax] are given. In order to compute the s-t-profile for the interval I we
start with one execution of MCR with τmin as departure time. As result of this query we
obtain a journey with minimal possible arrival time τarr at t. However, we do not know
the travel time of this journey, since we do not know the latest departure time from s that
still allows to reach t at τarr. We determine the latest possible departure time from s by
performing a backward MCR query from t, starting with the arrival time τarr. As result of
these two queries we know one pair of departure time τdep and arrival time τarr, such that τarr
is the earliest possible arrival time at t if departing from s at τmin and τdep is the latest
possible departure time at s that allows to reach t at τarr. Therefore, the pair (τdep, τarr)
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is the first entry of the profile function from s to t. Furthermore, the s-t-profile is already
complete for the interval I ′ = [τmin, τdep]. This means that we now only need to compute
the profile for the interval Ĩ = [τdep + ε, τmax], where the departure time τdep + ε indicates
that the passenger just missed the journey that departs at τdep. The remaining profile for Ĩ
can now be computed using the same approach as for the original interval I. We repeat this
process, until we are left with an empty interval. In particular, this means that the backward
search results in a departure time τdep that is greater or equal to the maximum departure
time τmax of the interval.

3.1 Direct Walking
The profile algorithm we described so far will perform exactly one forward and backward
query for every entry of the profile. However, the approach fails if an optimal s-t-journey
contains no trips at all, i.e. the optimal journey corresponds to direct walking from s to t. In
this case the forward search started for a departure time of τdep will result in an arrival time
of τarr. Afterwards a backward search is performed starting with the arrival time τarr. This
backward search will then result with the latest possible departure time being τdep. This
means the size of the interval did not decrease, except by an ε. Even worse repeating the
procedure for a departure time of τdep + ε will have the same result. In order to solve this
issue we use a slightly modified version of the basic query algorithm (in our case MCR).
We demand that the query algorithm only returns journeys that contain at least one trip,
i.e. direct walking from s to t is prohibited. This can easily be achieved by pruning the
initial exploration of the footpaths graph (within MCR) if it reaches t. Apart from this, the
profile algorithm remains for the most part unchanged. As before we perform alternating
forward and backward searches in order to determine one profile entry at a time. However,
the resulting profile might contain entries that are dominated by a pure walking journey. We
remove these entries in a simple postprocessing step. For this we compute the walking time
from s to t using Dijkstra’s algorithm. Afterwards we remove all entries with a travel time
that exceeds the walking time from the profile.

3.2 Incorporating Transfers
So far we have shown how a minimum travel time profile can be computed. However, besides
travel time, the number of transfers is another important property of a journey. Thus, a
profile that does not only contain all journeys with minimal travel time, but all journeys
that are Pareto-optimal with respect to travel time and number of transfers is often desired.
RAPTOR as well as MCR both naturally support queries that compute all Pareto-optimal
journeys (regarding travel time and number of transfers) for given source vertex, target
vertex, and departure time. Thus, we only have to adapt our profile algorithm so that it can
take into account all Pareto-optimal journeys found by MCR. As before, when computing a
profile for the interval I = [τmin, τmax], the algorithm starts with a forward search from s

for the departure time τmin. The result of this forward query is a set of Pareto-optimal
journeys, up to one for every possible number of transfers. Each of these journeys has a
different arrival time, and eventually we will perform one backward query for each of these
arrival times. We use a priority queue to organize all arrival times for which we still have to
perform a backward search. As long as this queue is not empty, our algorithm extracts the
minimum arrival time τarr and performs a backward search starting from the target with τarr
as arrival time. As before, the result of the backward search is a departure time τdep which
defines together with τarr an entry of the profile. Right after the backward search we perform
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Table 1 Size figures of our instances. The footpaths graph of the ‘original’ and ‘partial’ instances
are transitively closed, resulting in a high maximum vertex degree for the ‘partial’ instance. Note
that the ‘original’ instances contain only very few footpath edges, even though they are transitively
closed. All instances comprise a time period of two days.

PT network Footpaths Stops Vertices Edges Connections Max. degree

Switzerland original 25 427 25 427 5 604 4 373 268 25
partial 25 427 25 427 3 104 974 4 373 268 1 246
complete 25 427 604 230 1 844 286 4 373 268 25

Germany original 244 245 244 245 95 036 46 119 896 18
partial 244 245 244 245 26 193 136 46 119 896 2 622
complete 244 245 6 876 758 21 382 408 46 119 896 21

a forward search with departure time τdep + ε, which possibly adds new arrival times to
the queue. The advantage of this procedure is, that one backward search can potentially
generate several profile entries. If several Pareto-optimal journeys differ only in their number
of transfers, but have the same arrival time, then all these journeys will be found by one
backward search.

In our implementation of the profile algorithm we use MCR for the forward and backward
queries. However, the general approach of our algorithm can be used together with any
algorithm that computes optimal s-t-journeys for a fixed departure time. The performance of
our algorithm depends on the number of entries in the computed profile and the performance
of the underlying query algorithm. More precisely, the underlying query algorithm will be
invoked at most twice for every entry added to the profile.

4 Public Transit Networks

In order to evaluate the difference between public transit networks with and without unres-
tricted walking, we carefully prepared several real world networks. As basis we use the public
transit networks of Germany and Switzerland. For the Germany network we use data from
bahn.de from winter 2011/2012. This dataset was used before in [17] and comprises two
successive identical days. The Switzerland instance is based on a publicly available GTFS
feed2. Here we extracted two successive business days (30th and 31st of May 2017). Both
networks contained some connections and stops beyond the borders of the country they
represent. However, these stops are rather scattered and only used by very few connections,
since most public transit services outside the country are not part of the dataset. In order
to avoid unwanted effect from these sparse parts of the network on our experiments, we
removed stops and connections outside the border of the countries. The resulting networks
are listed under original footpaths in Table 1.

The original networks already contain a few footpaths. In order to obtain a comparat-
ively dense footpath graph we complement the footpaths of our networks using data from
OpenStreetMap3. To this end we extracted the road networks of Germany and Switzerland
from the OpenStreetMap data including pedestrian zones and stairs. Since OpenStreetMap
data is primarily intended for map rendering, it contains many degree one and degree two

2 http://gtfs.geops.ch/
3 http://download.geofabrik.de/

http://gtfs.geops.ch/
http://download.geofabrik.de/
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vertices. These vertices improve the quality of a rendered map, but they are irrelevant for
routing applications, except that reduce the performance of the algorithms [13]. Therefore
we replaced all degree one and two vertices with shortcuts, such that the distances in the
resulting graph remain unchanged. Vertices that coincide with stops of the public transit
network, were exempt from this procedure. Finally, we combine the prepared footpaths
graphs with our public transit networks by identifying stops of the network with the nearest
vertex of the graphs if their distance is below 5 meters. If the distance from a stop to its
nearest vertex is between 5 and 100 meters, we create a new vertex positioned at the stops
location and a new edge connecting the vertex to the rest of the graph. In order to compute
the travel times for the edges in the footpath graph, we assume a walking speed of 4.5 km/h.
Table 1 shows the sizes of the complete footpath graphs we created this way.

The complete footpaths graph cannot be used with algorithms that require a transitively
closed graph, since the transitive closure would be to large. Because of this we created a
third variant of the network that uses only a part of the complete footpath graph, such that
the transitive closure has a reasonable size. We did this by connecting two stops with a direct
edge if their distance lies below a certain threshold, and discard all other edges. Figure 1
shows the size of the resulting partial footpath graph depending on the used threshold. The
figure shows that the number of edges needed for the transitive closure increases drastically
with the allowed maximum walking time between stops. Therefore, approaches that require
a transitively closed footpath graph are only practical if the maximum walking distance
is substantially limited. For our experiments we choose an average vertex degree of about
100 as upper limit for a practical graph size, which is already much higher than average
vertex degree of typical graphs used in route planning applications. This procedure, results
in a partial graph for the Germany network that preserves all paths between stops that
take 8 minutes or less. For the Switzerland network all paths of up to 15 minutes between
neighboring stops are preserved.

Unfortunately, it is often complicated to reproduce the steps required to obtain a reason-
able public transit network and footpaths graph. Reasons for this are GTFS feeds that do
not comply with the specification, changing OpenStreetMap data sets, or other discrepancies
preparation of the data. Because of this, almost all publications on public transit routing are
evaluated on different instances. In order to counteract this trend and to enable comparability
of our and future results, we make the three networks of Switzerland, that we used for our
experiments publicly available4.

5 Experiments

We implemented our algorithm in C++ compiled with GCC version 5.3.1 and optimization
flag -O3. Experiments were conducted on a quad core Intel Xeon E5-1630v3 clocked at 3.7
GHz, with 128 GiB of DDR4-2133 RAM, 10 MiB of L3 cache, and 256 KiB of L2 cache.
Before we continue with the performance analysis of our algorithm, we provide a detailed
description of the queries we used in our experiments. Afterwards, we conduct an extensive
comparisons of the profiles computed for the three variants of our networks, showing that
walking should not be restricted.

4 http://i11www.iti.kit.edu/PublicTransitData/
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Figure 1 Size of the resulting partial network, if walking times are limited. Stops are connected
by a direct edge if the distance between them in the complete graph is less or equal to the maximum
walking time. Afterwards the transitive closure of these edges is computed. The plots show that the
number of connected components (blue) remains high, even if the threshold for walking is rather
high. Many stops are not connected to any other stops (green) and even the largest connected
component remains comparatively small (yellow). However, the number of edges required for the
transitive closure (red, plotted using the right y-axis) increases drastically with the allowed walking
time.

5.1 Queries and Experimental Setup

We want to analyze how the results of realistic queries change with respect to the three
variants of our networks. A query can of course only be evaluated for all three network
variants if the source and target of the query are part of all three network variants. Thus,
we only consider queries, where the source and target vertices are actual stops, as additional
footpath vertices are not contained in the ‘original’ and ‘partial’ instances. Our algorithm
can of course handle arbitrary source and target vertices.

Another important problem regarding the evaluation of public transit routing algorithms
that we have not yet addressed, is the generation of representative queries. Commonly,
algorithms are evaluated using queries where source and target stops were picked uniformly
at random. However, this approach does not reflect query distributions that can be expected
in real applications. It can be expected that users of a real application will predominant
query journeys where the source and target stops are located within metropolitan areas. In
contrast, picking source and target stops uniformly at random will often result in queries
between rural locations. The choice of the queries can have significant influence on the
results of the evaluation. This is because stops in rural areas are typically served by far less
trips then stops in metropolitan areas. Therefore, queries are potentially simpler and can
be answered faster if the source and target stop are located in rural areas. Moreover, if a
stop is only infrequently served by trips, then walking is required more often. Thus, using
queries that were picked uniformly at random could lead to overestimating the importance
of walking.
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Figure 2 The running time of profile algorithms depending on the distance rank. We compare
the three different variants of the Switzerland network. The ‘original’ and ‘partial’ instance are
transitively closed, therefore a well-known technique, such as CSA can be applied. For the ‘complete’
instance we use our new algorithm. We evaluated 100 random queries per distance rank.

In order to avoid these problems, we do not pick the source and target stops for our test
queries uniformly at random. Instead, we argue that the number of trips that serve a stop
reflects the number of passengers that want to travel to or from this stop. Thus, we expect
that in a real application stops with a high number of trips will occur more often as source
or target stop of a query, than stops with only a few trips. We take this consideration into
account during the generation of random test queries. Instead of picking source and target
stops using a uniform distribution, we pick a stop u with a probability proportional to the
number of trips that contain u.

Another aspect that heavily influences the result of a query is the distance from the source
to the target of a query. We address this issue by partitioning the queries with respect to their
distance rank. The distance rank of a query, is the number of vertices where the distance
from the source to these vertices is smaller than the distance from the source to the target.
Distances are measured in the complete footpath graph. In order to obtain representative
queries for every distance rank, we first pick random source stops (the probability of a stop
is again proportional to the number of trips containing the stop). Afterwards we pick one
target for every distance rank 2r with r ∈ N. The target stop for a query with distance
rank 2r is randomly picked from all stops with a distance rank between 2r and 2r−1 (as
before the probability of a stop is proportional to the number of trips containing the stop).

5.2 Performance Experiments
Our first experiment is focused on the performance of profile algorithms. We compare the
time required to compute complete 24 hour profiles (containing all Pareto-optimal journeys
with respect to travel time and number of transfers) depending on the three variants of our
networks. For this we evaluated 100 random queries for every distance rank 2r with r ∈ R.
The resulting running times on the Switzerland and Germany instances are shown in Figure 2
and 3, respectively. For the network variants that contain only the original footpaths we use
CSA [10]. It is clearly visible that the running time of CSA is independent of the distance
rank for the ‘original’ instances. The reason for this is, that the instances contain only very
few footpath edges, and therefore the running time is dominated by scanning the connections.
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Figure 3 The running time of profile algorithms depending on the distance rank. We compare the
three different variants of the Germany network. The ‘original’ and ‘partial’ instance are transitively
closed, therefore a well-known technique, such as CSA can be applied. For the ‘complete’ instance
we use our new algorithm. We evaluated 100 random queries per distance rank.

Since the algorithm always scans all connections, the running time is independent from the
distance rank of the query.

Computing profiles for the ‘partial’ instance can also be done using CSA, since the
footpath is transitively closed. The resulting running times, however, differ significantly from
the running times of the ‘original’ instance. For the highest distance rank, running times
are increased by an order of magnitude, resulting in query times of about 2 minutes for the
Germany network. The query time decreases with decreasing distance rank, as a result of
target pruning. For small distance ranks, the running time even falls below the running time
for the ‘original’ instance. The reason for this is most probably a high number of queries
where walking is the optimal solution. This decreases the complexity of the profile functions,
which leads to decreased running times.

Finally we examine the running time for the ‘complete’ variant of our networks. Since the
footpath graph of these instances is not transitively closed, we have to use our new algorithm.
Computing a profile using our algorithm takes about 6 minutes on average. Despite the fact
that our algorithm computes profiles for more complex networks with unrestricted walking,
running times are only a factor 2 to 4 slower than CSA on the ‘partial’ instance. Similar
to CSA, the running time of our algorithm decreases with decreasing distance rank. The
reason for this is the underlying search algorithm (in our case MCR), which is faster for local
queries due to target pruning.

5.3 Travel Time Comparison
Finally, we analyze how the travel time of optimal journeys changes, depending on the
footpath graph. For this we compare the results of the same 100 random queries per distance
rank that we used for the performance experiments. Our evaluation focuses on the minimum
travel time only, i.e. we ignore Pareto-optimal solutions with fewer transfers. This leads
to a conservative estimation for the importance of walking, since walking is even more
indispensable if the number of transfers is limited.

We examine the average travel time of all journeys with the same distance rank. Overall,
we find that differences in travel time between the three variants of our networks are consistent
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Figure 4 Comparison of the optimal travel times throughout the day for the three variants of the
Germany network. The upper plot compares the ‘original’ and ‘complete’ instances, the lower plot
compares the ‘partial’ and ‘complete’ instances. We evaluated 100 random queries with distance
rank 216, which correspond to an average travel time of 2 hours. The average of the travel time in
the ‘complete’ instance is depicted in green. The blue curve depicts the median of the travel time
difference between the two compared instances, the light blue shaded area depicts the interquartile
range (IQR). The dark red dotted curve (using the right y-axis) indicates the percentage of queries
where the ‘original’ respectively ‘partial’ travel time is suboptimal. The light red dotted curve (using
the right y-axis) indicates the percentage of queries where travel time difference is more than 1 hour.

over all distance ranks. In Figure 4 and 5 we present exemplary results for the distance
rank 216. This distance rank roughly corresponds to an average travel time of two hours.
In all plots, the green curve indicates the average travel time in the ‘complete’ network.
The yellow curve specifies the average travel time in the ‘original’ and ‘partial’ network,
respectively. The plots show that using only the ‘original’ footpath leads to travel times
that surpass optimal travel times by several hours. Travel times in the ‘partial’ network
are already closer to the optimum, at least during the day. However, in the evening and
during the night, unrestricted walking still improves the travel time significantly. The median
difference in travel time between the ‘original’ and ‘partial’ is up to two hours during the
night for the Germany network (as shown by the blue curve).

The importance of unrestricted walking becomes even more noticeable when looking
at the percentage of queries where restricted walking leads to increased travel times. The
dark red dotted curve depicts the percentage of queries that have an increased travel time
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Figure 5 Comparison of the optimal travel times throughout the day for the three variants of the
Switzerland network. The upper plot compares the ‘original’ and ‘complete’ instances, the lower plot
compares the ‘partial’ and ‘complete’ instances. We evaluated 100 random queries with distance
rank 216, which correspond to an average travel time of 2 hours. The average of the travel time in
the ‘complete’ instance is depicted in green. The blue curve depicts the median of the travel time
difference between the two compared instances, the light blue shaded area depicts the interquartile
range (IQR). The dark red dotted curve (using the right y-axis) indicates the percentage of queries
where the ‘original’ respectively ‘partial’ travel time is suboptimal. The light red dotted curve (using
the right y-axis) indicates the percentage of queries where travel time difference is more than 1 hour.

compared to the ‘optimal’ instance. Using only the ‘original’ footpath leads to more then 75%
of the queries having an increased travel time, even during the day. For the ‘partial’ instances,
still about 25% of the queries have an increased travel time. Our results show that there
exists even a significant percentage of queries, where the difference in travel time is more
then on hour. This percentage is depicted by the light red dotted curve. For the Germany
network, using ‘partial’ footpath leads to about one eighth of the queries having a travel
time that surpasses the optimal travel time by more than one hour. Overall, our results
demonstrate that unrestricted walking has a significant impact on the travel times.
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6 Conclusion

In this work we had an in-depth look into public transit routing. We started with the
observation that most public transit algorithms neglect problems arising from unrestricted
walking. Thus, we provide a novel profile algorithm that works on arbitrary footpath
graphs. Accompanying our algorithmic results we created and published a first benchmark
instance combining a public transit network with an unrestricted footpath graph. Finally,
we conducted an extensive experimental study. While being applicable to networks that
could not be handled before, our algorithm still achieves running times comparable to a
state-of-the-art technique. Furthermore, we demonstrated that walking has a significant
impact on travel times. Compared to conventional models, travel times are reduced by hours
when allowing unrestricted walking. Thus walking should always be considered in public
transit routing.
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Abstract
We present a preprocessing-based acceleration technique for computing bi-criteria Pareto-optimal
journeys in public transit networks, based on the well-known RAPTOR algorithm [16]. Our key
idea is to first partition a hypergraph into cells, in which vertices correspond to routes (e.g., bus
lines) and hyperedges to stops, and to then mark routes sufficient for optimal travel across cells.
The query can then be restricted to marked routes and those in the source and target cells. This
results in a practical approach, suitable for networks that are too large to be efficiently handled
by the basic RAPTOR algorithm.
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1 Introduction

Computing best journeys in transportation networks is a success story of applied algorithms
research. Initiated by the publication of a continental road network in 2005 [17], a vast
amount of results have been published [3], yielding exact algorithms that compute shortest
path distances in a constant number of random memory accesses [1]. Some of these tech-
niques turned out to be very practical and have been picked up by industry for widespread
applications. As a result, millions of people today use algorithms developed by researchers
over the last decade.

While most research focused on computing routes in road networks, computing best
journeys in public transit networks is equally important [10, 20, 27, 29]. However, adapting
techniques that work well on road networks to public transit proved to be harder than
expected [6, 7, 8, 9, 13, 22, 34]. The most striking differences are the inherent time-dependency
of the transit schedule as well as the need of multicriteria optimization in practice [26].

Five techniques specialized for public transit networks have been considered in recent
years: Connection Scan (CSA)[18], RAPTOR [16], Transfer Patterns [2], Trip-Based Public
Transit Routing [35], and specific labeling techniques [12, 33]. Unlike previous techniques,
both CSA and RAPTOR do not rely on a graph representation but instead work directly
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on the underlying timetable. This allows for very lightweight preprocessing (to index or
re-organize the timetable) and queries fast enough for metropolitan networks. Notably,
RAPTOR has been extended to a large set of optimization criteria (e.g., arrival time, number
of transfers, reliability, walking duration, and ticket price) as well as to fully multimodal
networks with unrestricted walking, biking and taxi [11, 16]. Trip-Based Public Transit
Routing employs light preprocessing to achieve improvements in query performance of about
an order of magnitude over CSA and RAPTOR. Even faster queries are possible, however,
at considerable preprocessing cost on larger instances [36]. Transfer Patterns employs
most heavy preprocessing to achieve very fast queries, but preprocessing takes too long to
incorporate delays without sacrificing exactness [5]. Labeling techniques achieve even higher
query performance but also require high preprocessing effort, especially for multi-criteria
optimization, making the approach less applicable for real production systems.

Partitioning-based Approaches. For accelerating route planning in road networks, methods
based on partitioning [14, 15, 19, 23, 24, 30, 31] turned out to be the most practical ones. The
main observation is that in transportation networks, topology changes are much less frequent
than metric changes due to, e. g., delays or traffic [14]. Partition-based approaches exploit
this by running a rather expensive preprocessing step using the topology only, whereas a
much faster second step (sometimes referred to as customization) produces auxiliary routing
data based on real-time information [14, 19].

Transfer Patterns and Connection Scan have been enhanced to exploit this partition-based
paradigm: A recent study reduces the preprocessing time of transfer patterns greatly [4], but it
remains high in comparison. Accelerated Connection Scan [32] shows good preprocessing and
query performance, however, it has not been evaluated for full multicriteria optimization (such
as finding a Pareto set of arrival time and number of trips).

In this work, we study how RAPTOR can benefit from a partition of the public transit
network. We argue that ideas from previous works [4, 32] do not translate well, i. e., RAPTOR
needs to be adapted in a non-trivial way, leading to several interesting insights. More precisely,
we introduce a novel approach to partition a public transport network and evaluate different
algorithms for finding such partitions. We also present several algorithms to exploit such a
partition and introduce optimizations for faster queries. We demonstrate feasibility of our
approach on publicly available country-sized networks.

This work is organized as follows. Section 2 settles some preliminaries. Section 3 discusses
two different approaches to partitioning public transit networks. Section 4 presents our
main algorithm in full detail. Section 5 presents several experiments on large public transit
networks showing the feasibility of approach. We conclude our work in Section 6.

2 Preliminaries

We consider aperiodic timetables, consisting of sets of stops S, events E, trips T , and
footpaths F . Stops are locations where one can board or alight from transit vehicles. Stop
events are scheduled departures or arrivals of vehicles. A trip is a sequence of stop events
served by the same vehicle. Footpaths model walking transfers between stops.

A journey planning algorithm uses the aperiodic timetable in order to answer queries
which consist of a departure stop, a target stop, and desired departure time at the departure
stop. The answer to such a query is a set of journeys, each defined as an alternating sequence
of trips and footpaths. A journey can be evaluated by several criteria, such as arrival time,
number of transfers, total walking time, cost, etc. A journey j1 dominates another journey j2
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with respect to a given set of criteria if j1 is not worse than j2 in any evaluated criteria and
strictly better than j2 for at least one criteria. A set of non-dominated journeys, with ties
broken arbitrarily, is a Pareto set. In this work, we are interested in finding the Pareto set of
journeys with arrival time and number of transfers as criteria. Note that Pareto-optimization
is hard in general [21] but has long been known to be feasible in practice for public transit
networks for these and other sets of well-behaved criteria [28].

RAPTOR

The Round-bAsed Public Transit Optimized Router (RAPTOR) is an algorithm explicitly
designed for multi-criteria search in public transit networks [16]. While its basic variant
optimizes arrival time and number of transfers, the algorithm can be adapted to incorporate
further criteria as well. It organizes the input as a few simple arrays of trips and routes,
where a route is a set of trips following the same sequence of stops (at different times) without
overtaking each other. RAPTOR is now essentially a dynamic program operating in rounds,
one per transfer. For a given source stop ps, round i computes earliest arrival times at all
stops of the network for journeys involving exactly i transfers. Each round takes as input
the stops whose earliest arrival improved in the previous round (in round 0 this is the source
stop only). Then, all routes served by these stops are scanned, which is done by traversing
the stops on a route in order of travel, keeping track of the earliest possible trip that can
be taken, subject to the arrival times from the previous round. This trip may improve the
tentative arrival times along the the stops of the route.

RAPTOR can be extended to rRAPTOR, which computes profile queries resulting in
all optimal journeys in a given time range. Essentially, the algorithm runs an individual
RAPTOR query for each departure in the given range in order of decreasing time, however, it
keeps the labels between runs for the purpose of pruning provably suboptimal journeys [16].

3 Partitioning Public Transit Networks

In this section, we discuss two possible partitioning approaches that may be exploited by the
RAPTOR algorithm.

The most commonly-used approach [32, 4] of partitioning a public transit network is
what we call the stop partition approach. It partitions the stops of the network into k

cells c1, . . . , ck. The partition is computed on the undirected station graph G = (S, E), which
is derived from the timetable as follows. The set of vertices corresponds to the set of stops S,
and there is an edge pi, pj ∈ E if and only if pi and pj appear on at least one route in
consecutive order. One may assign edge weights corresponding to the number of contributing
routes. The objective of the partitioning algorithm is to compute k (preferably balanced)
cells while minimizing the number of cut edges between cells. Note that in the context of
RAPTOR, every cut edge corresponds to a set of routes (those represented by that edge).
Two connected (by a cut edge) boundary stops are therefore separated by a set of routes.

The elementary paradigm of the RAPTOR algorithm is to scan routes in their entirety.
However, the stop partitioning approach separates stops by cutting routes, thus making it
not the most natural fit for accelerating RAPTOR.

We therefore propose a different way to partition public transit networks, called the route
partition approach. In this approach, we partition the routes (instead of the stops) of the
network into k cells c1, . . . , ck. Think of different (local or metropolitan) transit agencies
that operate (densely interconnected) sets of routes that are sparsely connected with the
routes of neighboring agencies in comparison. In order to obtain a route partition, we first
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build an undirected route hypergraph G = (R, E). Here, the set of vertices corresponds to
the set of routes R. For every stop p ∈ S, we add a hyperedge e ⊂ R to E, where e is exactly
the set of routes that contain p. If several stops have the same set of incident routes, the
corresponding hyperedge is only added once. As with the stop partition approach, we might
also weigh the vertices and hyperedges in the graph to influence the balance of the resulting
partition.

Note that a route partition with k cells can be transformed into a stop partition with k +1
cells as follows. Since each noncut stop has routes assigned to the same cell ci, we can simply
assign these stops to their corresponding cell ci in the stop partition. The remaining (cut)
stops are assigned to the extra cell ck+1.

4 Main Algorithm

We now introduce HypRAPTOR, our new partition-based speedup technique for RAPTOR.
As mentioned in the previous section, the route partition approach harmonizes more naturally
with RAPTOR, which is why we base our algorithm on it. In what follows, we first go into
more detail about the partitioning itself, then explain how—based on the partition—we
compute a set of fill-in routes that are important for travel across cells, and finally discuss
our accelerated query algorithm.

4.1 Partitioning
We propose two different approaches of computing a route partition: the first builds a partition
by greedily merging adjacent cells, while the second one uses a hypergraph partitioning
algorithm, such as h-metis [25], as a black box.

4.1.1 Greedy Merging
Our greedy approach iteratively merges (smaller) cells, and stops once the desired number of
cells is reached. It starts with a trivial partition by making each route its own cell. Starting
from this partition, it continues by merging cells greedily as follows. Two cells are considered
as possible candidates for merging, if they contain at least one common stop (i. e., a stop
that is contained in routes from both cells). For each pair of candidate cells, we first evaluate
the gain of merging the cells. We define the gain in terms of the reduction of the fill-in size
resulting from merging the cells (see Section 4.2 where we discuss the fill-in computation).
The greedy algorithm maintains a priority queue containing all pairs of cells with the gain
as key. In each iteration, the algorithm merges the pair of cells with minimum key (largest
reduction of the fill-in size) and then updates the key of all adjacent pairs of cells by rerunning
the fill-in computation on them.

Note that the greedy algorithm may be run from any given initial partition. If available,
auxiliary data regarding the structure of the public transit network can be used to obtain
such an initial partition. For example, one usually expects routes operated by the same
agency to be more densely connected with each other than routes of different agencies. We
may therefore initialize the algorithm with a partition, where each cell is exactly formed of
the routes operated by one agency.

4.1.2 Hypergraphs
Our second approach is based on hypergraph partitioning. For this, we first construct an
appropriate hypergraph from the public transit network and may then apply any hypergraph
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partitioning algorithm that computes a vertex partition and minimizes the hyperedge cut. As
already mentioned in Section 3, the vertices of the hypergraph correspond to the routes of the
public transit network. Furthermore, we create one additional vertex for every footpath in the
network. Finally, we create one hyperedge for every stop, such that the edge corresponding
to stop p ∈ S connects all vertices representing routes or footpaths that are incident to p.

In this work, we partition the resulting hypergraph with the well-known partitioning
algorithm h-metis [25]. The general objective of the partitioning algorithm is to find cells
of roughly equal size while minimizing the number of cut hyperedges that are incident to
multiple cells. We can influence the balance of the partition by introducing weights for
the vertices and edges in the hypergraph. In the weighted scenario, the objective of the
partitioning algorithm is to find cells of equal weight while minimizing the sum of the weights
of all cut edges.

For the vertices (routes) of the hypergraph, we propose three possible weighting schemes.
Our first vertex weight is the number of stops contained in the corresponding route. Since
scanning a route in RAPTOR requires some computation for every stop of the route, this
weight directly measures the cost of scanning a route. Also, the cost of scanning a route
depends on the number of trips of a route, so we propose to use the number of trips in the
route as vertex weight. Finally, we can use the number of stop events of a route as the vertex
weight, since this reflects both the number of stops and trips of a route.

Similar to the vertex weights, we want to design edge weights such that the size of a
vertex cut corresponds to the induced complexity of the query algorithm. We propose two
types of edge weights beyond unit weights. An obvious choice is to use the number of stop
events at the stop as edge weight. However, this weight is quite unevenly distributed and
cannot distinguish well between stops with many incident routes and those with only a few.
To overcome this, we propose the logarithm of the number of stop events as a second edge
weight.

Finally, we remark that the construction of the hypergraph may lead to multi-edges. This
may happen when two stops are incident to the exact same set of routes and footpaths. We
can reduce these multi-edges to one edge by summing up there respective edge weights. This
does not influence the quality of the partition since either all or none of the edges from a set
of parallel edges will be cut.

4.2 Fill-In Computation
In our query algorithm we would ideally restrict the RAPTOR computation to the cells of
the source and target stop, which we call active cells. Unfortunately this only yields the
correct output, if the optimal journey does not use routes outside these active cells. We
therefore need to compute information on the optimal way of traveling across the other
cells. We solve this problem by precomputing a set of routes, called fill-in, such that an
optimal ps-pt-journey can always be found using only routes from the source cell, the target
cell, and the fill-in. If an optimal journey requires routes from the fill-in, then it has to
enter and leave the fill-in by transferring between trips at cut stops. This observation can be
exploited for the fill-in computation itself. Consider an optimal journey with two transfers at
stops pu and pv. In this case, the sub-journey from pu to pv is either an optimal journey
by itself or can be replaced with an optimal one, without impairing the original journey.
Therefore, it suffices for the fill-in computation to compute all optimal journeys between cut
stops and add the involved routes to the fill-in.

A straightforward implementation of the fill-in computation performs an unrestricted
rRAPTOR query on the entire public transit network from every cut stop of the partition.
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However, this may be too time consuming in practice. In what follows we propose several
techniques that exploit the partition of the public transit network in order to speed up the
fill-in computation. Our first variant of the fill-in computation performs one rRAPTOR
query from every cut stop pu, restricted to the cells that pu is part of. Essentially, we are
using our accelerated query that only uses the source and target cells as active cells, in
order to accelerate the fill-in computation itself. Since at that time the fill-in is not yet
fully computed, the result of these queries may not be optimal (since optimal journeys may
require routes that are not part of the active cell), causing the algorithm to add superfluous
routes to the fill-in. Note that this has no effect on the optimality of the query algorithm.

In the second variant of the fill-in computation we go a step further and restrict the
rRAPTOR queries to one cell at a time. This requires us to run rRAPTOR multiple times
from every cut stop, once for every cell containing a route the cut stop is a part of. As before,
this restriction can introduce unnecessary routes to the fill-in, at the benefit of reducing the
computation time.

In order to reduce the overhead of the preprocessing even further, we have to analyze
which routes have to be part of the fill-in. We already know that an optimal ps-pt-journey
can contain routes that are not contained in the cells of ps and pt. Furthermore, we know
that the first route of the journey has to be contained in one of the cells of ps. This is because
by definition the cells containing ps also contain all routes reachable from ps. Therefore, it
suffices to add a route to the fill-in, if they are part of an optimal journey that first uses
a route from an active cell and then connects two border stops. We now show how we
can exploit this fact during the fill-in computation. Normally, rRAPTOR starts with an
initialization phase, where all departure times of trips at the source stop are collected [16].
We modify the collection phase in order to reflect the fact that another trip has to be used
prior to the fill-in. When computing the fill-in for a cut stop pu restricted to cell c, we collect
all arrival times of trips that are not part of routes in c. Afterwards we proceed with a
standard rRAPTOR execution.

4.3 Queries
Finally, we introduce our query algorithm, a variant of RAPTOR that is restricted to the
cells of the source and target cells, as well as the fill-in. We present three different variants
of the algorithm that differ in their representation of the fill-in. These variants implement
different trade-offs between memory usage and query performance.

The simplest representation of the fill-in requires one boolean flag for every route and
every stop event in the public transit network. The flag of a stop event indicates whether
the stop event is part of the fill-in, i.e., it is required to travel between border stops of the
partition or not. If any flag of a stop event belonging to a route is set, then the flag of this
route is also set.

Our first variant of the accelerated query completely ignores stop events if they are not
flagged. For the most parts, the search is identical to standard RAPTOR. However, if the
flag of a route is not set and the route is not part of the source or target cell, then the
algorithm does not scan the route at all. Additionally, routes that are not part of the source
or target cell, are only scanned partially. During the scan of these routes, stop events that
are not marked are ignored. In particular, this means that scanning an unmarked stop event
neither updates the arrival time of the associated stop, nor changes the trip that is scanned.
Unfortunately, unmarked stop events still need to be scanned in order to determine if they
are flagged or not, which is time-consuming.

Our second variant improves on this by introducing skip-lists. The basic idea of the
skip-list is to provide for every stop event an offset that indicates the number of stop events
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that can be skipped to reach the next marked stop event. In order to reduce the memory
usage of the skip lists, we do not use one offset value per stop event. Instead, we use one
offset value for every stop and every trip that is part of a route. The skip-list entry for
stop pu regarding route r specifies the index of the next stop pv in r, such that a trip exists
where stop which corresponds to pv is marked. Similarly, the skip-list entry for a trip t of
route r specifies the index of the latest trip t′ before t, such that t′ contains at least one
marked stop event. The skip-lists are used when scanning the stop events of a route, allowing
to skip entire parts of the route. While this approach scans less data than our first approach,
it is still not very cache-friendly.

Finally, we present an even more efficient way of scanning fill-in routes, at the expense of
an increased memory usage. For this variant we simply copy all trips that contain at least
one marked stop event. From the copied trips we remove all stop events that are not marked,
resulting in pure fill-in trips. Pure fill-in trips that serve the same sequence of stops are
again aggregated like for normal RAPTOR into pure fill-in routes. Afterwards, our query
algorithm only needs to scan routes that are either part of the source or target cell, or are
pure fill-in routes.

A special case of the query algorithm occurs if the source or target stop are cut stops of
the partition. In this case the cell of source or target stop is not defined. A straightforward
solution for this problem is to combine all cells adjacent to the source or target stop. The
algorithm can then proceed with the combined cells as source or target cell. However, we do
not need to scan the source (or target) cell in case we use standard rRAPTOR queries to
compute the fill-in. In this case we already know that all stop events are marked that are
required to travel from the cut stop to another cell. Note that cut stops most probably are
important stops, and queries between important stops are thus accelerated even more by our
approach.

Restricted Walking

In the original publication of RAPTOR [16], the footpaths are assumed to be transitively
closed, forming clusters of full cliques between stops. This enables RAPTOR to scan them
as part of the same round, possibly improving the earliest arrival times associated in the
respective round.

On realistic inputs, however, computing the transitive closure of all footpaths is often
not feasible, as this would result in too many footpaths. Therefore, we propose to restrict
walking between trips as follows. After scanning the routes in round i, we introduce an extra
intermediate round i′ (with its own dedicated set of earliest arrival time labels). Round i′

scans all footpaths incident to all stops whose earliest arrival improved in round i in arbitrary
order by reading labels from round i and writing labels to round i′. The subsequent regular
round i + 1 then reads its labels from round i′ instead of i. The domination rule for target
pruning [16] is adjusted, accordingly.

5 Experiments

We implemented our algorithms in C++ using LLVM 8.1 with full optimization. All
experiments were conducted on a 2015 15-inch MacBook Pro with a quad core Intel Core i7
CPU and 16GiB of 1600MHz DDR-3 RAM running macOS 10.12.5. We use h-metis 1.5 [25]
as hypergraph partitioner. All runs are sequential.

We consider two realistic inputs of country size: the national networks of Nether-
lands (datahub.io/dataset/gtfs-nl) and Switzerland (gtfs.geops.ch). Both networks
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Figure 1 The routes of the Netherlands (left) and Switzerland (right) networks partitioned
into 8 cells, each. Each color represents a different cell of the partition and the black circles indicate
cut stops between routes of different cells.

contain local and long-distance transport. We extract the timetable of one week between
June 4, 2016 and June 9, 2016. The footpath data for these two inputs is incomplete.
Hence, we also artificially generate footpaths by connecting all pairs of stops that are closer
than 200m by straight-line distance and a walking speed of 3.6 kph. Note that in contrast
to some prior work [16, 18, 12], our footpaths are not required to form clusters of full
cliques. The resulting network of Netherlands has 54,500 stops, 618,961 trips, 12,989 routes,
and 13,231,954 stop events. The network of Switzerland has 25,607 stops, 1,076,662 trips,
16,122 routes, and 12,733,856 stop events.

Hypergraph Partitioning

The first stage of our preprocessing is to compute a partition on the routes hypergraph (cf. Sec-
tion 4.1.2). The hypergraphs resulting from our networks have 78,007 vertices and 54,500 hy-
peredges (Netherlands), and 30,839 vertices and 25,607 hyperedges (Switzerland). In addition,
we use the number of stop events in a route as weight for the corresponding vertex in the hy-
pergraph, vertices corresponding to a transfer have a constant weight of 0. Hyperedges (stops)
are weighted with the logarithm of the number of stop events at the stop. We chose those
weights because they yielded the best partitions during preliminary experiments. We then
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Table 1 Figures for the partitioning and fill-in computation stages on 2, 4, 8, and 16 cells. We
report the number of cut stops (# cut), the balance ratio of the largest to the smallest cell in terms
of stop events (bal.), the number of routes in the fill in (% fn. rts), the number of stop events in the
fill-in (% fn. ses), and the total running time of hmetis and the fill-in computation ([m:s]).

Netherlands Switzerland

#cells # cut bal. % fn. rts % fn. se [m:s] # cut bal. % fn. rts % fn. se [m:s]

2 365 1.7 31.5 5.3 67:32 155 1.7 19.1 1.5 13:02
4 589 2.1 40.7 7.3 82:53 345 2.0 32.0 3.5 20:58
8 1,072 3.7 54.7 13.0 113:45 545 3.6 42.6 6.1 27:19

16 1,980 6.2 68.2 22.1 203:34 907 6.1 52.5 14.4 36:51

run h-metis [25] on these hypergraphs with the following parameters: balancing (UBfactor)
set to 15, number of runs (Nruns) set to 20, hybrid first choice (HFC) vertex grouping
scheme (CType), Fiduccia-Mattheyses (FM) refinement scheme (RType), and V -cycle refine-
ment on the final solution of each bisection step (VCycle), see [25] for a detailed explanation
of the parameters.

Table 1 shows figures of the partitioning stage for 2, 4, 8, and 16 cells (Figure 1 shows the
partition into 8 cells for both our inputs). For each instance, we report the number of cut
hyperedges (# cut) and the balance of the partition (bal.) as the ratio between the largest
and the smallest cell in terms of stop events. The other columns in the table are related to
the fill-in computation and are discussed later.

We observe that by increasing the number of cells, the size of the cut as well as the
imbalance between the cells grows. While the former is natural, the latter may be surprising
at first. However, the sizes of metropolitan areas (which are typically put in different cells)
differ substantially.

Fill-in Computation

The second stage of our preprocessing involves the computation of the fill-in based on the
output of the partitioning stage. In our experiment we use the following fill-in algorithm
from Section 4.2: for each cut stop, we run an rRAPTOR query, restricted to the cells that
are incident to the respective cut stop.

Table 1 shows figures on both our networks and for partitions of size 2, 4, 8, and 16 cells.
We report the number of routes in the fill-in as a percentage of the total number of routes in
the network (%,fn. rts). Recall that for correctness, not necessarily all trips of each route are
required to be part of the fill-in. We therefore also report the number of stop events (again
as a percentage) of the fill-in (% fn. se). Finally, we also report the running time for the
entire preprocessing (partitioning and fill-in computation) in minutes and seconds. Note
that the partitioning stage takes only a small fraction of the total reported time (less than a
couple of minutes).

We observe that with increasing number of cells, the fraction of routes in the fill-in also
grows, which is expected. However, the fraction of required stop events is much lower, a
factor 4.2 on Netherlands and even a factor 7 on Switzerland (both on 8 cells). This confirms
that only a small subset of the trips on the selected routes is actually important for the
fill-in. Regarding running time, our preprocessing takes between 67 and 203 minutes on
Netherlands, and between 13 minutes and 36 minutes on Switzerland. Note that while our
reported running times are sequential, we would expect excellent speedups in a parallel
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Table 2 Query performance figures of HypRAPTOR and RAPTOR for varying number of cells.
We report the number rounds (# rnd), the number of scanned routes (# rts), the percentage of
scanned routes in the fill-in (% fn. rts), and the average running time in milliseconds ([ms]). Each
figure is obtained by taking the average over 10,000 queries with origin and destination stops picked
uniformly at random.

Netherlands Switzerland

Algorithm #cells # rnd # rts % fn. rts [ms] # rnd # rts # fn. rts [ms]

RAPTOR — 10.0 28,021 — 29.3 9.1 29,090 — 19.3

HypRAPTOR-f 2 9.8 24,592 7.5 25.1 9.1 25,267 4.2 16.7
HypRAPTOR-sk 2 9.8 24,592 7.5 25.2 9.1 25,267 4.2 16.7
HypRAPTOR-cr 2 9.8 24,666 7.8 25.0 9.1 25,306 4.4 16.8

HypRAPTOR-f 4 9.6 21,053 29.6 21.4 8.9 19,474 23.4 12.9
HypRAPTOR-sk 4 9.6 21,053 29.6 21.3 8.9 19,474 23.4 13.1
HypRAPTOR-cr 4 9.6 21,313 30.4 19.3 8.9 19,654 24.1 11.8

HypRAPTOR-f 8 9.7 19,821 56.4 21.0 8.7 17,056 48.1 12.0
HypRAPTOR-sk 8 9.7 19,821 56.4 21.6 8.7 17,056 48.1 11.9
HypRAPTOR-cr 8 9.7 20,278 57.3 17.5 8.8 17,405 49.1 9.3

HypRAPTOR-f 16 9.8 20,521 76.7 22.4 8.7 17,294 72.3 13.7
HypRAPTOR-sk 16 9.8 20,521 76.7 23.9 8.7 17,294 72.3 14.5
HypRAPTOR-cr 16 9.9 21,085 77.3 18.2 8.7 17,799 73.0 10.1

implementation, as the individual rRAPTOR queries are independent and could be easily
run in parallel, or even distributed.

Regarding space consumption, the only information we need to store is the cell each route
belongs to as well as one bit for each stop event. This is only a small fraction of the size of
the input data.

Query Performance

Given the partition and fill-in, we now evaluate the query performance of our algorithms.
Table 2 reports figures for the basic RAPTOR algorithm compared to three variants of
HypRAPTOR: HypRAPTOR-f checks a flag associated with each stop event (of fill-in routes)
to determine whether they are relevant; HypRAPTOR-sk uses skip lists to skip over ranges of
irrelevant stop events more quickly; and HypRAPTOR-cr uses a compressed representation
for the fill-in routes by completely rebuilding them based on the relevant stop events.

The figures in the table are obtained by running 10,000 queries between stops selected
uniformly at random. We report the average number of rounds (# rnd), the average number
of scanned routes (# rts), where applicable the percentage of the scanned routes that are in
the fill-in (% fn. rts), and finally the average running time per query in milliseconds.

We observe that on both instances, HypRAPTOR scans significantly fewer routes in total,
when compared to the basic RAPTOR implementation. For example, on 8 cells the amount
decreases by 38% on Netherlands and 67% on Switzerland. Recall, that HypRAPTOR scans
all routes in the cells containing the origin or destination stop as well as the routes contained
in the fill-in. While for HypRAPTOR-f and HypRAPTOR-sk the number of scanned routes
is the same by definition, HypRAPTOR-cr may scan slightly more. Building the compressed
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routes in HypRAPTOR-cr may split some of the original routes, if the sequences of stops
at which stop events are marked vary. This may result in a slightly higher number of total
routes in the network.

In terms of running time, the best performance is achieved with HypRAPTOR-cr on 8
cells, resulting in speedups of 1.7 on Netherlands and 2.1 on Switzerland. Note that an
upper bound on the expected speedup is roughly 4 when using a partition with 8 cells, as the
algorithm must always look at the two origin and destination cells in full (plus the fill-in).
When using only cut stops as origin and destination (not shown in the table), the speedups
are 2.6 (Netherlands) and 6.3 (Switzerland). Partitions with higher number of cells than 8
do not seem to pay off on our instances, as they tend to cut through dense metropolitan
areas, which leads to a significant increase of the fill-in size (cf. Table 1). However, on
larger-scale instances with more metropolitan areas (such as the public transport network of
multiple countries or a continent), we expect a higher number of cells to yield the best query
performance.

Comparison

Comparing our results to existing ones from the literature is hard since there is no publicly
available benchmark instance. Even worse, many large instances are actually proprietary [32,
2]. Comparing with the other two techniques that also employ partitioning, we see these
tendencies: ACSA [32] has a speedup of a factor of 30 over regular CSA, but the evaluated
instance is larger (the full network of Germany). More importantly, ACSA was only evaluated
in a single-criterion scenario, which is less relevant for practical applications. Scalable
Transfer Patterns [4] yields query times faster than ours (when scaling for network size) but
preprocessing effort is higher, too. To summarize, our speedups are lower than those reported
in the literature, but we focus on bi-criteria optimization and evaluate only smaller networks.
As we already mentioned the best speedup we can achieve when using k cells is roughly k/2.
On larger networks with more cells, we therefore expect to achieve greater speedups than
the ones reported in our experiments. In fact, preliminary results on our own proprietary
networks confirm this.

6 Conclusion

In this paper we presented a novel partitioning-based speedup technique for the RAPTOR
algorithm. Unlike previous algorithms—which usually partition the set of stops—we instead
compute a partition of the routes by employing a hypergraph partitioning algorithm on a
carefully chosen hypergraph, where vertices correspond to routes and hyperedges to stops.
We also showed how RAPTOR can be adapted to skip over trips that are neither necessary
for travel inside the source and target cells nor for travel between cut stops. Our experiments
on country-sized networks showed reasonable speedups, and we argued that by increasing
the network size, the expected speedups would further grow.

Regarding future work, we are interested in computing better partitions, probably by
an algorithm tailored to our scenario. In road networks, a multi-level partition boosts
performance significantly and we are interested in seeing whether this is also true for public
transit networks. Since our observations indicate that for country-sized networks only a
small number of cells exhibits reasonable speedups, we expect multi-level partitions to be
most useful for continental-sized networks. Finally, we also want to extend our approach
beyond bi-criteria optimization.
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Abstract
In order to promote public transport many municipalities use traffic signal control with a priority
for buses or trams. In this paper, we address the problem of finding optimal passive transit signal
priority settings. Building on a cyclically time-expanded network model for the combined traffic
assignment traffic signal coordination problem, we introduce a suitable queuing model and several
modifications to model public transport vehicles appropriately. We evaluate the applicability of
this approach by computing and analyzing optimal solutions for several instances of a real-world
scenario.
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1 Motivation and literature overview

The success of public transport depends on many factors. Certainly, one of them is travel
time. Consequently, many city administrations try to accelerate public transport by bus
lanes, general right-of-way for trams, or adaption of traffic signal settings. Focusing on the
latter, there are mainly two strategies of transit signal priority (TSP). In passive priority,
traffic lights along bus lines simply get more green time whether or not a bus is approaching.
Active strategies try to detect buses or trams via sensors or the vehicles register themselves
via radio, such that signal settings can be adapted on demand.

However, changing signal settings interferes with the optimization of traffic signals for
the other road users. Moreover, bus lines also cross each other. Thus, these strategies are
not applicable at every intersection or every situation since one cannot increase green times
of the crossing lines at the same time. Even worse, one may not exclude the possibility that
transit signal priority disturbs a perfectly optimized signal coordination in a city leading to
heavy traffic congestion. Eventually, buses and trams may suffer from waiting times in the
bumper-to-bumper traffic caused by the system which was originally intended to privilege
them.

In this paper, we develop a model and several strategies to optimize traffic signal settings
for public transport and the individual traffic simultaneously. The model is based on a
cyclically-time expanded network model which was already shown to produce very good
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solutions for the simultaneous traffic assignment traffic signal coordination problem in urban
road networks. This model is extended by a new queuing model to capture the impact of
traffic jams on public transport travel times. Afterwards, we discuss both approaches of
integrating bus lines in an already optimized coordination and of optimizing signal settings
for car and bus commodities simultaneously. This leads to a passive traffic signal priority
which not only considers traffic on a single bus line but also takes the network wide impact
on traffic congestion into account.

Literature overview

Several cities use priority traffic signal regulations for public transport, also known as transit
signal priority (TSP). As already mentioned, there are two main concepts: Passive transit
signal priority simply tries to improve the ease of traffic along the bus lines by a generally
increased green time. It is therefore easy and cheap to implement. The Traffic Signal Timing
Manual [9] subclassifies active transit signal priority in two different concepts depending on
the arrival time of the public transport vehicle. Arrival during the green phase is supported
by green extension to remove the queue in front of the bus and to guarantee passing of
the intersection within the same cycle. Red truncation is used to end the red phase ahead
of schedule when otherwise the bus would arrive at a red signal. Both approaches rely on
detecting buses or trams beforehand which requires additional technical installations.

Despite the widespread use of TSP, there are only few studies or optimization approaches
attacking the integrated traffic assignment traffic signal coordination problem for the entire
network. There are some analytic studies that consider the impact of (active) transit signal
priority on a single intersection [1, 12, 17]. Although these studies try to measure the overall
impact of the prioritization to the network traffic, they often do not take into consideration
that coordinated signals lead to a clustering of traffic, so called platoons of cars. The
downstream impact of traffic signal priority, especially with respect to these platoons, is
usually not captured by these analytic models. Moreover, the approaches above often
implicitly assume that the exceptional traffic situation can be resolved within two cycles
and they do not consider a spreading of the disturbance to surrounding intersections due
to queues and high traffic volumes also of crossing traffic streams. Furthermore, the route
choice of drivers experiencing delay due to transit signal priority is not covered by these
models either, since they assume the routes to be fixed.

There is also a number of simulation based studies considering the impact of transit
signal priority, e.g., [13, 18]. These approaches are much more realistic and can both capture
the downstream effects and the route choices of the drivers. Thus they often give a very
realistic picture of the outcome of TSP. Ngan et al. [13] confirmed the assumption that TSP
is especially useful with less traffic on crossing roads, whereas traffic on the same route as the
bus may significantly benefit from the transit priority. Wahlstedt [18] analyzed PRIBUSS,
the standard implementation of TSP in most Swedish signal controllers. In a case study of
the city center of Stockholm he showed that TSP could not only have a negative impact on
the delay of the crossings streets, but also on the streets that are used by public transport.
However, the problem here is that these simulation methods usually are very hard to capture
by strict mathematical models. As a consequence, one can empirically measure the effect of a
certain priority rule but one can hardly optimize this decision with mathematical optimization
tools.

From a practical point of view, there are some approaches that integrate Automatic
Vehicle Location (AVL) systems into TSP [4]. Using this concept, it is possible to only
prioritize transit vehicles that are behind their schedule. Liu et al. [11] presented a dynamic
approach for TSP which considers real-time traffic flow conditions.
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There is only a comparatively small number of publications that consider passive TSP.
Brilon and Laubert [2] highlight that a public transport friendly pretimed signal setting is
an important basis for public transport priority. Here, public transport friendly coincides
with a signal setting that causes less congestion for parallel traffic. For that reason, they
suggest that traffic signal optimization algorithms should consider the stops and transfer
times of public transport. Skabardonis [15] provides such an extension for public transport
in the signal optimization tool TRANSYT.

A sound overview of transit signal priority control is given by Lin et al. [10]. In their
conclusion, the authors formulate (among others) the following most urgent research questions.
Firstly, within coordinated networks, how can one analyze the impact of TSP on the overall
coordination? Secondly, TSP only uses slight modifications of the existing base plan. Can
bus priority already be considered in the design of these base plans?

Successful traffic signal coordination very much relies on the idea of constantly repeating
a certain set of control patterns for the different traffic intersections. This framework allows
for optimization approaches to minimize overall travel time, waiting time or other suitable
objectives. Recently, we presented a cyclically time-expanded network flow model to optimize
traffic signals and traffic assignment simultaneously [6]. The properties of the model [7]
allow applying mixed-integer linear programming techniques. That is, as a main advantage
compared to other approaches, the optimization process also yields dual solutions which
bound the gap towards the global optimum and which prove optimality of a primal solution.
Furthermore, we presented approaches for more realistic queuing and spill-back in [14].

Our contribution

In this paper, we discuss how the special requirements of public transport can be handled
when optimizing a pretimed traffic signal control. We give an overview how to implement
aspects like different types of bus stops, timetables, queues, and bus priority. Furthermore, we
study properties of this new approach and we optimize the traffic assignment simultaneously
to examine the impact of passive transit signal priority on the route choice of other road
users.

This paper is organized as follows. In Section 2, we present the basic concept of our
model for traffic light optimization. In Section 3, we discuss the extensions to integrate public
transport in our model. Since these changes have different consequences on the feasibility and
optimality of the related mixed integer program, we study the properties of this new model
in Section 4. Afterwards, we present the computational results for a real-world scenario in
Section 5.

2 Basic model

Flows in networks with traffic signals obviously require a dynamic treatment, since flow
values change over time. Already Ford and Fulkerson introduced time-expanded networks in
their seminal work about flows more than 60 years ago [3] to cope with such time-dependent
behavior. However, since the time horizon determines the size of such networks, this and
similar approaches almost directly yield models of pseudo-polynomial size.

Disregarding the individual car and viewing flow in total, inner-city traffic with traffic
signals is dominated by a very high periodicity. Therefore, we define a cyclically time-
expanded network.

I Definition 1 (Cyclically time-expanded network [6]). Let G = (V,A, u) be a network with
capacities u : A → N and non-negative transit times te for each e ∈ A. For a given cycle
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s0 v0 t0

s1 v1 t1

s2 v2 t2

s3 v3 t3

s4 v4 t4

s5 v5 t5

v ts

Figure 1 A very simple example of a cyclically time-expanded network G6 with three consecutive
nodes s, v, and t and six time steps. At node v, a traffic signal and a sample timing together with
corresponding capacities of the outgoing arcs (implemented with binary variables: dashed bi = 0,
standard bi = 1) are shown. On the right-hand side, a standard approach of handling different
turning directions with separate arcs in the original network G is shown.

time Γ and a given number k of time steps of length t = Γ
k , the corresponding cyclically

time-expanded network Gk = (V k, Ak, uk) is constructed as follows.
For each node v ∈ V , we create k copies v0, v1, . . . , vk−1, thus V k = {vt|v ∈ V, t ∈
{0, . . . , k − 1}}.
For each link e = (v, w) ∈ A, we create k copies e0, e1, . . . , ek−1 in Ak where arc et
connects node vt to node w(t+b tek

Γ c) mod k. These arcs are called transit arcs and et has

capacity u(et) := u(e)
k and cost te.

Additionally, we add waiting arcs from vt to vt+1 ∀v ∈ V and ∀t ∈ {0, . . . , k − 2} and
from vk−1 to v0 ∀v ∈ V with cost Γ

k and infinite capacity to Ak.

In general, we assume all times (transit times, cycle times, signal parameters, . . . ) to be
integral. Γ is chosen as the least common multiple of all cycle times of signals in the road
network. Throughout this paper, we choose k = Γ, i.e., one time step is exactly one second
long. An example of such a cyclically time-expanded network is presented in Figure 1.

Commodities are expanded similarly. Let Φ ⊂ V × V × R+ be the set of commodities
consisting of triples ϕ = (s, t, d) ∈ Φ of a source (or origin) s, a sink (or destination) t, and
demand d in the original network. Here, demand denotes the amount of flow starting during
one cycle, i.e., it is scaled to Γ. For simplicity, traffic demand is uniformly distributed over all
copies of the original source. In other words, the net outflow of each si of commodity ϕ is d

k .
Note that flow may also directly use a waiting arc from si to si+1. In contrast, the net inflow
of each sink is not fixed. Flow of commodity ϕ may leave the network at any time-expanded
copy ti of the sink t. All together, this allows to formulate a standard multi-commodity
network flow fϕ : Ak → R≥0 ∀ϕ ∈ Φ in the cyclically-time-expanded network Gk. As
usual, flow has to meet flow conservation at each node of Gk for each commodity. Capacity
constraints apply in total over all commodities, i.e.,

∑
ϕ∈Φ fϕ(et) ≤ u(et) for all et ∈ Ak.

Traffic signals can now be implemented with the help of variable capacities. To achieve
this, each turning direction at an intersection in G (cf. Figure 1) is modeled by an arc. Let
e ∈ A be an arc of an intersection with capacity c, where flow should be controlled by a
traffic light. For the arcs e0, . . . , ek−1 in the cyclically time-expanded network Gk, we use
binary variables b0, . . . , bk−1 ∈ {0, 1} and set the capacity of ei to u(e)

k bi. In other words, a
binary variable bi set to 1 corresponds to a green traffic light and the normal capacity at
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time step i is available. A binary variable set to 0 corresponds to a red signal and flow may
not use this arc at time step i. A new set of binary variables bon

i , i ∈ {0, . . . , k − 1}, with
constraints

∑k−1
i=0 b

on
i = 1 and bi−1 ≥ bi − bon

i for all i ∈ {0, . . . , k − 1} guarantees that the
signal switches from red to green at most once per cycle. For two arcs e1 and e2, the linear
constraints b1,i + b2,i ≤ 1 ∀i ∈ {0, . . . , k − 1} prohibit green at the same time. Several other
requirements like minimum and maximum green times can be modeled similarly [8].

Now, this model allows the simultaneous optimization of traffic assignment (multi-
commodity flow) and traffic signal timings (coordination). We use the total travel time of
all road users as objective function, that is, we are looking for a minimum cost flow. In the
context of traffic signals, the variables bon

i correspond to the offset of the light, i.e., the point
in time when the signal switches to green. Split times refer to the lengths of the green periods∑k−1
i=0 bi. Phase order describes the sequence of turning directions which get green and is

also determined by the variables bon
i for the respective arcs. Split times and phase order are

crucial for traffic safety and have to be chosen carefully. Thus, many applications only permit
optimization of offsets. But with all other parameters fixed, choosing the offset of a single
light already determines the signal setting of the whole intersection. This canonically defines
the offset of an intersection in such cases. Consequently, we refer to offset optimization if we
shift the whole signal plans of intersections in time, but the internal switching patterns at
each intersection are unaltered.

Since the model is linear, we can use exact mathematical programming techniques and
solvers like CPLEX or GUROBI benefiting from all the advantages, e.g., proof of optimality
or dual bounds. Although the model is a linear one, it still provides very realistic travel times
and link performance functions, e.g., the raise in the travel times is non-linear in relation to
an increasing traffic demand [8].

3 Integrating public transport

In this section, we are going to integrate public transport commodities in our model. Here,
we face three major challenges. Firstly, up to now, the cyclically time-expanded model
does not provide any first-in first-out property in its queues. Whereas this was of minor
importance for routing a huge number of cars and finding a system optimal coordination, we
now have to consider the exact delay caused by queuing for public transport. Secondly, due
to bus stops, public transport commodities experience other travel times in the road network.
Moreover, in the basic model, we used arbitrarily splittable, i.e., non-atomic, commodities.
In contrast, a bus or tram should use a single path in the time expanded network, that is,
it is an unsplittable or atomic commodity, respectively. Thirdly, we have to define suitable
objectives which correspond to our intuitive idea of transit signal priority.

Other aspects of public transport are easier to model. In general, we assume that public
transport has no routing options (in space). That is, line planning is completed and the bus is
fixed to one route. Still, we have to route over time in the cyclically time-expanded network.
Thus, public transport is modeled like a common commodity, but a commodity-specific
capacity is set to zero on all non-route arcs. In the following, we will consider only one public
transport commodity and we will use fbus to distinguish flow of this commodity ϕbus from
flow fϕ from the standard commodities ϕ ∈ Φ. Furthermore, a public transport commodity
also has a source s and a sink t, but contrary to standard commodities, we assign the whole
demand (usually d = 1, i.e., one bus) to one copy si as net outflow.
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Queues

Flow on waiting arcs can be interpreted as a queue and a capacity on waiting arcs limits
the length of this queue. Hence, even effects like spill-back may occur in the cyclically
time-expanded model. A detailed study of queues in this model was published in [14].
Unfortunately, these queues do not fulfill the first-in-first-out property, that is, waiting flow
will be shuffled in general.

Yet, considering only a single bus which may transport several dozen passengers and
transit signal priority, it is important to know the exact delay of this bus. Therefore, we
introduce a new waiting arc model. The main idea is to split the queue into three parts: in
the cars waiting in front of the bus (queue 1 ), the bus itself, and the cars waiting behind the
bus (queue 2 ). Thus, we use three parallel waiting arcs instead of one.

I Definition 2. Let v be a node in the original network. In the cyclically-time expanded
network, bus queuing waiting arcs at v are built by the following construction:

Instead of copies vi as in Definition 1, insert four nodes wi, xi, yi, and zi for each time
step i ∈ {0, . . . , k − 1}.
Connect the time-expanded copies of incoming arcs at v to the corresponding copies wi
and copies of outgoing arcs of v to zi.
Add arcs (wi, xi), (xi, yi), and (yi, zi) with capacity of the summed up capacities of the
upstream arcs ending in v and zero travel time.
Add arcs (xi, wi+1 mod k), (yi, xi+1 mod k), and (zi, yi+1 mod k) with travel time Γ

k and
infinite capacity.

In Figure 2, the construction of the new waiting arcs is shown in principle. Of course, this
is again realized in a cyclic matter. The zigzag arcs (xi, wi+1 mod k) and (zi, yi+1 mod k) are
only usable by standard commodities ϕ ∈ Φ. The dotted arcs (yi, xi+1 mod k) are exclusive
for the public transport commodity ϕbus. This can be realized by simply not defining flow
variables for commodities on arcs which should not be used by these commodities.

Moreover, we require flow fbus on the dotted arcs (yi, xi+1 mod k) for public transport to
be integral. Since the tail nodes yi of these dotted waiting arcs are the only chance for the
public transport commodity to split, this implies integral flow values for public transport on
all arcs of the network. Hence, this constraint yields an atomic flow for public transport.

I Lemma 3. Integral flow values on the bus queuing waiting arcs as given in Figure 2
for public transport commodities with integral demand imply integral flow values of public
transport commodities on every arc in the network.

Now, it is crucial that public transport flow cannot leave its waiting arcs in the bus queue
when there is still flow on the waiting arcs in queue 1. This can be achieved by setting a
suitable capacity constraint on all horizontal arcs e = (wi, xi), e = (xi, yi), and e = (yi, zi)
in the queue construction, namely∑

ϕ∈Φ
fϕ(e) + c

k
fbus(e) ≤

c

k

where c is the capacity of arc e. As a consequence, flow fbus of the public transport commodity
on the horizontal arcs has to be zero as long as there is flow from any other commodity
ϕ ∈ Φ on these arcs, since flow values of public transport are integral. Especially, flow from
a public transport commodity ϕbus cannot pass queue 1 if it is not empty.

Additionally, the same argument applies for queue 2 of cars behind the public transport
vehicle. Flow fbus cannot pass queue 2 if it is not empty. Thus, flow from queue 2 is forced to
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Figure 2 A waiting arc construction that allows FIFO for public transport. Dotted arcs can only
be entered by public transport commodities and flow on these arcs has to be integral. Zigzag arcs
can only be entered by standard commodities. Horizontal arcs have capacity for either one public
transport vehicle or an arbitrary amount of flow of standard commodities.

switch to queue 1, before flow from the public transport commodity can enter its specific bus
queue. Vice versa, flow from the standard commodities cannot pass flow ϕbus in its queue.

I Theorem 4. The bus queuing waiting arc construction in Figure 2 realizes the first-in
first-out property for flow of the public transport commodity.

As described above, this approach is only applicable for a single public transport com-
modity. If we want to route more than one bus commodity over an arc, we need a bus queue
for each of these public transport commodities and additionally, we also need a queue for
the standard commodities between each consecutive pair of such bus queues. Please note
that this approach only assures the FIFO principle between public transport and individual
traffic. Individual traffic may still overtake each other within its queues.

Bus stops

The main difference between public transport and individual traffic are regular stops for
boarding passengers, also resulting in longer travel times of the public transport vehicles.
To model such stops appropriately, we also have to consider whether the standard traffic is
affected by these stops.

In the case of a bus bay, traffic can just bypass the bus. To implement such stops on an
arc (u, v) in G, we add new arcs (ui, vi+τbus mod k) to Gk for all i = 0, . . . , k − 1, such that
τbus corresponds to the sum of pure transit time τ on this edge plus the average time τstop
for boarding passengers at the stop. As a matter of course, these new edges are dedicated to
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9:8 Optimizing Traffic Signal Settings for Public Transport Priority

public transport. Vice versa, a public transport commodity ϕbus must not use the original
copies of (u, v) in Gk.

If there is no bus bay, we assume the subsequent traffic to wait behind the public transport
vehicle. We may use a similar construction as in the previous paragraph. The bus-exclusive arc
(ui, vi+τbus) timely overlaps with the arcs (uj , vj+τ ) for i ≤ j ≤ i+τstop (where all indices apply
modulo k, of course). Thus, we use the bundle constraint

∑i+τstop
j=i

∑
ϕ∈Φ fϕ((uj , vj+τ )) +

c
kfbus((ui, vi+τbus)) ≤ c

k , i = 0, . . . , k − 1, with c being the capacity of (u, v), to prevent
overtaking. Alternatively, we can use the FIFO queue construction if there is one at the
downstream signal. Here, we set a minimum waiting time constraint for the public transport
commodity to force a stop equivalent to the time τstop spent at the regular stop.

Traffic Signal Priority

From the point of view of a traffic manager, a minimum total travel time of all road users is
a worthwhile objective. On the one hand, buses carry much more passengers than cars do,
hence, buses should get higher priority. On the other hand, as mentioned in the introduction,
we also have to consider the individual traffic. Traffic signals should be optimized with
respect to both kinds of commodities, even before active priority strategies are applied.
Traffic parallel to bus routes may even benefit from bus priority, whereas crossing traffic is
often conflicting.

We will distinguish between two approaches. In the first setting, we use a weighted
objective where travel time of the bus accounts with a significantly higher factor, usually 20
up to 50. This approach yields a passive transit signal priority where we try to find a good
trade-off between the average travel times of all traffic participants.

In the second setting, we will add an additional constraint for the maximum delay of the
public transport commodity. That is, we bound the maximum time that a bus can spend
on waiting arcs. Here, we may limit the waiting time at every intersection separately, or
we can limit the waiting time in total. Obviously, such a bound can be implemented with
capacity-like constraints limiting the total flow on all waiting arcs of the bus commodity at
each or all intersections. Setting the maximum delay to zero yields a signal setting which is
even more aggressive than an active transit signal priority, since it also considers the queues.
That is, not only the signal is green when a bus arrives, but also the queue has to be removed
in time. In each of these cases, total travel time of all commodities is minimized under these
constraints.

Furthermore, it is interesting whether it is sufficient to just (re-)optimize signals on the
bus route when adding a new public transport commodity or whether we should optimize all
signals in the whole network. This yields many possible combinations and we will study the
impact of some of them in Section 5.

4 Feasibility and optimality

In the cyclically time-expanded model, various integer variables control a multi-commodity
flow by affecting the capacities. Thus, given demands, it is not even a priori clear whether
there exists a feasible solution at all. In fact, there are instances where the problem is
infeasible, but the relaxation, i.e., dropping the binary constraints x ∈ {0, 1} and replacing
them by 0 ≤ x ≤ 1, is solvable. In other words, traffic signals not only reduce capacity of the
network due to red phases, also the inner switching logic may cause an additional loss of
capacity. An example is given in Figure 3. Please note that the inner logic of the signal in
this example is completely fixed and just the offset of the signal can be chosen.
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a1

a2 a3

Figure 3 Arcs a2 and a3 belong to an intersection, a1 is the outgoing arc. The capacities of
the arcs a1, a2 and a3 are equal to 60, Γ = 60 seconds. Green times for both arcs a2 and a3 is
exactly 30 seconds. If both signals have to switch to green at the same time, we may route at
most 30 flow units in total, e.g, 0.5 from every direction for 30 seconds. However, in the relaxed
problem without binary constraints, we may route 60 flow units using ‘half red half green’ signals
(bi = 0.5, i = 0, . . . , 59).

Checking the feasibility of an integer program is one of the classical 21 NP-complete
problems of Karp [5]. Yet, in some cases, it is possible to check feasibility of our model in
polynomial time, although finding the optimal solution of the combinatorial problem is still
NP-hard [6]. In the case of offset optimization and unlimited queue length, that is, green
split and phase order are fixed as in the example in Figure 3, we introduce extended bundled
capacities in the mixed integer programming formulation of our model. For this purpose, we
compute the total net green time TAnet(e) of arcs that end at the same arc e = (v, w) ∈ A, i.e.,
we compute the length of the time intervals where it is possible to enter a specific arc from
arcs in A ⊆ δ−(v). Since flow can only enter the arc e ∈ A at these times, the net capacity
of e is Tnet(e)

Γ u(e).
Now, the extended bundled capacities are

Γ−1∑
t=0

∑
a∈A⊆δ−(v)

∑
ϕ∈Φ

fϕ(at) ≤ TAnet(e) u(e)

for each arc e = (v, w) ∈ A and each subset A ⊆ δ−(v). By construction, it is clear that
every solution of the mixed integer program also fulfills these constraints. Note that every
subset A ⊆ δ−(v) has to be considered. These constraints are also sufficient to provide the
following result.

I Theorem 5. In the case of pure offset optimization and infinite capacity on waiting arcs,
the relaxation of the mixed integer programming formulation with extended bundled capacities
of the cyclically time-expanded model is feasible if and only if the mixed integer programming
formulation itself is feasible.

Proof. It remains to show that feasibility of the relaxation implies feasibility of the MIP.
Let f be the optimal flow of the relaxation and choose arbitrary offsets for each intersection.
Now, we construct a feasible flow f∗ in the expanded network with this choice of offsets by
using the same underlying paths for each flow particle as in f . If a binary variable is zero
for an arc, we use the preceding waiting arc. However, since f fulfills the extended bundled
capacities, there is at least one point in time where the subsequent arc has unused capacity
left such that every flow particle can be routed over time. J

Since we choose an arbitrary coordination of the traffic lights in the proof, we have also
shown that each choice of offsets is feasible, if there is at least one feasible choice. However,
the cyclically time-expanded network has size O(Γn) where n is the size of the original
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network. Hence, solving the relaxation with a polynomial-time linear programming algorithm
is still only a pseudo-polynomial time approach. But we can use the previous result to check
feasibility without actually applying the time-expansion.

I Theorem 6. If the node degree in G is bounded by a constant, then the feasibility of an
instance of the combined offset optimization and traffic assignment problem with unlimited
queues can be checked in polynomial time.

Proof. The main idea is to adjust the capacities of the turning direction arcs in the network
G, whose copies in Gk are equipped with binary variables.

Let Tgreen(a) be the length of the green phase of such a turning direction a. Now, we set
the new capacity of a in G to Tgreen(a)

Γ u(a). Furthermore, we formulate the corresponding
extended bundled capacities in G as

∑
a∈A⊆δ−(v)

∑
ϕ∈Φ fϕ(a) ≤ TAnet(e) u(e)

Γ for each e =
(v, w) ∈ A and each subset A ⊆ δ−(v). Since the node degree is bounded, we can bound the
number of subsets A of δ−(v) by a constant. Hence, the multi-commodity flow problem in G
with these additional constraints is still linear in the input size.

When we have a feasible solution f of this multi-commodity flow problem on the modified
graph G, we can copy this flow to Gk by assigning f(e)

k to each copy ei ∈ Ak of an arc
e ∈ A. Furthermore, we set each binary variable bi = Tgreen(a)

Γ , where a is the corresponding
arc of bi. In consequence, each such arc a has a capacity of Tgreen(a)

Γ
u(a)
k , which is also the

maximum amount of flow that we have assigned to it. The capacity constraints also hold for
arcs without binary variables in the expanded network. Additionally, the extended bundled
capacities of the network G assure the extended bundled capacities of Gk. So we know that
there is a feasible solution of the relaxation in Gk, when there is a feasible solution in G.
Theorem 5 yields a feasible solution of the MIP in this case.

Vice versa, there is also a feasible solution of the flow problem in the original network
G, when there is a feasible solution of the relaxation in Gk. Firstly, we re-arrange such
a feasible flow of the relaxation as follows: We sum up the flow over each path of the
original network. Afterwards, we uniformly distribute this flow over time, i.e., each copy in
the cyclically time-expanded network gets the same amount of flow. Furthermore, we set
each bi = Tgreen(a)

Γ . Obviously, this solution is also feasible, since each capacity constraint
is fulfilled. Otherwise, the sum of the flow of one path in the original network would be
greater than the total capacity of that path, which would be a contradiction. The obtained
solution has the same structure as the solution which was created in the other direction
of the proof. Hence, we know that there must be a corresponding feasible solution in the
original network. J

In the previous section, we introduced constraints limiting the maximum waiting time of
a bus to establish transit signal priority. In general, it will be NP-hard to decide, whether
the offset optimization problem with such constraints is still feasible. However, in a very
restricted case it is decidable in polynomial time.

I Theorem 7. Let Vi be the set of intersections that are visited by the public transport
commodity i, no intersection is visited twice by a commodity, and no bus queuing waiting
arcs are used. Assume that Vi ∩ Vj = ∅ for each pair (i, j) of public transport commodities.
Then the problem with constraints that limit the maximum waiting times of public transport
is feasible iff it is feasible without these constraints.

Proof. Since public transport commodities do not interfere at intersections in this case, we
can build a progressive signal setting (“green wave”) for each public transport commodity.
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Since there is no FIFO queuing, public transport can overtake any standard traffic. So we
can find a signal setting where none of the public transport flow particles has to use waiting
arcs. J

Please note that this result does not hold anymore, if bus queuing waiting arcs are used.
In this case, it is possible that a large amount of standard traffic reaches an intersection just
before the public transport vehicle. If the outgoing arc has less capacity, then queuing is
unavoidable and prevents the public transport vehicle from directly passing the intersection.

5 Computational results

In this section, we will present a computational case study for the public transport extension
of the cyclically time-expanded network model. For this purpose, we use a real-world scenario,
namely the inner-city of Denver, the capital of the U.S.-state of Colorado. We consider a 6
× 6-grid between 15th Street and 20th Street and between Stout Street and Larimer Street.
Nearly every street is a one-way street, indicated by arcs in Figure 4. Furthermore, the
16th Street between vertex 7 and 12 is a pedestrian and transit mall, so individual traffic is
not permitted there. The underlying network was provided by Wünsch [19] and we already
studied common signal optimization in this network in [16]. Here, our scenario contains eight
different commodities, which have in total a demand of 285 cars per minute. Moreover, we
consider two bus lines. Their routes and stops are inspired by bus line 9 (red line) and 36L
(green line) of the Regional Transportation District, the transit authority of Denver. We
slightly change the route of line 36L to fit it into our grid. On each stop, we consider a waiting
time of 20 seconds. Since there are bus bays at the two lines in Denver, we allow overtaking
of buses while stopping there. Moreover, the extended bundled capacities introduced in
Section 4 do not significantly strengthen the MIP formulation in this scenario, since there
are only three intersections where two or more incoming streets can have green signals at the
same time.

Optimizing coordinations for public transport

First of all, we optimized the offset coordination of the 36 intersections for the standard
traffic commodities ϕ ∈ Φ. Here and in all upcoming computations, we spent one hour of
computation time. But as already described in previous results [8], this time is in most cases
not sufficient to close the duality gap due to difficulty of computing good lower bounds. Note
that the usual MIPs for this network consist of about 36.000 variables including 800 binaries
and 19.000 constraints.

The optimization with respect to standard traffic yields a traffic signal coordination which
is quite disadvantageous for buses. The two bus lines have to wait 28 and 70 seconds in
total at red traffic lights, respectively, although we did not use the FIFO queues in this first
attempt.

Thus, we applied the two approaches discussed in Section 3. Firstly, we limited the total
waiting time for buses. The results are shown in Table 1. There, we also compare the two
variants of optimizing signals only on bus routes versus optimizing all signals.

Secondly, we used weights to account for the high number of passengers in buses. The
results for various choices of the weight are presented in Table 2. Several but not all solutions
of the first approach could be achieved by an appropriate weight.
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Figure 4 Network of downtown Denver, Colorado. The red arcs show the route of line 9, the
green arcs the route of the modified line 36L. The flag pictograms mark the bus stops.

Table 1 Total waiting times of the individual traffic in seconds for different maximal waiting
times of public transport. On the left hand side, only signals at intersections of public transport
routes are re-optimized. On the right hand side, all crossings are optimized. Please note that no
new solutions occur for maximum waiting times for 40 to 60 seconds.

maximal only PT-crossings optimized all crossings optimized
waiting waiting times of waiting times of
times individual red line green line individual red line green line

0 3,181 0 0 2,824 0 0
10 2,810 8 6 2,660 6 4
20 2,766 14 6 2,569 20 4
30 – 60 2,556 22 30 2,528 24 30
70 2,470 28 70 2,470 28 70

Analyzing the FIFO queues

In the following, we will show that our FIFO queues developed in Section 3 are also applicable
in practice. Firstly, we consider the red bus line and a parallel standard commodity on the
same route. Figure 5 shows a space-time-plot of both commodities. In the coordination
that is given in the upper diagram in Figure 5, the bus (blue line) can pass all signals
without waiting, but it violates the FIFO principle. In detail, there is flow (various shades of
orange) at intersections 25, 14 , and 16 which arrives during the red phase before the bus
and therefore, this flow queues. However, the bus leaves first, when the signal switches to
green implying it has overtaken the queue. Please note that traffic density of the other traffic
varies, since there is a change from two to four lanes at intersection 13. Moreover, traffic can
only become denser, if some flow units are delayed by a red light.

If we use FIFO queues in this example with the same signal setting, the bus falls out of
its schedule, since it is overtaken at its four bus stops. The queues formed by these passing
vehicles cannot be overtaken anymore and they result in additional delay for the bus which
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Table 2 Waiting times of individual traffic and transit traffic commodities for different weighting
factors of public transit costs. Again, on the left hand side, only signals used by public transport
are re-optimized. On the right hand side, all signals are optimized. Please note that the weight
parameter was increased in steps of 5, but only rows are shown where the solution changes compared
to the previous row.

weight only PT-crossings all crossings
factor waiting times of waiting times of

individual red line green line individual red line green line

1 2,470 28 70 2,470 28 70
5 2,556 22 30 2,569 20 4
10 – 15 2,810 8 6 2,678 6 2
20 – 30 2,908 2 6 2,824 0 0
≥ 35 3,181 0 0 2,824 0 0

0

40

0

40

0

40

31 25 19 13 14 15 16 17 18

31 25 19 13 14 15 16 17 18

31 25 19 13 14 15 16 17 18

Figure 5 The space time diagrams show traffic of a standard commodity (orange) and a bus of
line 9 (blue) on their route through the network. Time is shown in vertical direction and has to be
interpreted in a cyclic manner as in the cyclically time-expanded network. Horizontal distances are
chosen with respect to real distances. Traffic density is shown by different shades where darker color
means denser traffic. There are four bus stops on arcs 31–25, 25–19, 13–14, and 17–18. In the upper
diagram, no FIFO queues are used and the bus overtakes the queue in front of it at intersections 25,
14, and 16. In the diagram in the middle, the same traffic signal setting is evaluated with FIFO
queues. The bus is significantly delayed by the queues and misses five green phases. In the bottom
diagram, an optimized solution with FIFO queuing is shown. Now, no waiting time for the bus can
be realized even with respect to queues.

culminates in five missed green phases at downstream signals and a total delay of 104 seconds
for the bus. This solution is shown in the diagram in the middle in Figure 5.

Thus, we need to re-optimize signals with respect to the queues. This yields a solution
where the bus does not need to stop at red signals. As one can see in the bottom diagram in
Figure 5, there is always enough green time to empty the queues before the bus arrives at
the signal.

Although the example seems to be designed badly on purpose, the same effect occurs in
the whole network. As an example, we consider the solutions shown in Table 1 where we
optimized signals on the bus route with a maximum waiting time for buses of 0 seconds.
There, we computed an overall waiting time of all commodities of 3,181 seconds (see Table 3
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Table 3 Waiting times for two different coordinations with and without FIFO queues.

scenario waiting times without FIFO waiting times with FIFO
individual red line green line individual red line green line

scenario 1 3,181 0 0 3,419 26 0
scenario 2 3,188 0 0 3,307 0 0

scenario 1 ). Yet, using the same signal settings with FIFO queues, the waiting time for
the bus of the red line rises to 26 seconds. Also the waiting time of other commodities
significantly increases by about 240 seconds due to the interaction of the queues.

Re-optimizing the same scenario with FIFO queues, we obtain a coordination with
objective values shown in row scenario 2 of Table 3. Thus, already accounting for queues
in the optimization yields an additional delay of only 126 seconds in total for the standard
commodities, but we now have a solution respecting the FIFO principle with zero waiting
time for buses of both lines. Since this coordination is slightly worse without FIFO queues
than the first solution, the new solution cannot be found by an optimization tool without
considering queuing effects. This example also shows the great importance of considering
other road users when designing transit signal priority. An excellent solution for public
transport vehicles in an empty network can turn into a rather bad solution when queuing
occurs.

6 Discussion

In this paper, we have introduced an extension of the cyclically-time expanded network
model for traffic signal optimization supporting public transport. Together with the queuing
model, this approach yields competitive solutions for passive transit signal priority.

While parameters like delays at bus stops had to be estimated, one can assume that
these parameters will vary in practice. Moreover, in passive TSP, crossing transit lines
conflict in general, whereas in most cases in practice buses arrive at different times at such
intersections. Thus, many open research questions remain. For example, one may use a
cyclically time-expanded network which is expanded with respect to the cycle time of the
time table of public transport. Hence, one may use a different signal setting when the bus
actually arrives at an intersection. Is it possible to develop an active transit signal priority
strategy based on this approach? Can one use solutions of our model to identify intersections
suitable for active TSP? In other words, if the bus is already waiting in the passive approach
at a certain intersection, the signal setting of this intersection is most likely crucial for travel
times of many commodities and one should maybe not use TSP here. Vice versa, how can
one find intersections where small changes like active TSP do not destabilize the coordination
in the whole network? If one uses active TSP, it is also an open question how to optimally
synchronize the traffic signal after the public transport vehicle has passed. In principle, one
may also use a time-expanded network expanded over two or more cycles the compute an
optimal repair strategy for the network-wide coordination. Can one model passenger flows
similar to the traffic flow of the standard commodities? A varying number of passengers
in the bus may lead to different solutions in the case of weighted waiting times. Is it even
possible to integrate a mode choice model, i.e., some commodities may choose between
traversing the network as an individual traffic commodity or by using the public transit
network. Here, flow units of public transport commodities would need to act as containers
to which one can assign flow particles of other commodities.
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Abstract
A railway timetable is typically planned one year in advance, but may be revised several times
prior to the time of operation in order to accommodate on-demand slot requests for inserting
additional trains and network maintenance. Revising timetables is a computationally demanding
task, given the many dependencies and details to consider. In this paper, we focus on the potential
of using optimization-based scheduling approach for revising train timetables during short term
planning, from one week to few hours before the actual operation. The approach relies on a
MILP (Mixed Integer Linear Program) model which is solved by using the commercial solver
Gurobi.

In a previous experimental study, the MILP approach was used to revise a significant part
of the annual timetable for a sub-network in Southern Sweden to insert additional trains and
allocate time slots for urgent maintenance. The results showed that the proposed MILP approach
in many cases generates feasible, good solutions rather fast. However, proving optimality was in
several cases time-consuming, especially for larger problems. Thus, there is a need to investigate
and develop strategies to improve the computational performance. In this paper, we present
results from a study, where a number of valid inequalities has been selected and applied to the
MILP model with the aim to reduce the computation time. The experimental evaluation of
the selected valid inequalities showed that although they can provide a slight improvement with
respect to computation time, they are also weakening the LP relaxation of the model.
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Keywords and phrases Railway, Timetable, Short term planning, Boosting Methods, Valid in-
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1 Introduction

A railway timetable is typically planned one year in advance, we call it a master timetable,
but it often needs to be revised as the time of the operation approaches. A revision might be
necessary for various reasons including for receiving requests to plan additional trains, or to
plan for urgent maintenance before the actual time of the operation. Applying optimization
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methods for revising timetables can be very beneficial especially in highly utilized networks.
However, railway timetabling is a complex task and it is almost impossible for human brains
to schedule a timetable optimally in dense networks. Hence the need for efficient optimization
tools is evident.

A previous study by [3] showed that the applied optimization model can be slow when
solving large problems including inserting additional trains and allocating slots for urgent
maintenance. The results from [3] showed that in most of the cases, where at most two
trains are inserted simultaneously or a track should be allocated for one hour duration
maintenance, a feasible timetable can be found within the first minute of model execution
but proving optimality of the solution can be time consuming. For larger problems, i.e.
inserting more than two trains simultaneously, or longer durations for track allocation for
urgent maintenance, even finding a feasible solution can be challenging. Hence, there is a
need to investigate and develop strategies for speeding up the solution process.

The optimization-based approach applied in this paper relies on a MILP (Mixed Integer
Linear Programming) formulation which is an extension of a previous event-based model
developed by [8]. This model was, however, developed for real-time rescheduling purposes, but
it is applicable for timetable planning wherever there is a master timetable to be considered.
This model can be used for planning operational details including explicit order of trains,
explicit order of arrivals at stations where simultaneous entrance at the stations is not allowed,
explicit track allocation for bidirectional multi track lines and stations, track and platform
lengths.

In order to reduce computation time in MILP models, there exist several approaches
including reformulating the problem and developing effective search algorithms. In this
paper we focus on strengthening the formulation of the current MILP model. We develop,
implement and evaluate certain boosting methods inspired by [4], [10] and [7]. The boosting
methods are focused on generating several types of valid inequalities which are implemented
in the MILP formulation. The impact of the selected valid inequalities on model runtime is
also studied. MILP models are known to often have weak LP relaxations because of the use
of so-called disjunctive big M constraints. Therefore we also analyze the impact of the big
M constraints on our model performance.

The approach has been experimentally applied on various scenarios for Swedish timetable
instances. A railway network in the south of Sweden, including Blekinge Kustbana and the
Southern main line between Hässleholm and Malmö, has been selected for the analysis. The
master timetable of 2015 is considered. In our experiments we have used the commercial
solver Gurobi to solve the problems.

To summarize, the research presented in this paper aims to: i) develop and apply valid
inequalities for our MILP model and assess their impact on model performance, ii) analyze
the impact of having big M constraints on model performance.

In the remainder of this paper in Section 2, we describe our MILP model which we
call the basic model in the rest of the paper. In Section 3, a summary of related previous
work is presented. In Section 4, the selected boosting methods are explained. In Section 5,
details of the problems and scenarios are presented. Section 6 holds the results and Section 7
summarizes the conclusions and outlines the future research. The full model is presented in
Appendix A.
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2 Basic model

We consider a MILP model based on the model presented in [9]. The model is further
extended in [3] to solve certain timetabling problems which are also addressed in this study.

2.1 General description

In the proposed model, the train traffic is modelled as a set of train events to be allocated to
slots on the available track resources. An event represents a train i passing a section j while
occupying track q. We distinguish between train event s and section event k. To denote
a train involved in the kth event of section j, we write i(j,k) and we let s(j,k) denote the
corresponding train event. Given a train i and its train event s, we identify the corresponding
section as j(i,s). Basically, train and section events are two different representations of the
same event.

We denote T as the set of trains and J is the set of sections. Si refers to the ordered set
of events for train i ∈ T , it contains all the section numbers traversed by train i. Kj refers to
the ordered set of events for section j ∈ J , it contains all the train numbers that pass section
j. Cj refers to the number of tracks at each section j, while q(i,s) specifies the track number
assigned to train i at train event s.

Each train event s, related to train i, has two continuous variables, one for the start
time tB(i,s) and one for the end time tE(i,s) of the event and one binary variable x(i,s,q) which
takes value of one if track q is allocated for train event s. Each section event k, related to
section j, has two binary variables for the precedence of trains. In single track lines, the
overlap between section events is not allowed, hence there are only two situations allowed
after rescheduling: i) either the order of two events is the same as the initial order or ii) the
order is changed. A binary variable γ(j,k,v) takes value one if the order between two section
events k and k + v is the same as the initial order and zero otherwise. The initial order of
trains is based on the master timetable. In one section with multiple tracks, events may
overlap if they are allocated different tracks, so there is not only a binary choice but multiple
alternative choices. In multi-track lines, two section events k and k + v either 1) keep their
initial order, or 2) switch the order or 3) have time overlap. Hence, a new binary variable
λ(j,k,v) is introduced. In multi track lines, λ(j,k,v) takes value zero if the order between two
section events k and k + v is the same as the initial order and one if the order is swapped.
This is elaborated further in Figure 1 since understanding the concept and relations between
these variables is the key to generating some of the valid inequalities analyzed in Section 4.1.

We do not allow γ(j,k,v) and λ(j,k,v) take value one simultaneously, therefore we have
λ(j,k,v) + γ(j,k,v) ≤ 1 (constraint 26). We also need to make sure that where on the same
track, either γ(j,k,v) or λ(j,k,v) takes value one, therefore we have x(i(j,k+v),s(j,k+v),q(i,s)) +
x(i(j,k),s(j,k),q(i,s)) ≤ γ(j,k,v) + λ(j,k,v) + 1 (constraint 33). By this formulation γ(j,k,v) and
λ(j,k,v) both can take value zero simultaneously only when they are not happening on the
same track. In this situation the events k and k + v can be overlapped. Note that when the
events k and k + v do not happen on the same track, either γ(j,k,v) or λ(j,k,v) can take value
one or they can both be equal to zero, however, we do not care what value they take when
not happening on the same track.

The complete model is presented in Sections A.1-A.4. The basic model covers details
including track allocation at stations considering train length and track length, restricting
simultaneous train entrances at stations where required and respecting technical minimum
headway at sections with multiple block sections.
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Figure 1 Elaborating variables γ(j,k,v) and λ(j,k,v).

2.2 Further extensions
We focus on solving problems in which a new train is to be inserted in a master timetable or
a slot to be allocated in for urgent maintenance. [3] further developed the model to insert
additional trains, the details are presented in the Appendix, Section A.5. Allocating slots for
maintenance can be handled as inserting a virtual train in which the minimum travel time
equals to the duration of maintenance.

3 Related research

To improve model runtime one can develop efficient algorithms, e.g. based on heuristics
and Lagrangian relaxation. However, before developing algorithms we should first try to
strengthen the model formulation. An overview of the studies related to applying different
modelling and solving algorithms in railway timetabling problems, can be found in [5] and [1].
Applying Integer Programming (IP) and MILP formulations in general timetabling problems
as well as in train timetabling problems are very common. In IP formulations the number
of variables and constraints grow rapidly if the precision for time variables changes from
minutes to seconds. In train timetabling problems IP formulations have been applied for
calculating a timetable in minute precision. However, during short term planning, typically
we have a large number of variables and constraints and also the time precision should be in
seconds. Hence, the use of IP formulation is less practical and MILP formulations are more
common. On the other hand, the LP relaxation of MILP formulations including so-called
disjunctive big M constraints is known to often be rather weak and solving larger problems
with existing powerful commercial MIP solvers can be very difficult and time-consuming.
The focus of this research is on reformulation and the reviewed literature here is focused on
methods to strengthen MILP formulations.

In [4] possible situations that might arise when solving common MIP formulations with
state-of-the-art optimization solvers are described and explained. Recommendations on how
to analyze the model properties based on the solver output and potential strategies for model
improvements, are also presented.

[10] also proposed several methods for improving MILP formulations and their runtime.
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Among them, hybrid Big M formulation, incremental formulation (effective branching) and
large formulations (decomposition) can be mentioned. The hybrid Big M formulation is
described in more detail in Section 4.2.

For a general scheduling problem, [6] introduced four different time representations for
MILP formulations and proposed the corresponding mathematical formulations for each
type of the representations. The proposed time representations are based on defining some
priority slots and are as follows: i) if several operations can be done in each priority slot or
not, ii) if the overlapping of the operations is allowed or not, and iii) if the start time of the
operations are synchronized or iv) fixed. They introduced various valid inequalities based on
the structure of the data and the type of the formulation and they focused on generating a
matrix for non-priority slots. When translating their method for railway scheduling problems,
it is applicable only for single track problems. However it can be developed further for double
tracks.

In studies related to railway scheduling, [11] applied preprocessing methods to reduced
the problem size for routing problems in railway stations in a Dutch network. They also
generated some clique inequalities based on the structure of their model. [7] studied several
boosting methods for their proposed MILP model. They tested ten different methods and
their combinations, and studied the runtime of their proposed model. They reported that for
all instances except one, their proposed boosting methods did not have a significant effect
on model runtime. Their interpretation of the results is that the initial model is already
well-formulated and CPLEX branching strategy is already very good for this kind of problem.
However, these results are related to the properties of their model and its specific context.

4 Testing selected boosting methods

We focus on evaluating three sets of valid inequalities. Furthermore we analyze the effects of
having constraints with big M .

4.1 Evaluating selected valid inequalities

We develop three sets of valid inequalities and evaluate their impact on model runtime. VIE1
is developed based on some logical relations between variables and is model specific. We
think that VIE1 can strengthen the bounds since it can remove undesired MIP solutions.
VIE2 is based on the idea of having explicit constraints for transitivity relations between the
events in the model. VIE2 is inspired by [7] since their model structure is similar to ours.
However, their presented transitivity valid inequalities need to be developed further to be
applicable for our model. VIE3 is also based on a logical relation between different variables.
We think that it can improve the model runtime although it cannot remove undesired MIP
solutions.

4.1.1 Enforcing γ and λ to zero when they are not on the same track
(VIE1)

On line sections with multiple tracks (Cj ≥ 2), non-zero γ and λ are only relevant when
their corresponding event is scheduled on the same track. If their corresponding event is not
scheduled on the same track then both γ and λ can be set to zero. The following constraints
impose that when x(i(j,k+v),s(j,k+v),q) or x(i(j,k),s(j,k),q) (only one of them) is equal to one then
both γ and λ should equal to zero. For j ∈ J, s ∈ Si, k ∈ {1...|Kj |−1}, v ∈ {1...|Kj |−k}, q ∈
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{1...Cj}:

x(i(j,k+v),s(j,k+v),q) − x(i(j,k),s(j,k),q) ≤ 1− γ(j,k,v) − λ(j,k,v) (1)

x(i(j,k),s(j,k),q) − x(i(j,k+v),s(j,k+v),q) ≤ 1− γ(j,k,v) − λ(j,k,v) (2)

Valid inequalities are commonly defined as constraints which can cut a fractional part of a
solution from a relaxed solution and they never cut a MIP solution. On the other hand, valid
inequalities VIE1 can cut undesired MIP solutions (they remove those solutions in which
variables λ(j,k,v) and γ(j,k,v) take value 1 when events k and k+ v do not happen on the same
track), hence they do not fit in the traditional definition of valid inequalities even though
they never cut an optimal solution if there is only one unique optimal solution. However, if
there are several degenerate optimal solutions, those in which the value of variables λ(j,k,v)
and γ(j,k,v) is one, when not on the same track, will be cut.

4.1.2 Transitivity (VIE2)
The second set of valid inequalities are inspired from a study done by [7]. These valid
inequalities enforce the implicit relations between events in an explicit way. Given three
successive events on the same track, this set of valid inequalities imposes that if λ(j,k,1)
between the first event and the second event is 1 and also λ(j,k+1,1) between second event
and third event is 1 then the λ(j,k,2) between the first event and the third event should also
be 1. The same relation is relevant for γ as well.

In single track sections (Cj = 1), for j ∈ J, s ∈ Si, k ∈ {1...|Kj | − 2}:

γ(j,k,1) + γ(j,k+1,1) ≤ 1 + γ(j,k,2) (3)
2− γ(j,k,1) − γ(j,k+1,1) ≤ 2− γ(j,k,2) (4)

In multiple tracks sections (Cj ≥ 2), for j ∈ J, s ∈ Si, k ∈ {1...|Kj | − 2}:

λ(j,k,1) + λ(j,k+1,1) ≤ 1 + λ(j,k,2) , (5)
γ(j,k,1) + γ(j,k+1,1) ≤ 1 + γ(j,k,2) . (6)

As explained before, in the basic model γ(j,k,v) and λ(j,k,v) can take value of one even though
events k and k + v are not happening on the same track, in these cases the above valid
inequalities can cut an undesirable MIP solution and are not cutting only fractional parts of
a relaxed solution.

4.1.3 Balance between number of section events and track occupancy
(VIE3)

The third set of valid inequalities emphasizes that the sum of track occupancy (x(i,s,q)) over
all track events (k) and all tracks (q) in each section (j) equals to the number of section
events (|Kj |). These constraints only apply to sections with multiple tracks (Cj ≥ 2).

Cj(i,s)∑
q=1

|Kj |∑
k=1

x(i(j,k),s(j,k),q) = |Kj | , j ∈ J . (7)

4.2 Hybrid Big M

This method is inspired by [10]. Basically for each big M constraint we attempt to find the
smallest value for M which is sufficiently large. In [10] it is referred to as sharp M . We
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Figure 2 Location of the case study (red line).

categorize constraints by analyzing their left hand side. According to [10], those constraints
that have similar left hand side can take the same value for big M . In the basic model the
value of M is 24 ∗ 60 ∗ 60 = 86400 seconds, since the time window in our tested problems
is always shorter than 24 hours. For testing the impact of having hybrid M , we define six
categories for big M . In each category the value of the big M varies per section j. Category 1
includes equation 23. Category 2 includes equations 24 and 25. Category 3 includes equations
27 and 34. Category 4 includes equation 28. Category 5 includes equations 29 and 35 and
category 6 includes equation 30. We take the sharp M values from the obtained optimal
solutions when applying the basic model and we solve the problems again and compare the
model performance.

5 The studied corridor and timetable instances

The experiments are performed on a timetable instance from Sweden. The timetable instance
is extracted from the corridor Karlskrona to Malmö, see Figure 2. A part of the line is single
track (from Karlskrona to Hässleholm) and the other part of the line is double track (from
Hässleholm to Malmö). The instance is a time window between 16:00 and 23:00 on October
15, 2015. The selected corridor consists of 85 stations. The published daily timetables from
Swedish Transport Administrations (Trafikverket) are not always completely feasible and
may contain minor violations depending on how e.g. minimum headway values are applied.
The selected timetable instance has therefore been calibrated prior to our experiments, in
order to ensure feasibility under the assumptions we have made. The studied corridor is
highly utilized. The total number of trains running within the time window (16:00-23:00) in
the studied network is 295. The peak hours happen between 18:00-20:00 with 27 trains run
per track.

5.1 Problem types and scenarios

We test the selected boosting methods on three types of problems:

Inserting one single train: We select 6 additional trains to be inserted in a master
timetable. The selected trains have different minimum travel times, they run on different
parts of the corridor and in different directions. We generate random insertion time for
each additional train. The random insertion time is the departure time from the first
section. Each of the 6 trains are assigned 8 random insertion times which sums to 48
scenarios in total.
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Allocating slots for urgent maintenance, fixed hour, different sections: One hour main-
tenance between 21:00-22:00 is to be allocated for all line sections with double tracks.
This hour is selected since maintenance is preferred to be done after the rush hours. In
the studied corridor we have 20 line sections with double tracks that means we have 20
scenarios.
Allocating slots for urgent maintenance, variable hour, fixed section: For section TÖ-HÖ
one hour is randomly selected from the time window (16:00-23:00). To be consistent
when comparing the results for maintenance problems, here we test 20 scenarios as well.
This section is selected since TÖ-HÖ is located in the middle of the double track segment
of the line and has an equally distributed traffic in both direction.

6 Results

This section holds the main results from the studied scenarios described in Section 5. The
model is implemented in Java and solved using Gurobi 6.5 on a PC i7-5600U at 2.60 GHz, 8
GB of RAM, running with windows 7-64.

6.1 Results of the experiments for the selected valid inequalities

We test the selected valid inequalities on scenarios from all three types of problems. We
solve each scenario four times, first with applying the basic model, then applying each of
the mentioned valid inequalities. The objective function when inserting a single train is to
minimize the time deviation from the master timetable for arrival and departure times for
all the train events at all sections, plus total travel time of the additional train, plus track
deviations from the master timetable for all trains. However, in the Swedish context, the
scheduled departure and arrival times of the existing trains are not to be changed by the
infrastructure manager. Furthermore, in our scenarios the assigned tracks for pre-planned
stops at stations, should remain unchanged. For the maintenance problems, the objective
function is the same as before, but the weight for track deviations is set to 300 (seconds).
From a minimization problem perspective, this means that a track change would be equivalent
to a 5 minute time deviation for one train. In maintenance problems arrival/departure times
and track allocations for the existing trains are flexible.

6.1.1 VIEs defined as main constraints

The influencing factors and the performance indicators that we consider when analyzing the
model performance are: size of problems, number of simplex iterations, time for presolve,
normalized objective value and gap over model runtime and the time for finding the first
feasible solution.

Size of problems. When implementing valid inequalities, the number of variables remains
the same but the number of constraints increases and this might lead to tighter bounds and
improve the performance of the model which should be tested. In the current experiments
for all three types of problems, the number of constraints doubled approximately after
implementing VIE1 (e.g. from approximately 2,800,000 in the basic model to approximately
5,700,000 when implementing VIE1 for inserting a single train). For VIE2 and VIE3 the
number of constraints increased slightly (less than 500,000 for the same example).
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Simplex iterations. Having fewer number of simplex iterations is not an indication of a
better performance. However, comparing the number of simplex iterations can show how the
model behaves when implementing certain valid inequalities. Experiments shows that the
number of simplex iterations was at least doubled when implementing VIE1. The changes in
the number of iterations for the other set of valid inequalities were not considerable.

Time for presolve. Time for presolve when implementing valid inequalities either increased
or remained almost the same as the time for presolve in the basic model. For VIE1, time for
presolve increased by 2 to 3 times.

Normalized objective value and gap over model runtime and the time for finding the first
feasible solution. Figure 3 shows the results from one scenario (1 out of 48) for inserting a
single train. On the left we have the normalized objective value and on the right we have gap
over model runtime. For this instance we can see that VIE2 and VIE3 perform almost the
same as the basic model while VIE1 changes the performance. It is obvious that in the basic
model and VIE2 and VIE3 the heuristics performed better, the first solution is found earlier.
Later and close to the optimal solution, the heuristics find the optimal solution. In VIE1 the
first solution is found later (compared to the basic model and other VIEs) and then there is
a steady computation over several iterations to find the optimal solution. Figure 4 shows the
normalized objective values and gap for 48 scenarios when applying VIE1. The dotted lines
are the results from applying VIE1 and the solid lines are the results from the basic model.
We can see that in almost all of the scenarios applying VIE1 makes the model slower often
because of not finding a good first feasible solution fast. We have also done some experiments
with providing the first feasible solution, still VIE1 does not perform better than the basic
model and the other two VIEs. From the gap results from the same set of experiments, it
is obvious that the first feasible solution is found later, compared to the basic model, and
the found solutions by heuristics are less frequent. When applying VIE1 proving optimality
takes more time compared to the other scenarios and the basic model.

I Remark. Based on the evidences we can conclude that VIE1 causes weaker LP relaxations.
In Table 1, for single train insertion problem, when applying VIE1, none of the scenarios had
a shorter computation time compared to the basic model. When applying VIE2, in 30 out of
48 scenarios (62% of the scenarios) the computation time was shorter (with maximum 436
seconds and average 43 seconds, on average 28%, improvements). When applying VIE3, in 24
out of 48 scenarios (50% of the scenarios) the computation time was shorter (with maximum
155 seconds and average 25 seconds, on average 25% improvements). When implementing all
sets of valid inequalities at the same time, VIE1 have a large influence on the results and
the results have the same properties as implementing VIE1 only. In Table 2, the results for
maintenance problems are presented. In most of the scenarios a feasible solution is found
within the time limit but the gap can be large. We can observe that VIE2 and VIE3 could
reduce the average computation time in scenarios with random one hour maintenance while
VIE1 increased the average runtime in all maintenance scenarios.

6.1.2 VIEs defined as user-defined cuts
We test whether applying VIEs as user cuts (instead of main constraints) can reduce the
computation time since user cuts are generated only if some user defined criteria are valid. In
our method we define the criterion where the gap is below 20%. However, VIE1 and VIE2 are
not pure valid inequalities and they indeed can cut feasible MIP solution in some scenarios,
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Figure 3 Comparing the normalized objective values and gap for one scenario instance.

Figure 4 Normalized objective values and gap for 48 scenarios when inserting a single train.

Table 1 Results of the scenarios for testing the impact of valid inequalities on inserting a single
train problem, 48 scenarios (min,avg,max).

Inserting
a single
train

Computation
Time
(mm:ss)

Gap
(%)

Objective
value

Non-
optimal
solutions
(#)

Improve in
computation
time (%)

Basic (00:07,02:13,–) (0,2,22) (1587,3802,7734) 6 NA
VIE1 (01:38,08:10,–) (0,9,32) (1587,3986,7751) 31 0
VIE2 (00:07,02:04,–) (0,2,22) (1587,3802,7734) 6 28% of 62% of scen.
VIE3 (00:07,02:07,–) (0,2,22) (1587,3802,7734) 6 25% of 50% of scen.
Gap tolerance: 0.03(%), Time limit: 10 min. ’–’ Terminated by time limit. All values are rounded.
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Table 2 Results of the scenarios for testing the impact of valid inequalities on allocating urgent
maintenance problems, 20 scenarios, (min,avg,max).

Closing
section VIE. Maintenance

time window

Computation
time
(mm:ss)

Gap
(%) Objective value

Basic 21-22 (00:03,00:47,–) (0,4,66)
(1998,9725,60900)
1 non-opt.
2 infeasible

Random VIE1 21-22 (00:07,01:13,–) (0,4,75)
(1998,10354,72220)
1 non-opt.
2 infeasible

VIE2 21-22 (00:03,00:49,–) (0,4,69)
(1998,9830,62777)
1 non-opt.
2 infeasible

VIE3 21-22 (00:03,00:47,–) (0,4,67)
(1998,9873,63549)
1 non-opt.
2 infeasible

Basic 1h random (00:12,02:59,–) (0,1,10)
(9053,25296,41783)
2 non-opt.
6 infeasible

TÖ-HÖ VIE1 1h random (00:29,03:01,–) (0,4,30)
(9053,25505,42465)
2 non-opt.
6 infeasible

VIE2 1h random (00:10,02:00,–) (0,1,10)
(9053,25294,41783)
2 non-opt.
6 infeasible

VIE3 1h random (00:09,01:49,–) (0,1,11)
(9053,25292,41783)
2 non-opt.
6 infeasible

Gap tolerance: 0.03(%), Time limit: 10 min. ’–’ Terminated by time limit. All values are rounded.

therefore they cannot be implemented as user-defined cuts by definitions in Gurobi [2]. On
the other hand, VIE3 can be implemented as user-defined cuts instead of main constraints.
By doing so, unlike what we expected, the average of model runtime increased from 127 s to
156 s and 9 solutions out of 48 scenarios were non-optimal after 10 min model execution,
compared to 6 in the basic model. One reason might be because of having too many Gurobi
call-backs during the optimization process.

Updating VIE2. Notice that in VIE2 we did not include the condition of "when happening
on the same track". We can apply VIE1 and VIE2 together to make sure that VIE2
is enforced when on the same track. In this case, as mentioned before, the results are
affected very much by VIE1. However, we can also reformulate VIE2 such that it will be
enforced only when events are happening on the same track. We tested whether we can
transform VIE2 to pure valid inequality by applying some changes. Hence, we include track
allocation in the constraints 5 and 6 and update them, in multi tracks sections (Cj ≥ 2), for
j ∈ J, s ∈ Si, k ∈ {1...|Kj | − 2}, q ∈ {1...Cj}:

λ(j,k,1) + λ(j,k+1,1) + x(i(j,k),s(j,k),q) + x(i(j,k+1),s(j,k+1),q) + x(i(j,k+2),s(j,k+2),q)

≤ 4 + λ(j,k,2) (8)
γ(j,k,1) + γ(j,k+1,1) + x(i(j,k),s(j,k),q) + x(i(j,k+1),s(j,k+1),q) + x(i(j,k+2),s(j,k+2),q)

≤ 4 + γ(j,k,2) (9)
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The above constraints narrow VIE2 to those events that happen on the same track q. We
call constraints 8 and 9 Updated-VIE2. The results shows that when inserting one single
train, still the Updated-VIE2 can cut MIP solutions, meaning that they are not pure valid
inequalities and they cannot be implemented as user cuts. However, when implemented as
additional main constraints, in 33% of scenarios (16 out of 48) we had improvements in
runtime with average 18% and maximum 70%. The average runtime became 118 s (compared
to 124 s). For maintenance problems, in the scenarios that we tested, Updated-VIE2 never
cut a MIP solution and hence could be implemented as user cuts. The results show that for
random section scenarios only in 2 scenarios (out of 20) the model runtime decreased (with
max 2%). In all the scenarios for random one hour in section TÖ-HÖ the model runtime
increased (compared to the basic scenario).

6.2 Results of the experiments for hybrid big M
Applying the hybrid big M method shows the impact of the big M value on the computation
time. In real practice bigM can be bounded to the time window of the timetable. The results
show that the computation time is very sensitive to sharp values for M . The computation
time for those scenarios which took 1 minute approximately (in all three types of problems),
dropped to 1 or 2 seconds. However, in real practice it is not easy to estimate the sharp
value of big M since if M is not big enough it might change the solution space. On the other
hand having very small values for big M might cause confusion in Gurobi because of the
scaling problem. Hence, when the sharp value is unknown, it is better to have relatively
large big M values and let the solver deal with the scaling problem itself.

6.3 Other influencing factors
We use solver Gurobi with default parameter setting. However, Gurobi has an option for
parameter tuning and we can let the parameter tuning option select the best values for
parameters and analyze the effects on model runtime. When inserting a single train, following
the tuning option recommendations we could decrease model runtime for an instance from 115
s to 18 s. Following the recommendation from the parameter tuning option for maintenance
problem, model runtime decreased from 6:06 to 4:43 (mm:ss) for an instance. Although the
tuning option can help decreasing the model runtime, it is difficult to find a tuning pattern
for different types of problems. This means that to have relatively good results, the set of
tuning parameters needs to be optimized for each separate problem.

7 Conclusions and future research

The strengths and weaknesses of a MILP model are analyzed for certain practical timetabling
problems. To decrease the computation time, three different groups of valid inequalities were
tested on a rather limited set of scenarios and their impact on computation was studied.
Results show that valid inequalities VIE2 (transitivity) and VIE3 (section balance) for some
scenarios can improve model performance but they did not have a significant effect on the
computation time. Valid inequalities VIE1 (enforcing values for γ and λ), caused weak
relaxation and they did not improve model performance for the limited number of scenarios
we evaluated. The reason behind is that this set of valid inequalities can cut degenerate
MIP solutions. Therefore, they make the model tighter and remove some feasible MIP
solutions which have a negative impact on LP relaxation and the embedded heuristics in
Gurobi. Valid inequalities can be implemented as user defined cuts in Gurobi only if the
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VIEs do not cut any feasible MIP solutions. In our scenarios this method is therefore possible
only for VIE3 (section balance). However, after implementing VIE3 as user-cuts the model
runtime increased slightly. This might be because of having too many call-backs during the
optimization process. The parameter tuning option in Gurobi is strong but it is scenario
specific and the optimal parameter setting for one scenario cannot be extended to the other
scenarios. Furthermore, this tool is only useful if optimality can be reached in a reasonable
time. Providing sharp big M values for the studied scenarios, improved model performance
which can indicate that the model is sensitive to big M values.

In this research only those boosting methods related to improving model formulation were
explored. Introducing auxiliary variables to improve LP relaxations and boosting methods
related to providing search algorithms can be investigated in future studies.
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A Appendix: The applied timetabling model

In this appendix a complete description of the used optimization model is given. The model
is a mixed integer linear program (MILP) and an event-based description of railway traffic.
An event represents a train i passing a section j while occupying track q. We distinguish
between train event s and section event k. To denote a train involved in the kth event of
section j, we write i(j,k) and we let s(j,k) denote the corresponding train event. Given a train
i and its train event s, we identify the corresponding section as j(i,s).

Sets and parameters. T : set of trains. J : set of sections. Si: ordered set of events for train
i ∈ T , it contains all the section numbers traversed by train i. Kj : ordered set of events for
section j ∈ J , it contains all the train numbers that pass section j. Cj : number of tracks at
each station j. t̂B(i,s): initial start time of train i ∈ T at event s ∈ Si. t̂E(i,s): initial end time
of i ∈ T at event s ∈ Si. tcj : clearance time at section j. tmin

(i,s): minimum time required for
train i to pass event s. q(i,s): track number assigned to train i at train event s. li: Length
for train i. L(j,q): Length for track q in section j. M : sufficiently large constant, here 86400
seconds. ht: technical minimum headway time between any two consecutive trains i and i+1
on a section. ρ(i,s) is 1 if train i has a scheduled stop at train event s and 0 otherwise. δ(i,s)
is 1 if event s for train i is on a line section and 0 if event s for train i is at a station section.
µ(j) is 1 if section j is a line section and 0 if section j is a station section. φ(i) is 1 if direction
for train i is southbound and 0 if direction for train i is northbound. θ(j) is 1 if simultaneous
arrival at station j is allowed and is 0 if simultaneous arrival at station j is not allowed.

Variables. tB(i,s) ≥ 0: start time of train i ∈ T at event s ∈ Si. tE(i,s) ≥ 0: end time of train
i ∈ T at event s ∈ Si. d(i,s) ≥ 0: absolute deviation between the new calculated departure
time and the initial departure time for train i at event s. a(i,s) ≥ 0: absolute deviation
between the new calculated arrival time and the initial arrival time for train i at event s.
x(i,s,q) is 1 if track q is assigned to train i at event s and 0 otherwise. γ(j,k,v) is 1 if event k
occurs before event k+v, as in the initial timetable (k<k+v) and is 0 otherwise. λ(j,k,v) is 1
if event k is changed to occur after event k+v (k<k+v & Cj ≥ 2), and 0 otherwise. ω(j,k,v)
is 1 if event k is on a station and occurs before event k+v and (k<k+v,δ(i(j,k),s(j,k)) = 0,
δ(i(j,k+v),s(j,k+v)) = 0, Cj ≥ 2). It takes value 0 if event k is on a station and occurs after
event k+v. y(i,s) ≥ 0 is 1, if the allocated track number is different from the allocated track
number in the master timetable, 0 otherwise.

Objective function

min[
∑
i∈T

∑
s∈Si

((d(i,s) + a(i,s)) · w1) +
∑
i∈T

∑
s∈Si

(y(i,s) · w2)] (10)

Constraints

|tB(i,s) − t̂
B
(i,s)| ≤ d(i,s) , i ∈ T, s ∈ Si (11)

|tE(i,s) − t̂
E
(i,s)| ≤ a(i,s) , i ∈ T, s ∈ Si (12)

x(i,s,q′) ≤ y(i,s) , i ∈ T, s ∈ Si, Cj(i,s) ≥ 2 & q′
(i,s) 6= q(i,s) (13)
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y(i,s) ≤ 1− x(i,s,q′) , i ∈ T, s ∈ Si, Cj(i,s) ≥ 2 & q′
(i,s) = q(i,s) (14)

y(i,s) ≤ 0 , i ∈ T, s ∈ Si, Cj(i,s) = 1 (15)

tE(i,s) = tB(i,s+1) , i ∈ T, s ∈ Si (16)

tE(i,s) ≥ t
B
(i,s) + tmin

(i,s) , i ∈ T, s ∈ Si (17)

tB(i,1) ≥ t̂
B
(i,1) , i ∈ T (18)

tE(i,s) ≥ t̂
E
(i,s) , i ∈ T, s ∈ Si : ρ(i,s) = 1 (19)

x(i,s,q(i,s)) = 1 , i ∈ T, s ∈ Si : δ(i,s) = 1 (20)

tB(i,1) = t̂B(i,1) , i ∈ T : t̂B(i,1) ≤ T0 (21)

x(i,1,q(i,1)) = 1 , i ∈ T : Cj(i,1) ≥ 2, t̂B(i,1) ≤ T0 (22)

When event k happens before event k + v, as it is in the initial plan then: j ∈ J & k ∈
{1...(|Kj | − 1)} & v ∈ {1...(|Kj | − k)} : φi(j,k) 6= φi(j,k+v)

tB(i(j,k+v),s(j,k+v)) − t
E
(i(j,k),s(j,k)) ≥ γ(j,k,v) · tcj −M · (1− γ(j,k,v)) (23)

When event k happens after event k + v, the order is reversed compared to the initial plan.

tB(i(j,k),s(j,k)) − t
E
(i(j,k+v),s(j,k+v)) ≥ (1− γ(j,k,v)) · tcj −M · γ(j,k,v) (24)

When the order of trains is reversed compared to the initial order; this constraint is only
necessary for double tracks.

tB(i(j,k),s(j,k)) − t
E
(i(j,k+v),s(j,k+v)) ≥ λ(j,k,v) · tcj −M · (1− λ(j,k,v)) (25)

λ(j,k,v) + γ(j,k,v) ≤ 1 , Cj ≥ 2 (26)

For single and double track keeping the initial order: j ∈ J & k ∈ {1...(|Kj | − 1)} & v ∈
{1...(|Kj | − k)} : φi(j,k) = φi(j,k+v)

tB(i(j,k+v),s(j,k+v)) − t
B
(i(j,k),s(j,k)) ≥ ht −M · (1− γ(j,k,v)) (27)
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tE(i(j,k+v),s(j,k+v)) − t
E
(i(j,k),s(j,k)) ≥ ht −M · (1− γ(j,k,v)) (28)

For double tracks with reverse order: j ∈ J & k ∈ {1...(|Kj | − 1)} & v ∈ {1...(|Kj | − k)} :
φi(j,k) = φi(j,k+v)

tB(i(j,k),s(j,k)) − t
B
(i(j,k+v),s(j,k+v)) ≥ ht −M · (1− λ(j,k,v)) (29)

tE(i(j,k),s(j,k)) − t
E
(i(j,k+v),s(j,k+v)) ≥ ht −M · (1− λ(j,k,v)) (30)

Cj(i,s)∑
q=1

x(i,s,q(i,s)) = 1 , i ∈ T, s ∈ Si, Cj(i,s) ≥ 2 (31)

x(i,s,q(i,s)) = x(i,s+1,q(i,s+1)) , i ∈ T, s ∈ Si : Cj(i,s) ≥ 2, Cj(i,s) = Cj(i,s+1) (32)

For j ∈ J, s ∈ Si, i ∈ T, k ∈ {1...|Kj | − 1 v ∈ {1...|Kj | − k} : µj(i,s) = 0&Cj ≥ 2&θ(j) = 0

x(i(j,k+v),s(j,k+v),q(i,s)) + x(i(j,k),s(j,k),q(i,s)) ≤ γ(j,k,v) + λ(j,k,v) + 1 (33)

tB(i(j,k+v),s(j,k+v)) − t
B
(i(j,k),s(j,k)) ≥ t

c
j · ω(j,k,v) −M · (1− ω(j,k,v)) (34)

tB(i(j,k),s(j,k)) − t
B
(i(j,k+v),s(j,k+v)) ≥ t

c
j · (1− ω(j,k,v))−M · ω(j,k,v) (35)

γ(j,k,v) ≤ ω(j,k,v) (36)

λ(j,k,v) + ω(j,k,v) ≤ 1 (37)

For i ∈ T, s ∈ Si, q ∈ {1...|Cj |} : µj(i,s) = 0&ρi,s = 0&Cj(i,s) ≥ 2&li > L(j,q)

tE(i,s) − t
B
(i,s) ≤M · (1− x(i,s,q)) (38)

A.1 Adjustments in the extended model
The model is extended to solve problems of inserting additional trains and allocating slots
for urgent maintenance (defined as virtual additional trains). All the additional trains should
respect all the previous constraints. Therefore the additional trains are added to the set of
trains T but they can be distinguished by their train number.
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Additional sets and parameters. n: Number of new trains to be inserted. mi: Train
numbers for train i. The list of trains also include the train numbers for the additional
trains. oe: Train numbers for additional train e. p(i,e): Minimum travel time for train i when
mi = oe. r: Start time of the time window in seconds. Here it is equal to 16*60*60. u: End
time of the time window in seconds. Here it is equal to 23*60*60. ge: Random Start Time
of additional train e. di: Last event for train i at its destination.

Additional variables. z(i,e): Travel time for train i whenmi = oe. It is a continuous variable.
y(i,s) ≥ 0: 1, if the allocated track number is different from the allocated track number in
the master timetable, 0 otherwise.

Adjusted objective function. When inserting additional trains, since the existing trains
are fixed then the time deviation from the master timetable for the existing trains will be
zero. The part for track deviation can be separated for the existing and the additional trains.
w1 and w1 are some weights.

min[
∑
i∈T

∑
s∈Si

(y(i,s) · w1) +
∑
i∈T

n∑
e=1

(z(i,e) · w2)] (39)

Additional constraints. For the travel time of the additional trains: For i ∈ T, e ∈ {1...n} :
mi = oe

tE(i,di) − t
B
(i,1) ≤ z(i,e) (40)

For respecting the insertion time window: For i ∈ T, e ∈ {1...n} : mi = oe

tE(i,di) ≤ u (41)

tB(i,1) ≤ r (42)

tB(i,1) ≤ ge + 0.5 · 60 · 60 (43)

tB(i,1) ≥ ge − 0.5 · 60 · 60 (44)

The arrival and departure times for the existing trains are fixed according to their corres-
ponding values in the master timetable. For fixing the arrival and departure times for the
existing trains: For i ∈ T, e ∈ {1...n} : mi 6= oe

tB(i,s) = t̂B(i,s) (45)

tE(i,s) = t̂E(i,s) (46)

For the maintenance problems, constraints 45 and 46 are relaxed.
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Abstract
The task of the train timetabling problem or track allocation problem is to find conflict free
schedules for a set of trains with predefined routes in a railway network. Especially for non-
periodic instances models based on time expanded networks are often used. Unfortunately, the
linear programming relaxation of these models is often extremely weak because these models
do not describe combinatorial relations like overtaking possibilities very well. In this paper we
extend the model by so called connected configuration subproblems. These subproblems perfectly
describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a
Lagrangian relaxation approach we solve several of these subproblems together in order to produce
solutions which consist of combinatorially compatible schedules along the track segments. The
computational results on a mostly single track corridor taken from the INFORMS RAS Problem
Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed,
for this instance the solution of the Lagrangian relaxation is already integral.
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Keywords and phrases combinatorial optimization, train timetabling, Lagrangian relaxation,
connected configurations
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1 Introduction

The train timetabling problem (TTP) or track allocation problem aims for determining
schedules for a set of trains in a railway network such that certain technical constraints are
satisfied. The authors of [7] provide a recent overview of railway timetable design in practice
and the combinatorial optimisation models that have been proposed for this application. They
identify and compare two major streams of combinatorial optimisation models for railway
timetabling – periodic timetabling based on the classic Periodic Event Scheduling Problem
(PESP) and aperiodic train timetabling. The problem of timetabling is closely related to
the more operational task of train dispatching, see [5] and [19]. In these applications models
based on disjunctive formulations are successfully in use which where introduced for classic
job scheduling in [21].

In this work, we focus on the non-periodic case which goes back to the seminal paper
of [2]. The authors introduced a time index model which is the basis for a vast amount of
literature in which this model was used or extended in various aspects or applications, see
the following selection [1, 4, 6, 8, 9].

We investigate the time index model variant of the train timetabling model and in
particular improve the quality of the relaxation. Our model is based on configuration
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networks introduced in [1], which model valid orderings and sequences of train on a single
track in the network. A similar approach describing feasible configurations using comparability
graphs for train schedules has been investigated in [3]. Extending first ideas from [12], the
new approach is to represent combinatorial properties like overtaking possibilities explicitly
in the model. Unlike [12], which only handled track segments without overtaking possibility,
this includes cases where a limited siding capacity is available along a sequence of tracks.

In a Lagrangian relaxation approach the TTP is solved exactly on small parts of the
network (one or two infrastructure arcs) for small subsets of trains (up to three). By
carefully solving the subproblems not in isolation but together combinatorial compatibility
is guaranteed along a sequence of tracks. We will illustrate the power of the new model
and solution approach in some preliminary but very encouraging numerical tests. Indeed,
our Lagrangian relaxation approach is able to compute an integer solution for a small but
challenging instance of 14 trains on a corridor consisting of single and double track parts
and few additional overtaking places.

The paper is organised as follows. Section 2 formally introduces the TTP. Section 3 re-
capitulates the classic integer programming model based on a time indexed graph formulation
and the configuration based models. Section 4 explains the entire solution approach based
on Lagrangian relaxation. We will introduce the concept of strong connected configurations
in Section 5 in order to model orderings of small subsets of trains for critical parts of the
network. The computational experiments are presented in Section 6 showing that the new
model and solution approach are clearly much stronger than the classic models. Finally, we
conclude and give suggestions for future work in Section 7.

Definitions and Notations

In this paper we use the following notation. We mainly use directed graphs G = (V,A),
which may contain loops (u, u) ∈ A. For a directed arc a = (u, v) ∈ A we write uv and the
arc running in the opposite direction is ←−a = (v, u) (if it exists). Given a subset of the nodes
V ′ ⊆ V , then G[V ′] denotes the subgraph induced by V ′. Let x, y ∈ Rn be two vectors, then
the inner product is 〈x, y〉 :=

∑n
i=1 xiyi. For a subset of the indices I ⊆ {1, . . . , n} the vector

xI refers to the components of x corresponding to I.

2 The Train Timetabling Problem

In this section we describe the Train Timetabling Problem (TTP). We focus with our
description on the aspects that we need in our subsequent analysis and ignore many properties
that have been considered in the literature, in particular for practical applications.

We consider an infrastructure (railway) network GI = (V I , AI). The nodes V I correspond
to stations, track switches or crossings in the network and the arcs AI correspond to physical
tracks or track sections. If trains might stop and wait at some node v ∈ V I (e. g. if v is
a station), then vv ∈ AI , otherwise, if trains must not wait at v (e. g. if v is a crossing),
then vv /∈ AI . Next we have a finite set of trains R with predefined and fixed routes
Gr = (V r, Ar) ⊆ GI , r ∈ R, i. e. Gr corresponds to a path in GI with the exception that
it might contain loops vv ∈ Ar if train r is allowed to wait at v. Each train has a starting
time ~tr ≥ 0 and the time it takes for train r to traverse arc a ∈ Ar is called its running time
~tra ∈ N0 (in minutes). If a = vv ∈ V r, i. e. if a is a loop corresponding to waiting at v, we set
~tra := 1.

Considering all trains running in the network together, certain technical and operational
constraints must be satisfied. We deal with two main conditions, station capacities and
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u v

cv = 3

wc(u,v) = 1 c(w,v) = 2 u v

cv = 4

wc(u,v) = 2 c(w,v) = 3

Figure 1 Small stations with absolute and directional capacities.

headway times. First, each node is assigned an absolute capacity and each arc is assigned
a directional capacity c : V I ∪ AI → N. The absolute capacity cv for a node v ∈ V I is the
maximal total number of trains that may visit v at the same time. The directional capacity
ca for an arc a = (u, v) ∈ AI is the total number of trains reaching v over a that may be
at v at the same time. These two capacities suffice to model small stations and overtaking
places quite accurately, see Figure 1.

Second, for each pair of trains r, r′ ∈ R using the same infrastructure arc a ∈ AI ,
a ∈ Ar ∩ Ar′ , there is a minimal headway time t̃ar,r′ ∈ N0, which is the minimal time (in
minutes) that train r′ must wait before entering arc a after r has entered a. Note that
headway times may also exist for trains running in opposite directions if a corresponds to a
physical single line track. In slight abuse of notation we use for this case t̃ar,r′ , too, although
a = (u, v) ∈ Ar and ←−a := (v, u) ∈ Ar′ . We will assume throughout the paper that headway
times satisfy the triangle inequality t̃ar,r′ + t̃ar′,r′′ ≥ t̃ar,r′′ , see [20] for an in-depth analysis of
headway times.

The goal of the TTP is to determine precise arrival and departure times for each train at
each of its stations so that all trains run “as early as possible” (we deliberately do not make
this more specific at this point) such that the compound schedule satisfies the capacity and
headway restrictions.

3 The Model for the TTP

Several models for the TTP have been proposed in the literature. We use one successful
approach that is based on time discretised and time expanded networks. Let T = {1, 2, . . . } =
N be the set of discretised time steps (e. g. in minutes). Then GrT = (V rT , ArT ) is the associated
time expanded graph with (see Figure 2)

V rT := V r × T , ArT :=
{

((u, t), (v, t+ ~truv)) : uv ∈ Ar, t ∈ T
}
.

A feasible train run or train schedule is a path P r ⊆ GrT starting in a node corresponding to
the first station (at some arbitrary time t ∈ T ) and ending in a node corresponding to the
last station (at some arbitrary time). We denote the set of all feasible schedules by Pr. In
order to model the TTP as a mixed integer program (MIP) we introduce binary variables
xr : ArT → {0, 1}, r ∈ R, with the usual interpretation xra = 1 ⇐⇒ a ∈ P r ∈ Pr if P r is the
path (schedule) selected for r. With a slight abuse of notation we write xr ∈ Pr if xr is the
incidence vector of a path P r ∈ Pr.

Next we model the capacity and headway constraints. For a given infrastructure arc
a ∈ AI we denote by Ra :=

{
r ∈ R : a ∈ AI

}
the set of trains running on this arc. The
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St 1 St 2 St 3 St 4 St 5 St 6
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Figure 2 Train graph Gr and its time expansion Gr
T . Nodes at which r may wait have a loop.

The red path corresponds to the train’s timetable.

absolute and directional capacity constraints can be formulated as follows:∑
r∈R

a=((u,tu),(v,t))∈Ar
T

xra ≤ cv, v ∈ V I , t ∈ T , (1a)

∑
r∈Ruv

a=((u,tu),(v,t))∈Ar
T

xra ≤ cuv, uv ∈ AI , u 6= v, t ∈ T . (1b)

Note that the left-hand side of (1b) sums only over the (arcs of the) trains Ruv actually
using the arc uv ∈ AI , whereas (1a) sums over all trains arriving at v ∈ V I independent of
the source node.

In order to model headway constraints we use the idea of configurations suggested in [1].
First observe that two train run arcs ((u, tu), (v, tv)) ∈ Ar and ((u, t′u), (v, t′v)) ∈ Ar

′ with
u 6= v violate the headway restrictions on infrastructure arc a = (u, v) ∈ AI if and only if

−t̃ar,r′ < tu − t′u < t̃ar′,r, (2)

(i. e. if the departure times at u are too close). This allows to define a conflict graph
Ghw = (Vhw, Ehw) on the run arcs, i. e.

Vhw := {(a, r) : a = ((u, tu), (v, tv)) ∈ Ar, u 6= v, r ∈ R} ,

Ehw :=
{
{(a, r), (a′, r′)} : a = ((u, tu), (v, tv)) ∈ Ar, a′ = ((u, t′u), (v, t′v)) ∈ Ar

′
,

u 6= v and r = r′ or a, a′ satisfy (2)
}
.

Note that each train r ∈ R can run only once on each infrastructure arc, so two different
runs (a, r), (a′, r) of the same train (on the same infrastructure arc) are implicitly in conflict.
The configuration model suggested by the authors in [1] works by enforcing the headway
restrictions independently on each infrastructure arc. For this, let uv ∈ AI , u 6= v, and
denote by

V uvhw = {(a, r) ∈ Vhw : a = ((u, tu), (v, tv)) ∈ ArT , r ∈ R}

the set of all run arcs corresponding to some train running on uv. A configuration is
the characteristic vector of some set of conflict free train runs on uv. In other words, a
configuration corresponds to a stable set in the conflict graph Guvhw := Ghw[V uvhw ]. We set

Cuv := {x : V uvhw → {0, 1} : x is a characteristic vector of a stable set in Guvhw} .
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In order to use configurations in the model, we introduce configuration variables zuv : V uvhw →
{0, 1}, uv ∈ AI , and coupling configuration constraints

xra = zuv(a,r), a = ((u, tu), (v, tv)) ∈ ArT , r ∈ R, uv ∈ AI . (3)

Constraints (3) couple the train graphs with the configurations and ensure that a train may
run on an arc a ∈ ArT if and only if that arc is allowed in the selected configuration.

The objective function is very simple and taken from [11]. For a train run arc a =
((u, tu), (v, tv)) ∈ ArT , u 6= v, r ∈ R, let tv be the earliest possible arrival time of r at v and
`ruv := ~truv/

∑
a∈Ar

~tra the relative length (running time) of arc uv compared to the complete
train path. Let δ > 0 be the discretisation step size (in seconds) and αr, r ∈ R, be some
specific weight factor αr > 0. The cost of arc a = ((u, tu), (v, tv)) ∈ ArT is

wra =
{
αr · `ruv · (δ · (tv − trv))

2
, u 6= v,

0, otherwise.
(4)

These costs penalise a late arrival of a train relative to the earliest possible arrival time
quadratically at each node the train visits. So each train aims to run as early as possible with
large delay of one train being more expensive than small delays distributed to several trains.
Note that the structure of this cost function allows to use the dynamic graph generation
technique introduced in [14]. In particular, there is no need for an a-priori bounded maximal
time index because the network grows automatically as required during the solution process.

Finally, the configuration formulation of the TTP is

minimise
{∑
r∈R
〈wr, xr〉 : xr ∈ Pr, r ∈ R, za ∈ Ca, a ∈ AI , (1), (3)

}
. (TTP-cfg)

Constraints xr ∈ Pr correspond to paths in GrT , r ∈ R, and can be formulated by linear
flow constraints. Constraints za ∈ Ca, a ∈ AI , are much more challenging, because they
correspond to a stable set polytope in Gahw, a ∈ AI . The authors in [1] used a weaker
formulation via so called configuration networks, which can also be described by linear flow
constraints. The model (TTP-cfg) therefore gives rise to a MIP formulation for the TTP,
which could, in principle, be solved by state-of-the-art solvers. This approach, however, is
computationally intractable even for small instances. Therefore, we use another solution
approach to be described in the next section.
I Remark. Another typical formulation (see, e. g. [11]) can be obtained by replacing configura-
tions and constraints (3) by inequalities of the form xra+xr′

a′ ≤ 1 for all {(a, r), (a′, r′)} ∈ Ehw.
These inequalities forbid the use of train run arcs that violate headway restrictions. However,
this formulation is often even weaker than the configuration formulation [1] and will not be
discussed in this paper.

4 Solution Approach

Standard solution approaches for (TTP-cfg) are usually based on column generation or
Lagrangian relaxation, see, e. g. [1]. In this work we focus on Lagrangian relaxation, which
we used in all of our tests.

Lagrangian relaxation is based on the following observation: without the coupling con-
straints (1) and (3), problem (TTP-cfg) decomposes into smaller, independent subproblems.
Therefore, instead of enforcing these constraints their violation is penalised in the objective
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function. Write the coupling constraints (1) as
∑
r∈RM

r
capx

r ≤ c for appropriate matrices
Mr

cap, r ∈ R. Then the Lagrangian dual problem is

max
ycap≥0
ycfg free

[
−cT ycap +

∑
r∈R

min
xr∈Pr

〈
wr + (Mr

cap)T ycap + ycfg, x
r
〉

+
∑
a∈AI

min
za∈Ca

〈−ycfg, za〉

]
.

An optimal solution of this problem gives a lower bound on the optimal objective value of the
primal problem (TTP-cfg). Because the minimum over affine functions is concave and the
sum of concave functions is concave as well, the term within the max is a concave function in
(ycap, ycfg). Hence (by taking its negative) the above problem is a convex optimisation problem
that can be solved using, e. g. subgradient or bundle methods. In our implementation we use
a proximal bundle method [17] that in addition to optimal multipliers ycap, ycfg computes
approximate (fractional) primal solutions xr, r ∈ R. These algorithms require the solution
of the subproblems

min
xr∈P r

〈
wr + (Mr

cap)T ycap + ycfg, x
r
〉
, r ∈ R, (5)

min
za∈Ca

〈−ycfg, za〉 , a ∈ AI , (6)

for given Lagrangian multipliers ycap, ycfg. The exact algorithmic details of this solution
approach are not important in this paper, as we focus on the modelling aspect. We refer the
reader to [11] for more information.

Note that solving the subproblems (5) is easy (because they are shortest-path problems
in acyclic networks, see [11]), but solving (6) corresponds to solving a weighted stable-set
problem in Gahw, which is hard in general. However, if the number of trains is sufficiently
small, the subproblems (6) can be solved efficiently. This and the observation, that in many
instances typically only few trains compete for the same physical track at the same time,
motivate the strong configuration approach to be described in the next section.

5 Strong Configurations for Small Subsets of Trains

One important step in solving (TTP-cfg) is the computation of lower bounds, e. g. by the
Lagrangian relaxation approach sketched in the previous section. The quality of these bounds
has a major impact on the performance and the solution quality of the overall solution
process. However, even if configuration subproblems (6) are solved exactly, optimal solutions
of the relaxation are very weak, even for trains running on a corridor. Figure 3 shows a
typical situation: two trains run on a sequence of single line tracks, such that no overtaking is
allowed on the intermediate nodes. For instance, the intermediate nodes could be small local
stations without overtaking/passing possibility or the arcs represent a sequence of blocking
areas (guarded by signals) which must not be occupied by more than one train. In particular,
stopping and waiting at these intermediate nodes is allowed. Obviously, because there is no
overtaking possibility, in a feasible solution one train must go first through the complete
sequence of tracks and then the other. However, the fractional solution can easily exploit
the weak formulation: both trains can run fractionally in short succession and pass at an
intermediate node.

The reason for this behaviour is that the combinatorial properties of the network (no
overtaking is possible) are not represented well in the current linear model. Headway
constraints are only enforced on each single infrastructure arc in isolation but the relation of
neighbouring arcs is only enforced by the integrality, which, however, is lost when solving
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Figure 3 Tiny example with two trains running in opposite directions on a single line track with
two passing possibilities. The white nodes have capacity 2, the other nodes have capacity 1. Nodes in
the same row correspond to a sequence of stations at the same time step, nodes in the same column
correspond to one station but at different time steps (time grows from top to bottom). All arcs are
single track. The left picture shows an optimal solution for the standard linear relaxation. Note
that the solution exploits the weak formulation allowing the two trains to meet and pass on a single
line part. The right picture shows the optimal solution if the strong configurations of Section 5.3 are
used: one train has to wait at a capacity 2 node for the other train to pass.

a relaxation. In [12] an approach has been presented that adds some of these relations on
track sections without overtaking to the model in terms of so called “ordering constraints”.
This works by enriching the configuration subproblems by additional variables and coupling
them by special equality constraints that enforce that all trains run in the same order on
each arc of the track section. Unfortunately, this approach cannot easily be extended to
more complex situations.

Thus, we present in this paper an alternative, more direct way of adding combinatorial
relations to the relaxed models. We will apply this approach to the basic case of no overtaking
possibilities (the case the ordering constraint approach has been designed for) in Section 5.3
and show how it can easily be extended to more general settings, which we demonstrate in
Section 5.4.

5.1 Connected Configurations

Motivated by the example shown in Figure 3, the goal of our approach is to prevent incompat-
ible configurations that might appear if the subproblems are evaluated in isolation. Whereas
in [12] the idea was to use additional constraints that forbid incompatible configurations,
the new idea is more direct. When evaluating the subproblems (6) for certain adjacent
infrastructure arcs, we force the generated configurations to be compatible during the solution
of the subproblems. This requires that the subproblems are not evaluated in isolation but
some of them must be evaluated together. The downside of this approach is that it leads to
much more difficult subproblems so that a careful design of the subproblems and the solution
process is mandatory.

Let P I = v0P
I
1 v1 . . . P

I
k vk, vi ∈ V I , be a path in the infrastructure network consisting of

subpaths P Ii , i = 1, . . . , k. Consider a subset R′ ⊆ R of trains running over the complete path
P I . Furthermore, for i = 1, . . . , k we denote by πini , πouti : {1, . . . , |R′|} → R′ two orderings
of the trains R′ entering and leaving path P Ii at vi−1 and vi, respectively. The idea is to
solve the TTP exactly on each subpath P Ii for trains R′ such that the trains enter P Ii in
order πini at vi−1 and leave P Ii with order πouti at vi. Thus, the exact solutions for each P Ii
are connected to a solution on the entire path P I by selecting solutions of compatible orders
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only, i. e. enforcing

πouti−1 = πini , i = 1, . . . , k. (7)

Formally, for a given path P I and trains R′ let AIR′ [P I ] be the set of those arcs in
⋃
r∈R′ ArT

that correspond to P I . Then we denote the set of extended configurations

CP
I ,R′

πin,πout :=
{
x : AIR′ [P I ]→ {0, 1} : x is a characteristic vector of a feasible

timetable for R′ on P I with orders πin, πout
}
.

(8)

This set consists of all vectors corresponding to feasible timetables for R′ on P I where the
trains run in orders πin and πout when entering and leaving P I , respectively. In other words,
each vector in CP

I ,R′

πin,πout is a feasible solution when restricting the TTP to only scheduling
trains R′ on path P I . Note, in contrast to the standard configurations Ca, the extended
configurations may span more than one infrastructure arc, but the solutions are restricted
to the fixed orders πin, πout. Given linear objective terms c̃i, i = 1, . . . , k, we define the
connected configurations subproblem as

minimise
k∑
i=1

min
{
〈c̃i, x〉 : x ∈ CP

I
i ,R

′

πin
i
,πout

i

}
subject to πouti−1 = πini , i = 1, . . . , k,

πini , π
out
i orders of R′.

(9)

Problem (9) selects feasible configurations on each subpath P Ii in such a way that the order
of trains on consecutive subpaths must match. Note, however, that solutions of (9) are not
feasible TTP solutions on the whole path P I in general: although the orders of trains on
P Ii and P Ii+1 must be the same, the exact times when the trains leave P Ii may not match
the exact times when the trains enter P Ii+1. We deliberately allow this inexactness in the
subproblem in order to keep (9) computationally tractable (because really solving the TTP
exactly on the whole path P I becomes very hard quickly).

5.2 Solving Connected Configuration Subproblems
In general, the connected configurations subproblem is computationally hard, in particular,
enforcing the compatibility constraints (7). However, if the number of trains R′ is sufficiently
small (e. g. |R′| ≤ 5), we can solve it by full enumeration over all possible train orders.
First, consider the extended configuration subproblem on some subpath P Ii for fixed orders
πini , π

out
i :

vi,i(πini , πouti , c̃i) := min
{
〈c̃i, x〉 : x ∈ CP

I
i ,R

′

πin
i
,πout

i

}
. (10)

This subproblem can be modelled and solved straight forward as MIP (it is basically a
standard TTP model on a very small network, additionally with fixed train orders). Now
denote by

vi1,i2(πin, πout) := minimise min
i2∑
i=i1

{
〈c̃i, x〉 : x ∈ CP

I
i ,R

′

πin
i
,πout

i

}
subject to πouti−1 = πini , i = i1 + 1, . . . , i2,

πini1 = πin, πouti2 = πout.
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the optimal value of the connected configuration subproblem restricted to the subpath
between vi1 and vi2 with fixed first and last order. Then the following simple recursion holds
for i1 < i2

vi1,i2(πin, πout) = min
π order of R′

[
vi1,i1(πin, π) + vi1+1,i2(π, πout)

]
(11)

and the optimal value of (9) can be computed with dynamic programming:

Algorithm 1 Solve connected configuration subproblem
1 Input: P I

i , c̃i , i = 1, . . . , k
2 for i := 1 to k do
3 foreach πin

i , πout
i do

4 compute vi,i(πin
i , π

out
i ) by solving (10)

5 end
6 end
7 compute an optimal solution of (9) by (11)

For each i the loop in lines 3–5 is executed at most (|R′|!)2 times, i. e. we need to solve at
most k · (|R′|!)2 (independent) subproblems (10). The dynamic programming step in line 7
is extremely quick (less than 1 ms) because the recursion has only a depth of k and in each
step only (|R′|!)2 numbers have to be considered (recall we assume |R′| ≤ 5).

5.3 Configurations on Non-Overtaking Sections
In this section we consider the special case of an infrastructure path P I without overtaking
possibility. This implies that the order of trains must not change along the whole path.
Therefore, we decompose P I = v0a1v1 . . . akvk with ai ∈ AI into single-arc subpaths P Ii =
vi−1aivi, i = 1, . . . , k. Obviously, overtaking on one of the subpaths P Ii is not allowed, hence
the extended configuration subproblems (10) have only a feasible solution if πini = πouti .
Note that this reduces the number of problems to be solved for P Ii from (|R′|!)2 to |R′|!.
Furthermore, because no two trains can change their order along P I , intuitively it might be
enough to enforce correctness for each pair of trains only. Hence, we only consider subsets
of exactly two trains |R′| = 2, reducing the number of subproblems to be solved on each
subpath P Ii to two. Therefore, in order to solve (9) we only need to solve k subproblems on
a single arc for each of the two possible orders of the trains and take the better one of the
two solutions. (But note that it is not clear whether considering only pairs of trains will be
sufficient in general).

It is interesting to observe that these simple subproblems are sufficient to solve the
problem illustrated in Figure 3. In fact, the right picture shows the solution obtained by the
Lagrangian relaxation with these subproblems, which is already an integral solution.

5.4 Configurations with One Siding
As already observed in [12], enforcing compatible orderings along non-overtaking sections
improves the relaxation, but more complex situations are still problematic. Indeed, we
consider the case with a single siding between two non-overtaking sections. The best that
can be achieved with the approach of Section 5.3 is to enforce compatible configurations on
the section left of the siding and on the right of the siding. But the structural influence of
the overtaking possibility at the siding is not covered well. For illustration, consider the case
where three trains run on this track section from left to right. The additional side track at
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Figure 4 Relaxation of three trains running on two non-overtaking sections with one siding in
between. The left picture shows the relaxation with perfect configurations on both non-overtaking
sections only. All arcs have a flow of 0.5. One can check that this is not a convex combination of
feasible integer solutions. The right picture shows the same situation with an additional capacity-2
configuration for the siding.

vsas as+1
vsas as+1

Figure 5 The left picture shows the structure of single-arc only subproblems. The right picture
shows the case with the new siding configuration, which covers the arcs adjacent to vs.

the siding allows the order of the trains to be changed (e. g. the first train enters the siding
and waits for the second train to pass), but not arbitrarily. For instance, the order of the
three trains might not be reversed: if three trains A, B and C enter the section in this order
from the left but would leave the section in order C, B, A at the right, then both trains, A
and B would have to wait somewhere for C to pass. But this is impossible because there is
only one side track. Similar situations occur for trains running in opposite directions. Indeed,
Figure 4 shows an example for three trains where only compatibility along the non-overtaking
parts is enforced.

In order to guarantee the validity of the change of train orders in the siding, we encapsulate
the siding node along with the two adjacent arcs in a single configuration subproblem.
Formally, consider a track section P I = v0a1v1 . . . asvsas+1 . . . akvk with ai ∈ AI , where
cvi

= 1 for all i 6= s and cvs
= 2 and all arcs are single track. Therefore, overtaking can only

happen if some train stops and waits at node vs until some other train passes. Similar as
before we split the path in several subpaths each consisting of a single infrastructure arc
with one exception: the siding node vs and its two adjacent arcs are put in a single subpath:
P Ii = vi−1aivi, i = {1, . . . , k} \ {s, s+ 1}, and P Is = vs−1asvsas+1vs+1. Figure 5 visualises
the structure of the configuration subproblems.

As before overtaking is not allowed on the single-arc paths, so πini = πouti for all i ∈
{1, . . . , k} \ {s, s+ 1}. However, this is not true any longer for the two orderings associated
with the siding, here πins and πouts may be different, although not all combinations are
possible (e. g. the order of three trains must not be reversed). In sum, we need to solve |R′|!
subproblems (one for each order of trains) on each single-arc subpath and at most (|R′|!)2

subproblems for the siding subpath.
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Figure 6 The infrastructure network of the test instance. The black nodes denote single line
parts, the red nodes double line parts. There are four sidings (white nodes) within the single line
parts and one siding in the double line part, which can only be used by trains coming from the left.

Obviously, the siding subproblems are the most challenging ones and take the longest
time, hence we need to keep the subproblems as simple as possible. Hence, we restrict to
small subsets of trains with |R′| = 3. In this case the analogue intuition is that three trains
is the smallest number of trains that cannot change their order arbitrarily, so if we ensure
that for each subset of three trains the configurations are valid then it might be sufficient for
larger subsets. Indeed, the right picture of Figure 4 shows the solution of the relaxation if
the siding configuration subproblem is used, which is integral.
I Remark. The trains considered in a configuration do not necessarily need to run on the
same track. For instance, if there are at least three trains, each may arrive at node vs from a
different direction in a star-like fashion. Similarly, one of the adjacent edges could be double
track whereas the other is single track, so trains running in opposite directions do not share
the same physical track. Both cases lead to slightly different configuration subproblems
around the node vs. Because the network considered in our computational tests is a corridor,
the first situation cannot happen (there are only two possible directions), but the second
situation does appear at the ends of the double track section.

6 Computational Experiments

In this section we present some promising computational results. We consider an instance
from the INFORMS RAS Problem Solving Competition 2012 [22] with only 14 trains.
The train graph subproblems have been implemented and solved using the DynG callable
library [13, 14] and the configuration subproblems are modelled as MIP and solved by Cplex
12.7 [18].

The Lagrangian relaxation is solved with a proximal bundle method based on [16]. All
experiments are done on an Intel Xeon E5–2690 with 56 cores @ 2.6 GHz and 256 GB
RAM. The evaluation of each subproblem runs in its own thread.

We compare the solutions of the Lagrangian relaxation of three different models:
Free: The basic model (TTP-cfg), configurations on single infrastructure arcs.
Simple: Connected configuration subproblems only on non-overtaking sections (see Sec-

tion 5.3).
Full: Connected configuration subproblems on non-overtaking sections and sections with one

siding (see Section 5.4).
Each connected configuration subproblem contains at most three trains.

First we compare the development of the objective values of the relaxation. Figure 7
shows the (dual) objective value after a certain number of iterations of the bundle method
and after some time for the three models.

The first observation is that the objective value of model “free” is much smaller than the
objective values of the other models. This is not surprising: because of the weak formulation
most trains are hardly slowed down at all (see Section 5). Because the objective function
penalises delays from the fastest possible train schedules, this leads to a very small objective
value and therefore to a huge gap. The objective values of the two other models are much
larger and very similar with “full” having a slightly larger value. It is clear that the objective
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Figure 7 Objective value after a number of iterations (left picture) and after some time (right
picture) for three models: classic subproblems without ordering coupling (free), with simple coupling
along non-overtaking (simple) and with full coupling at sidings of capacity one (full).

value of “full” is the largest because it is the strongest model. It might, however, be a little
surprising that this small difference results in a solution of apparently higher quality (see
below). This is an important observation because it indicates that we need to solve the
Lagrangian relaxation to a high accuracy in order to gain something from using the stronger
model.

The second observation is that the “full” model takes longer (in terms of computation
time) to converge to its optimal solution. The reason is that this model contains the most
complex configuration subproblem. In fact, in our tests the running time of the overall
algorithm was dominated by the solution of a single configuration subproblem for the siding
case, which took about 1-2 seconds per iteration. This sounds not that much, but recall that
the algorithm needs about 103 to 104 iterations, so it sums up. Although our implementation
takes advantage of the multi-core CPU by solving all subproblems in parallel, each single
subproblem is solved on a single core, so the slowest subproblem dominates the running time.

Next we take a closer look at the computed solutions of the relaxation. Figures 8 to 10
show the solutions for the three modes “free”, “simple” and “full”.

The solution of model “free” in Figure 8 shows the expected behaviour: by simply splitting
the train schedules into multiple fractional parts, the trains can pass/overtake each other
even at non-overtaking sections and are hardly slowed down. The result is that the trains
have almost no delay, but the solution is also a very bad starting point for obtaining the real
order of the trains in order to derive an integer solution. This is the typical case in classic
(time expanded) models for the TTP and one reason why it is hard to find provably good
integer solutions.

The solution of the second model “simple” in Figure 9 shows a different picture. This
model handles the meet/overtaking decisions on non-overtaking sections correctly. In fact,
all decisions have been resolved correctly for the earlier time steps (left picture of Figure 9).
The weakness of this model comes apparent if more than 2 trains meet at some siding (see
the right picture of Figure 9). In this case the relaxation may still make incorrect decisions
resulting in fractional train schedules and unclear orders of trains.

All of these issues have been resolved in the strongest model “full”, see Figure 10. This
model contains full configurations around the sidings for each 3 trains. In fact, in this
example the solution of the Lagrangian relaxation of the model “full” is integral. This cannot
be expected in general but demonstrates the strength of the proposed formulation. Even if
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Figure 8 Solution of the relaxation for model free. The time runs from top to bottom. By
exploiting the weakness of the formulation described in Section 5 many trains meet and pass in
non-overtaking sections, splitting the trains in several fractional parts.

the solution might not be integral for larger instances, they certainly provide much more
information and much better bounds a subsequent (heuristic) method can use for constructing
an integral solution.

7 Conclusions and Future Work

Classic, time expanded models for the TTP are computationally very challenging. One
reason for this are the weak relaxations for the standard models, which do not represent
combinatorial properties of the problem very well and, hence, do not provide strong bounds.
In particular the interplay of headway constraints and node capacities is not handled well.

In this paper we extend the configuration based models proposed in [1]. Instead of
modelling feasible configurations on single infrastructure arcs only, we propose a model
where configurations of consecutive track segments are handled together. These connected
configuration problems are very hard themselves in general, but can be solved reasonably
well (using complete enumeration) for small numbers of trains and on specific track segments
with only limited overtaking capabilities. The ability to solve these subproblems exactly
is then used in a classic Lagrangian relaxation approach. Our computational experiments
show that the proposed model and solution approach are able to resolve all overtaking/meet
decisions correctly for an instance on a mostly single track corridor with only few sidings,
producing even integral solutions in the relaxation. This instance could not be solved to
proven optimality using the classic model.

There are several directions for future research. First, for larger instances it is infeasible
to add all possible configuration subproblems to the model (even for subsets of up to only 3
trains) or to add them manually beforehand. Therefore, a method to automatically detect
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Figure 9 Solution of the relaxation for model simple. The time runs from top to bottom.
The connected configurations ensure that overtaking/meet decisions for pairs of trains along non-
overtaking sections are resolved. However, if more than 2 trains meet at some siding, the fractional
solution still contains unclear decisions (right picture).

Figure 10 Solution of the relaxation for model full. The time runs from top to bottom. The
model contains connected configurations on non-overtaking sections and on sections with sidings of
capacity two. All decisions have been resolved and (in this example) the solution is even integral.
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“missing” configuration subproblems during the solution process and add them to the model
on-the-fly while separating the coupling constraints needs to be developed. Secondly, the
model presented in this paper handles only cases with no siding or exactly one siding, larger
examples are expected to require more complex configuration subproblems.

The tests show that the algorithm has a relatively, but not hopelessly, high running time,
which should be improved. The connected configuration subproblems are currently solved
using a standard MIP solver, which could be done faster by a specialised combinatorial
algorithm. The requirement to solve the subproblems to optimality in each iteration could be
relaxed, e. g. by using inexact [10] or asynchronous bundle methods [15]. In fact, because the
model presented in this paper consists of many hard but widely independent subproblems, it
is expected that the algorithm is very well parallelisable and scales well by increasing the
number of parallel processes (more trains or tracks just mean more independent subproblems).
An implementation for distributed computation is a logical step.

Besides all of these challenging development paths, a near-time goal is to apply our
solution approach to larger, publicly available instances, e. g. from TTPLib [23].
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Abstract
We consider the computation of periodic timetables, which is a key task in the service design
process of public transportation companies. We propose a new approach for solving the periodic
timetable optimisation problem. It consists of a (partially) heuristic network aggregation to
reduce the problem size and make it accessible to standard mixed-integer programming (MIP)
solvers. We alternate the invocation of a MIP solver with the well-known problem specific
modulo network simplex heuristic (ModSim). This iterative approach helps the ModSim-method
to overcome local minima efficiently, and provides the MIP solver with better initial solutions.

Our computational experiments are based on the 16 railway instances of the PESPlib, which
is the only currently available collection of periodic event scheduling problem instances. For each
of these instances, we are able to reduce the objective values of previously best known solutions
by at least 10.0%, and up to 22.8% with our iterative combined method.
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Keywords and phrases periodic timetabling, railway optimisation, modulo network simplex,
periodic event scheduling problem
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1 Introduction

Railways play a central role in transportation. According to a report of the International
Union of Railways, the largest operator in Germany, Deutsche Bahn, moved over 2 billion
passengers and 79 billion passenger kilometers in 2015. However, between 2004 and 2014,
inland passenger transport grew 5% slower than the constant price gross domestic product
(GDP) in the EU-281.

One reason for this might be that not as many people as would be desirable from an
ecological point of view are considering a journey by railway sufficiently attractive to make it
their first choice. In particular in the absence of a direct trip, waiting times along transfers
usually are highly disliked. Since transfer waiting times are an immediate outcome of the
timetable, it is a major goal of railway companies to design a timetable that implies short
transfer waiting times and hereby increases the attractiveness of their service offer.

In this paper we consider one such approach to increase the attractiveness of existing
railway systems. To this end, we focus on railway networks that are operated periodically.
Such a cyclic timetable repeats after the so-called period length T ; e.g., it offers the same

1 http://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_transport_
statistics
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services within each one-hour period. From a mathematical perspective, this property
is reflected in the periodic event scheduling problem (PESP) as introduced in [14]. We
are aiming at using PESP-based optimisation models and heuristics to construct periodic
timetables with short waiting times, in particular at transfers.

Timetabling problems have been studied intensively over the last decades and much
theoretical insight has been obtained. For a general survey on timetabling problems, we
refer to [1] and to [2]. Optimised timetables have already been put into practice. In [9] it is
described how mathematical optimisation was applied successfully to the Berlin Underground
network: Keeping the very same number of trips offered, transfer times as well as dwell times
of the trains at transfer stations had been reduced, while at the same time the timetable
required one train unit less for operation. In the Netherlands, even the entire national
railway network had been the subject of mathematical optimisation. Yet, even several further
planning processes aside the actual timetable design had been included in this project, see [6].
The protagonists report an increase in both, passenger volume and punctuality, as well as
several further improvements.

While the PESP model for cyclic timetabling is very flexible in capturing real-world
constraints, see [10], it is also notoriously difficult to solve. The modulo network simplex
(ModSim) heuristic [11, 4] is currently one of the strongest methods for large problem
instances; recently, also a matching approach has been proposed [13] if the PESP does not
contain limitations on the feasibility (see also [7]).

In this paper we present a new approach for solving the periodic timetabling problem,
which includes the ModSim-method as a subroutine. It is based on the idea of a (partially)
heuristic network aggregation to reduce the problem size. This allows the usage of a mixed-
integer programming (MIP) solver in combination with ModSim. One advantage of such an
approach is that the MIP solver and the heuristic have a completely different perspective
on the problem structure, which allows to overcome local minima efficiently. Combinations
of a MIP solver and a heuristic to overcome local optima have been successfully applied to
other problems, such as the travelling tournament problem [5]. Our method considerably
outperforms the ModSim-method as a stand-alone approach. Using instances of the PESPlib
library2, we are able to improve objective values of all current best solutions by at least
10.0%, and up to 22.8%.

The remainder of the paper is structured as follows. In Section 2 we formally introduce
the periodic timetabling problem, before we present the network aggregation procedure in
Section 3. In Section 4 we describe how we combine the ModSim-method with a standard
MIP solver, based on the (heuristically) aggregated network, and report our experimental
results.

2 The Periodic Timetabling Problem

We now briefly introduce the periodic event scheduling problem. We assume a so-called
event-activity network (EAN) N = (E ,A) to be given. Each node i ∈ E corresponds to
an event occurring with periodicity T ∈ N, while an arc a = (i, j) ∈ A models an activity
between two events. In the case of the periodic timetabling problem, nodes correspond to
arrival and departure events of trains at stations. Arcs model driving (from departure to
arrival) or waiting (from arrival to departure) activities of trains. Additional activities are
used to model, e.g., transfers of passengers, waiting times of trains or security (headway)

2 http://num.math.uni-goettingen.de/~m.goerigk/pesplib/

http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
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station A

station B

headway transfer

transfer

Figure 1 Example event-activity network.

constraints, see [10] for some further modelling features. We present an example EAN with
three trains in Figure 1.

For each activity a ∈ A, we are given an interval [`a, ua] reflecting a lower and upper
bound on its duration. We call ua − `a the span of activity a. The aim is to assign a time to
each event, such that the durations of activities are within the desired time interval. Let πi

denote the time event i ∈ E takes place. Due to the periodicity, this means that it also takes
place at the time points . . . , πi − 2T, πi − T, πi + T, πi + 2T, . . .. To reflect this periodicity,
each activity a = (i, j) corresponds to a constraint of the form

((πj − πi) mod T ) ∈ [`a, ua] .

The modulo operator is linearised by introducing new integer variables za, the so-called
modulo parameters.

In the original definition of the PESP, no objective function was used. In this paper we
follow the widely used approach of minimising slack times. To this end, we assume a weight
wa for each arc to be given, which reflects the penalty that is to be applied to any time
unit of slack. In the case of a transfer arc a, wa might represent the expected number of
passengers that desire to use the activity. The resulting node potential formulation then
reads as follows.

min
∑

a=(i,j)∈A

wa(πj − πi + Tza − `a) (1)

s.t. `a ≤ πj − πi + Tza ≤ ua ∀a = (i, j) ∈ A (2)
0 ≤ πi ≤ T − 1 ∀i ∈ E (3)
za ∈ {0, 1, 2} ∀a ∈ A (4)

Note that without loss of generality we may assume here that `a ∈ [0, T ). Yet, we may
restrict za to the values {0, 1} only in the case of a constraint where ua ≤ T .

An alternative model for this problem is to use variables xa to express the duration of
every activity. In this case, one needs to fulfil that∑

a∈C+

xa −
∑

a∈C−

xa ≡ 0 mod T

ATMOS 2017
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for every oriented cycle (C+, C−). It is sufficient to use an integral cycle basis for this
purpose, e.g., the fundamental cycles C induced by some spanning tree T . The resulting
cycle-basis formulation is then given as follows.

min
∑
a∈A

wa(xa − `a) (5)

s.t. `a ≤ xa ≤ ua ∀(i, j) ∈ A (6)∑
a∈C+

xa −
∑

a∈C−

xa = TpC ∀C ∈ C (7)

pC ∈ Z ∀C ∈ C (8)

This formulation can be further strengthened by constraints on pC , which are known as
the Odijk cuts (see [12]). Finding a feasible solution to the PESP is already NP-hard, and
finding an optimal solution is considered notoriously difficult.

3 An Iterative Solution Approach

We now describe a new heuristic to find feasible solutions to the periodic timetabling
problem with good objective values. It is based on the idea of combining two subprocedures
that describe solutions differently. By running both methods alternately, we can find an
improvement with one approach when the other approach has become stuck. The first
subprocedure uses a heuristic network aggregation that makes use of a standard MIP solver
viable. The second subprocedure is the modulo network simplex approach (ModSim). In the
following, we describe both of these steps.

3.1 Aggregation Procedure
We describe preprocessing mechanisms to aggregate and simplify the event-activity network
to create a reduced instance, which is smaller and – hopefully – easier to solve. Some of
these techniques do not preserve equivalence in the sense that an optimal (partial) solution
of the reduced instance can be extended to an optimal (full) solution of the original instance.
However, we never affect feasibility, i.e., there is a surjection from all feasible solutions of the
original network to the feasible solutions of the reduced network.

Contraction. There are three ways in which we reduce the initial EAN (see [8]). We
illustrate these ideas in Figure 2 where we apply the different variants subsequently to the
very same network.

The first two operations are standard graph contractions for which we are able to keep
the set of optimal solutions. In the special case of a node i with degree one, we simply
remove the only arc a that is incident to i, together with i itself. In the reverse operation, we
derive the value for πi simply such that xa = `a. Observe that doing so, there is a bijection
between the optimum solutions of the initial network and of the reduced network.

The same holds for the second type of contractions: For a fixed arc a = (i, j), i.e. where
`a = ua, we remove a and j. Any arc b that had been incident with j gets “deviated” to i,
where we add or subtract `a to `b and ub in the case of b formerly leaving or entering j,
respectively. In Figure 2c we contract arc 481 and modify arc 482 by changing its starting
node from 500 to 499 and add the value four of the contracted arc to both, its lower and upper
bounds. For the reverse operation, we disaggregate node j by simply setting πj = πi + `a.
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497 498 499 500 501 502

3170
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(a) Original network.

499 500 501 502
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(b) After degree-one contraction.

499 501

3170

6580: [5,9]60

6043: [3,62]60

503
6581: [10,14]60

(c) After contraction of fixed arcs.

499

3170

6043: [3,62]60

503
7913: [15,23]60

(d) After (heuristic) degree-two contraction.

Figure 2 Examples for graph contraction in event-activity networks.

The third case in which we apply contractions is a node j with precisely one incoming
arc a = (i, j) as well as one outgoing arc b. In this case, we replace j in a with the endpoint
of b. Regarding the time constraints, we preserve the set of feasible solutions by adding `b

and ub to `a and ua, respectively, see Figure 2d. Yet, with respect to the objective function,
there is a (slight) imprecision, because along the modified arc, for the first units of slack
there should apply min{wa, wb}, whereas max{wa, wb} had to apply to the last units of
slack. This cannot be expressed in any linear objective function on the modified arc in the
reduced network. In our experiments, we heuristically select min{wa, wb} as the weight of
the modified arc.

Ignoring Light Arcs. Observe that none of the above steps reduces the cyclomatic num-
ber |A| − |E|+ 1 of the constraint graph. Yet, it is commonly assumed that this correlates
with the computational complexity of PESP instances. Hence we are trying to remove arcs
from the constraint graph. Doing so, we must be cautious: If the reduced graph has any
feasible solution which can not be translated into a solution of the initial network, then the
entire consideration of the reduced network would be useless.

Since infeasibility may only arise on an arc a with span ua − `a < T − 1, we focus
exclusively on free arcs with span ua − `a ≥ T − 1. These are arcs which model just waiting
times (e.g. of passengers at transfers, of trains during turnarounds, of both during stops) but
do not model any strict operational requirement. Thus, such arcs can simply be omitted
without affecting the set of feasible solutions.

ATMOS 2017
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Figure 3 Distribution of the weights wa of the free arcs in R1L1.

For instances of the PESPlib, the constraint graph even decomposes into cycle-free
connected components, which are trivial to solve optimally, when omitting all the free arcs.
This is due to the absence of headway or single track constraints in these instances.

Obviously, there is a trade-off: The more free arcs are ignored, the easier becomes
the resulting instance to solve. However, solutions to the simplified instance become less
significant for the initial problem, because they may induce large waiting times along the
ignored arcs.

Hence, we finally investigate how the weights of these free arcs are distributed. The plot
in Figure 3 shows that for example the R1L1-instance follows the so-called “Pareto principle”:
When removing, e.g., 77.5% of the free arcs (abscissa) we are ignoring just 25% of the initial
total weight W :=

∑
a∈A:a is free wa of the free arcs (ordinate). Thus, we may significantly

simplify an instance while only losing a limited amount of information (i.e., weight).
Our network aggregation procedure is used to generate an instance that is sufficiently

small to allow a mixed-integer programming solver to be applied. This is then combined
with the ModSim-method as in a ball game, i.e., by giving the solution of one approach as
input for the other. The ModSim-method is briefly summarised in the following section.

3.2 Description of the Modulo Network Simplex

We now briefly describe the ModSim-method, and refer to [4] for details. It is based on the
observation that there exists an optimal solution to the periodic timetabling problem that is
induced by a spanning tree structure T = (T`, Tu) in N . This means that we set xa = `a for
all edges in Tl, and xa = ua for all edges in Tu. The duration of all other activities and their
modulo parameters are then uniquely determined.

The method performs a local search over the set of spanning tree structures, until it finds
a local optimum (i.e., all spanning tree structures that can be reached by exchanging a single
arc do not provide a feasible solution with better objective value). This is called the inner
loop. It then tries to escape the local optimum using modifications that are not based on a
spanning tree structure; e.g., single node cuts or multi node cuts. If an improved solution
can be found, a new spanning tree structure is calculated and the method is repeated from
the beginning. This is called the outer loop. A schematic description of this method is given
in Figure 4.
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Figure 4 The modulo network simplex procedure (see [4]).

Table 1 Properties of PESPlib instances.

name nodes arcs fixed arcs other arcs free arcs
R1L1 3,664 6,385 646 2,912 2,827
R1L2 3,668 6,543 632 2,928 2,983
R1L3 4,184 7,031 758 3,302 2,971
R1L4 4,760 8,528 830 3,788 3,910
R2L1 4,156 7,361 819 3,210 3,332
R2L2 4,204 7,563 822 3,252 3,489
R2L3 5,048 8,286 971 3,918 3,397
R2L4 7,660 13,173 1,501 5,932 5,740
R3L1 4,516 9,145 799 3,576 4,770
R3L2 4,452 9,251 776 3,538 4,937
R3L3 5,724 11,169 1,042 4,496 5,631
R3L4 8,180 15,657 1,480 6,462 7,715
R4L1 4,932 10,262 996 3,764 5,502
R4L2 5,048 10,735 986 3,886 5,863
R4L3 6,368 13,238 1,242 4,898 7,098
R4L4 8,384 17,754 1,573 6,546 9,635

For the purpose of this paper, two characteristics of the ModSim are particularly relevant:
Firstly, the use of spanning tree structures means that solutions are encoded in a different way
than in the MIP formulation. Secondly, the method can be run for a (practically) arbitrary
amount of time, as the search space for the outer loop is too large to be fully explored.

4 Experimental Results

4.1 Setting and Instances
We use the 16 periodic railway timetabling instances from the PESPlib3, created by the
public transport planning software LinTim4, see also [3]. The size of the event activity
networks and the numbers of fixed, free and other arcs is given in Table 1.

To assess the quality of our aggregation method, we performed two different sets of
experiments. In the first experiment, we discuss the impact of the aggregation for different

3 http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
4 https://lintim.math.uni-goettingen.de/
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Table 2 Graph aggregation statistics for R1L1.

nodes arcs eliminated heuristic?
original 3,664 6,385 – –
contract deg one 3,216 5,937 448 no
contract fixed 2,677 5,398 539 no
contract deg two 1,228 3,949 1,449 (yes)
ignore 25% 1,228 1,756 2,193 yes
contract deg one 863 1,391 365 no
contract deg two 501 1,029 362 (yes)

settings on a single instance (R1L1). In the second experiment, we run our iterative method
and compare the objective values we find to using only the ModSim approach. Whenever
a MIP is solved for PESP, we used a formulation that combines both the node potential
variables (π) and the periodic tension variables (x). We consider the modulo parameters (z)
on the arcs and exploit the fact that if a ∈ T , then we may set za = 0, while losing the initial
property that za ∈ {0, 1, 2}.

4.2 Results of our Preprocessing Method
For our first set of experiments, we used an Intel core i5 2.20GHz with 8GB RAM, and CPLEX
12.7 with memory limit 2GB. We start by summarising the impact of each aggregation step
on the instance R1L1 in Table 2. Starting with an initial problem size of 3,664 nodes and
6,385 arcs, we finally come up with a similar instance with only 501 nodes and 1,029 arcs.

Recall that the cyclomatic number is only reduced in the step where we – heuristically –
ignore the lightest arcs. In this particular setting, we continue until the weights of the ignored
arcs sums up to 25% of the initial total free weight W . Notice that by ignoring the lightest
arcs, some of the nodes end up with degree one. This is why we apply the corresponding
contraction steps anew.

Next we want to identify good ignore ratios by trading simplification (and thus MIP
performance) against significance, i.e. reinterpretability. To this end, we simplify the R1L1
PESPlib-instance by ignoring 10% to 70% of the total free weight and apply CPLEX 12.6
for 15 minutes at default parameter settings. By growing the ignore ratio the size of the
resulting simplified network decreases – and so does the optimality gap of the CPLEX run
on this simplified network, see the column “gap” in Table 3.

But when reinterpreting the solution that CPLEX obtained for the reduced network,
back on the initial network, the trade-off becomes obvious: by ignoring more than 20% of
the initial total free weight W , the solution for the actual instance R1L1 is getting worse (cf.
column “objective”).

Let us annotate that the improvement from the 2013 PESPlib benchmark (37,338,904)
down to 36,213,298 (cf. the 30%-row in Table 3) is not just due to a version improvement
inside the MIP solver: When applying the 2012 version (CPLEX 12.3) with the same
parameter setting to the very same reduced MIP file, already this yields a disaggregated
solution of value 35,903,663 for the R1L1-instance of the PESPlib. Unfortunately, this
computation had only been possible on a machine with an Intel Xeon 3.7GHz and 16GB
RAM.

In one further run we spent one hour with CPLEX and set the ignore ratio right between
the two best ones of our initial series, thus 25%. The solver is able to find a significantly
better solution (33,711,523). In this solution, 29,763,908 units of weighted slack arise along
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Table 3 Objective values found for R1L1 by applying different ignore ratios for the free arcs.

ignore nodes arcs Odijk time CPLEX gap objective
10% 772 1,828 yes 900 6.89% 37,918,546
20% 572 1,230 yes 900 5.69% 35,433,189
30% 438 862 yes 900 4.73% 36,213,298
40% 346 610 yes 900 3.36% 36,720,735
50% 257 406 yes 900 1.77% 40,814,013
60% 189 251 yes 900 0.75% 41,843,259
70% 129 136 yes 900 0.00% 46,010,226
25% 501 1,029 no 3,600 4.22% 33,711,523

free arcs (e.g. transfers), the rest appears on arcs with smaller span (e.g. dwell arcs). All
the free arcs together show a weighted average slack of 25% of the period time. This is
composed of a weighted average slack time of 46% of the period time when restricted to the
2, 193 ignored light arcs – but only 17% of the period time when restricted to the 634 heavier5
arcs that our heuristic kept for the simplified core problem. Yet, with our combined iterated
method we are able to report even better solutions in the next subsection.

4.3 Results of our Iterative Solution Method
For our second set of experiments, we used a 16-core Intel Xeon E5-2670 processor, running
at 2.60 GHz with 20MB cache. Processes were pinned to one core. We used CPLEX v.12.6
to solve MIPs, choosing the MIPemphasis parameter so that the solver focus is on improving
the primal bound.

The aim of this experiment is to compare the ModSim-method as a stand-alone approach
with our iterative method. To this end, we allow both methods 8 hours of computation time
for each instance, using the same starting solution found through a constraint propagation
procedure. In our iterative method, we begin with the network aggregation step and allow
CPLEX up to 15 minutes of computation time. We then use the ModSim for 45 minutes
and repeat. For the first network aggregation, we ignore 50% of total free weight W . This
number is multiplied by 0.6 in each iteration (i.e., in the second iteration, 30% is ignored,
then 18%, and so on). This means that the models CPLEX has to solve become larger and
harder to solve, but also more detailed and closer to the actual problem.

We present the final objective value of the ModSim approach and the best objective
value of our iterative method in Table 4. Our approach outperforms the pure ModSim on
each of the 16 instances, by an average of 15.7% (min: 5.3%, max: 22.8%). We improve all
current best solutions from PESPlib by at least 10%, in particular on R1L1, which has been
approached with other methods.

We give a more detailed view on the progress of the solution methods in Figure 5. Here
we compare the current objective value over the 8 hours time horizon between the ModSim-
method and our approach. Detailed results for the other instances can be found in the
appendix.

In particular for the smaller instances, using CPLEX on the aggregated network can lead
to solutions which have a higher objective value than before. As we reduce the number of
ignored activities in every iteration, these errors (visible as bumps in the objective value
curve) become smaller over time.

5 Recall that since we apply contractions again after we ignored 2, 193 light free arcs, in the end there are
only 623 free arcs remaining in the simplified problem.
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Table 4 Objective values

impr. to impr. to
Instance PESPlib obj. start obj. ModSim obj. iterative obj. ModSim PESPlib

R1L1 37,338,904 44,486,347 38,523,096 31,194,961 19.0% 16.5%
R1L2 38,248,408 49,197,598 40,616,172 31,682,263 22.0% 17.2%
R1L3 38,612,098 51,614,049 39,308,815 30,535,261 22.3% 20.9%
R1L4 35,955,823 47,185,054 34,350,087 27,893,098 18.8% 22.4%
R2L1 53,708,802 66,714,782 48,822,627 42,502,069 12.9% 20.9%
R2L2 47,836,571 65,925,364 47,003,096 43,068,782 8.4% 10.0%
R2L3 46,530,294 62,152,599 42,179,765 39,942,656 5.3% 14.2%
R2L4 42,848,107 60,588,717 42,811,532 33,063,475 22.8% 22.8%
R3L1 53,299,647 72,124,479 52,936,675 45,483,668 14.1% 14.7%
R3L2 53,441,333 72,434,508 53,680,036 46,228,200 13.9% 13.5%
R3L3 48,707,212 68,215,489 47,014,354 43,039,089 8.5% 11.6%
R3L4 40,597,536 59,064,577 46,044,547 35,547,064 22.8% 12.4%
R4L1 59,225,243 81,570,976 56,935,920 51,650,471 9.3% 12.8%
R4L2 59,292,152 82,131,250 57,892,642 51,965,758 10.2% 12.4%
R4L3 54,975,374 78,797,377 58,075,575 45,881,499 21.0% 16.5%
R4L4 47,140,800 63,464,363 51,128,274 41,163,954 19.5% 12.7%
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Figure 5 Objective value over time for R1L1.

5 Conclusions

Finding good periodic timetables that offer short travel times for passengers and respect
security constraints is a highly relevant public transport planning problem worldwide, but
existing solution methods still show an unsatisfactory performance on real-world sized
instances. In this paper we presented a new approach to this problem that combines one of
the most successful current heuristics, the modulo network simplex method, with a network
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aggregation step that allows to use a mixed-integer programming solver (CPLEX in our
case). As the modulo network simplex method and CPLEX describe solutions differently, it
is possible to escape from a local optimum by switching methods. This leads to a significantly
improved overall performance. Our approach found solutions that perform on average over
15% better than using the modulo network simplex alone, and improve all current best results
that can be found in the PESPlib dataset.

In further research more possibilities to combine the network aggregation with the modulo
network simplex heuristic will be explored, including ways to avoid a repetition of solutions
between the two methods. Additionally, lower bounds for periodic timetabling problems
tend to be weak when a mixed-integer programming solver is used, which leads to a large
optimality gap. We will investigate to what extent the network aggregation procedure can
be used to produce stronger lower bounds.

Acknowledgment. The authors thank Michel Le (IBM) and Ralf Borndörfer for recently
providing us with the CPLEX version of the year 2012 (12.3).
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A Objective value comparison for each instance

Detailed results for each instance comparing the objective value over time when using ModSim
only, and our approach can be found in Figures 6 and 7.
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Figure 6 Objective value over time for ModSim and our iterative method.
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Figure 7 Objective value over time for ModSim and our iterative method.
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Abstract
In this paper, we optimize train stopping patterns during morning rush hour in Japan. Since
trains are extremely crowded, we need to determine stopping patterns based not only on travel
time but also on congestion rates of trains. We exploit a Wardrop equilibrium model to compute
passenger flows subject to congestion phenomena and present an efficient local search algorithm
to optimize stopping patterns which iteratively computes a Wardrop equilibrium. We apply our
algorithm to railway lines in Tokyo including Keio Line with six types of trains and succeed in
relaxing congestion with a small effect on travel time.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases Train stopping pattern, Wardrop equilibrium, Congestion management,
Local search algorithm, Event-activity network

Digital Object Identifier 10.4230/OASIcs.ATMOS.2017.13

1 Introduction

In Japan, about seven million people commute to office, school, or university by train every
morning. During morning rush hour, trains are very crowded especially in Tokyo. The
congestion rate exceeds 200% for the most crowded train (see Table 1 for congestion rates).

A straight approach to reduce congestion is to increase the number of trains. However,
most railway lines in Tokyo have over 25 services per hour during morning rush hour. Thus,
the number of services seems to reach a limit. Railway companies in Japan make an effort to
relax congestion by another approach: changing timetables and train stopping patterns [15].

During morning rush hour, passengers make a decision about whether to get on an
express train or a local train, based on travel time and congestion rates. Some passengers
get on a crowded express train, because an express train runs faster than a local train. Some
passengers get on a local train at the expense of travel time to avoid congestion. Others
leave home early to avoid the rush hour. We need to compute when and which type of train
each passenger gets on in view of congestion of trains.
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Table 1 Examples of trains with high congestion rate [9].

Congestion rate: 100% Passengers can take a seat or hold on to a strap.
Congestion rate: 150% Passengers can open up a newspaper and read it.
Congestion rate: 200% Passengers touch someone’s body.
Congestion rate: 250% Passengers cannot move at all even if trains are bumpy.

A Wardrop equilibrium model is commonly used to describe traffic patterns subject to
congestion phenomena in road networks [5]. We can compute the behavior of each passenger
on trains by finding a Wardrop equilibrium in the event-activity network, which represents
timetables of trains and behavior of passengers. As a cost function in a Wardrop equilibrium
model, we use the BPR function (Bureau of Public Roads [2]), because the travel cost is
determined not only by travel time but also by congestion rates.

In Japan, Taguchi [14] exploits a Wardrop equilibrium in the event-activity network (called
a time-space network in Japan), to analyze precisely commuter traffic flow in Tokyo Metro-
politan area. In modeling of passenger flows during morning rush hour in Japan, the validity
of the Wardrop equilibrium model with the BPR function is shown in [14] by comparing the
computational results to the census data for commuter traffic published by Ministry of Land,
Infrastructure, Transport and Tourism.

The aim of this paper is to optimize train stopping patterns during morning rush hour.
Given stopping patterns and timetables can be evaluated by a Wardrop equilibrium in the
event-activity network. In optimization of stopping patterns, however, it is preferable to
avoid computation on the event-activity network. One reason is that computing a Wardrop
equilibrium in the event-activity network requires much time, which means even evaluation of
stopping patterns is computationally expensive. Another reason is that if we change stopping
patterns, we have to construct an event-activity network by solving the timetabling problem.

In order to devise an efficient algorithm, we introduce a train type network, which simplifies
the event-activity network. We show that a Wardrop equilibrium in the train type network
approximates that in the event-activity network. By using the train type network, we can
compute a Wardrop equilibrium in only 0.36 seconds without constructing an event-activity
network. We present an efficient local search algorithm which iteratively computes a Wardrop
equilibrium in the train type network. Our algorithm is applied to railway lines in Tokyo
including Keio Line with six types of trains.

Finally, we compare previous work and our results. To determine train stopping patterns
is an important issue which is closely related to line planning and timetabling [7, 13]. Previous
work including [3, 8, 16, 17] tackles the problem of optimizing stopping patterns. A big
difference between the previous work and this paper is the level of congestion. Trains in Japan
are extremely crowded during morning rush hour. Thus, we need to determine stopping
patterns with careful consideration of congestion rates of trains. We exploit a Wardrop
equilibrium model to compute passenger flows subject to congestion phenomena.

2 Wardrop equilibrium

Wardrop’s first principle of route choice is the following [4]:

The journey times on all the routes actually used are equal, and less than which would
be experienced by a single vehicle on any unused route.

According to Wardrop’s first principle, each passenger chooses his or her route to minimize
the route cost. Since Wardrop’s first principle describes the spreading of trips over alternative
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routes due to congestion, Wardrop equilibrium models have been used to predict route choices
of commuters [5].

Let G = (V,A) be a directed graph and C ⊆ V × V be a set of commodities represented
by OD pairs. Given an OD pair k ∈ C, we denote by Rk the set of routes in G which connect
the origin and the destination. The set of all routes is represented by R =

⋃
k∈CRk.

A route flow h = (hr)r∈R is called a Wardrop equilibrium if and only if it holds that∑
r∈Rk

hr = dk and
∑
a∈r

ta(fa) = min
q∈Rk

∑
a∈q

ta(fa) for all r ∈ Rk with hr > 0,

where dk is demand, ta(·) denotes a link cost function, and f = (fa)a∈A is an arc flow
determined by fa =

∑
r3a hr. The first equation says that a route flow meets the demand,

and the second one represents that each passenger travels along a path with the minimum
cost.

Beckmann et al. [1] proved that we can find a Wardrop equilibrium by solving the following
optimization problem, where Xf denotes the set of feasible arc flows:

min
{∑
a∈A

∫ fa

0
ta(z)dz

∣∣∣∣∣f ∈ Xf

}
. (1)

This problem can be solved by the Frank-Wolfe method [6].
As explained in Section 3, the event-activity network represents timetables of trains and

behavior of passengers. In order to compute the number of passengers in each train accurately,
it is significant to find a Wardrop equilibrium in the event-activity network instead of the
railway network.

Similar approach has been developed by Taguchi [14] in Japan, where he deals with
commuter traffic flows in Tokyo Metropolitan area. He focused on 1,815 stations and 7,486
trains (on 128 lines) and constructed an event-activity network with about 150,000 vertices
and about 480,000 arcs. About 7,000,000 passengers’ flows are simulated by finding a
Wardrop equilibrium in the event-activity network.

3 Event-activity network

Event-activity networks are widely used in the timetable design [11, 12]. Given a timetable
Π, we construct an event-activity network as follows. Let V be the set of stations and H
be the set of trains. We also denote by Vtran the set of stations shared by two lines, where
passengers can transfer from one line to another. We define

Earr = {(g, v, arr) | train g ∈ H arrives at station v ∈ V },
Edep = {(g, v, dep) | train g ∈ H departs from station v ∈ V }.

The sets Earr and Edep represent arrival events and departure events. Each i ∈ Earr ∪ Edep
has the arrival or departure time in the timetable Π, denoted by Πi. Next, we define arc sets

Adrive = {((g, v, dep), (g, u, arr)) | train g goes directly from v to u},
Await = {((g, v, arr), (g, v, dep)) ∈ Earr × Edep},
Atran = {((g, v, arr), (g′, v,dep)) | v ∈ Vtran,Π(g′,v,dep) is the earliest departure time

satisfying Π(g,v,arr) + Ltran ≤ Π(g′,v,dep)},

ATMOS 2017
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(h, u′, dep)

(g, v′, dep)
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(g′′, v′′, arr)

(g′, v, dep)

1

Figure 1 An event-activity network, where the solid lines denote arcs of Adrive and Await, the
dotted lines correspond to arcs of Anext, the bold lines represent arcs of Atran, and the dashed lines
indicate arcs of Achange. White and gray vertices represent arrival and departure events, respectively.

where Ltran denotes the time needed for transfer. The sets Adrive, Await, and Atran represent
driving activities, waiting activities, and transfer activities, respectively. We also define

Achange = {((g, v, arr), (g′, v,dep)) | Π(g,v,arr) < Π(g′,v,arr),Π(g′,v,dep) < Π(g,v,dep)},
Anext = {((g, v, dep), (g′, v,dep)) | g′ is the next train to g}.

The set Atran expresses transfers between different lines, while Achange deals with transfers
between different types of trains in the same line.

In the event-activity network, the set of vertices and the set of arcs are given by

E = Earr ∪ Edep, A = Adrive ∪ Await ∪ Atran ∪ Achange ∪ Anext.

Figure 1 depicts an example of an event-activity network.
We explain the usefulness of Anext and Achange in Figure 1. Suppose that a passenger

waits for train g at v. If train g is very crowded, he or she has choices to get on g′ or g′′

instead of g. The corresponding route is expressed by a path with arcs of Anext.
Next, let g′ be an express train and g′′ be a local train. Suppose that g′ arrives at v after

g′′ arrives and departs from v before g′′ departs. In this situation, we have four kinds of
passengers moving along

((g′, v, arr), (g′, v,dep)) ∈ Await : Passengers use only express train g′.
((g′′, v, arr), (g′′, v,dep)) ∈ Await : Passengers use only local train g′′.
((g′′, v, arr), (g′, v,dep)) ∈ Achange : Passengers transfer from g′′ to g′.
((g′, v, arr), (g′, v,dep)) ∈ Await and ((g′, v,dep), (g′′, v,dep)) ∈ Anext : Passengers trans-
fer from g′ to g′′.

The combination of Achange and Anext enables to express them faithfully. In a Wardrop
equilibrium, some passengers do not select the shortest route to avoid crowded trains. We
can express all kinds of passengers by using the event-activity network defined above.

4 Analysis of congestion rate in event-activity network

We focus on five railway lines in Tokyo: Keio Line, Keio Takao Line, Keio Sagamihara Line,
Keio Inokashira Line, and Toei Shinjuku Line1. We collectively call these five lines Keio
Railway Lines. Figure 2 shows the railway map of Keio Railway Lines.

1 The first four lines are operated by the private railway operator Keio Corporation, and the last line is
operated by Bureau of Transportation, Tokyo Metropolitan Government.
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Figure 2 Keio Railway Map, where the red line denotes Keio Line (Keio-hachioji—Shinjuku) and
the blue lines represent Keio Takao Line, Keio Sagamihara Line, Keio Inokashira Line, and Toei
Shinjuku Line.

Figure 3 Tokyo Railway network with 2128
nodes and 3041 edges, where red edges represent
Keio Railway Lines.

Figure 4 BPR function with α = 0.15 and
β = 4.

We compute congestion rates of each train during morning rush hour from 4:30 to 9:30
for 2016 timetable. In order to find a Wardrop equilibrium, we need to estimate OD pairs
with available data. We first construct a railway network in the Tokyo metropolitan area,
which is given in Figure 3. Next we compute the optimal route for each pair of stations with
respect to distance and the number of transfers, and then extract routes which use Keio
Railway Lines from them. The number of obtained OD pairs is 418,394, which are divided
into four types:

use only Keio Railway Lines.
first use another line and then transfer to Keio Railway Lines.
first use Keio Railway Lines and then transfer to another line.
use another line, transfer to Keio Railway Lines, and transfer to another line again.

We now combine the extracted routes with commuter passengers’ data in the report [10]
published by Ministry of Land, Infrastructure, Transport and Tourism. This report lists
83,838 OD pairs, and each OD pair has the following information: origin station, destination
station, and the number of passengers. Note that each OD pair does not have information
about departure time. By deleting OD pairs which are not listed in the passengers’ data
from the extracted 418,394 OD pairs, we obtain 9,712 OD pairs and 805,053 passengers who
get on Keio Railway Lines.

Let us summarize the obtained data. For each OD pair, we know the origin/destination
station (not necessarily in Keio Railway Lines), the first/last station in Keio Railway Lines,

ATMOS 2017
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4:30

9:30

Time

Figure 5 Computational results for a Wardrop equilibrium in the event-activity network of 2016
timetable. Red, green, and blue arcs represent trains with congestion rate more than 200%, around
150%, and less than 100%, respectively.

and the number of passengers. Based on these data, we determine when and which train
each passenger boards by finding a Wardrop equilibrium in the event-activity network.

In order to assign passengers to the event-activity network, we add the following vertices
and arcs. Let C be the set of 9,712 OD pairs. For an OD pair k ∈ C, we denote by vorg(k)
the first station in Keio Railway Lines along the route. Let us define

Eorg = {k | k ∈ C}, Aorg = {(k, (g, vorg(k),dep)) | t0k ≤ Π(g,vorg(k),dep) ≤ t1k},

where t0k and t1k are determined by distance between vorg(k) and the final destination station.
In computation of a Wardrop equilibrium in the event-activity network (E ,A), we use

the BPR function (Bureau of Public Roads [2]) as a cost function:

ta(fa) = La

(
1 + α

(
fa
Ca

)β)
(a ∈ Adrive ∪ Await), (2)

ta(fa) = La (a ∈ A \ (Adrive ∪ Await)), (3)

where fa denotes a flow on arc a ∈ A, La is travel time for a ∈ A, and Ca is the capacity of
a train. The term fa/Ca represents congestion rate. We set parameters α and β by α = 0.15
and β = 4.

Figure 4 depicts a BPR function with La = 1, α = 0.15, and β = 4. In a case with
fa/Ca ≤ 1, ta(fa) is almost the same as La. The value of ta(fa) suddenly increases with
fa/Ca = 1.5 and reaches into 6.8La when fa/Ca = 2.5. This function describes that
passengers do not care for congestion if the congestion rate fa/Ca is small but congestion
effects have a bigger impact on passengers’ behavior in trains with higher congestion rate.

We solve (1) by the Frank-Wolfe method to find a Wardrop equilibrium. Figure 2 depicts
the railway network which we focus on in this paper. Figure 5 shows computational results
for a Wardrop equilibrium in the event-activity network of 2016 timetable. We can see that
trains between 7:00 and 8:30 have especially high congestion rates in the section between
Chofu and Shinjuku, which matches the real situation in Keio Railway Lines. Table 2
describes trains with congestion rate more than 220%.

5 Approximation model for passenger flows in event-activity network

Given stopping patterns and timetables, we can evaluate them with computational results
for a Wardrop equilibrium in the event-activity network. A basic idea to find optimal
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Table 2 Computational results for trains with congestion rates more than 220%.

Train type Successive stations Time Congestion rate
Semi-Express Chitose-kayasuyama → Sakurajosui 7:10 234.98%

Local Shimo-takaido → Meidaimae 8:24 223.49%
Local Sasazuka → Shinjuku 7:09 221.18%
Local Shimo-takaido → Meidaimae 8:06 221.16%
Local Daitabashi → Sasazuka 8:22 221.09%

Express Sakurajosui → Meidaimae 8:25 220.13%

Table 3 Comparison of the event-activity network and the train type network.

#nodes #arcs #passengers Computational time for
a Wardrop equilibrium

Event-activity network (4:30–9:30) 15,667 24,482 805,053 2026 [sec.]
Train type network (7:00–8:30) 1,552 1,952 627,406 0.357 [sec.]

stopping patterns is to update stopping patterns iteratively based on the obtained Wardrop
equilibrium. In this approach, however, we need to find a Wardrop equilibrium many times.
As shown in Table 3, computing a Wardrop equilibrium in the event-activity network takes
about 34 minutes. In order to reduce computational time, we introduce a small network
model such that a Wardrop equilibrium in this network approximates a Wardrop equilibrium
in the event-activity network.

We now introduce a train type network. Remember that V denotes the set of stations.
Let T = {0, 1, 2, 3, 4, 5} be the set of train types, where each element corresponds to a train
type as follows:

0: Local, 1: Rapid, 2: Semi-Express, 3: Express, 4: Semi-Special Express, 5: Special Express.

We denote stopping patterns S by the set of pairs of a train type and a station where the
train makes stops:

S = {(v, t) | train type t ∈ T stops at station v ∈ V }. (4)

Given stopping patterns S, we define

Ādrive = {((v, t), (u, t)) ∈ S × S | t goes directly from v to u},
Āchange = {((v, t), v) ∈ S × V } ∪ {(v, (v, t)) ∈ V × S}.

Arcs of Āchange are used when passengers transfer to a different type of train. Here, we
distinguish two lines traveling in opposite directions along the same route. Figure 6 shows
an example of the train type network G(S) = (S ∪ V, Ādrive ∪ Āchange).

We focus on morning rush hour between 7:00 and 8:30 and compute passenger flows with
S determined from 2016 timetable. A cost function in the train type network is defined by

t̄a(fa) = La

(
1 + α

(
fa

NaCa

)β)
(a ∈ Ādrive), (5)

where Na is introduced as the number of trains of the same type driving in the target period.
Travel time La is set to be longer than that for a superior train on the basis of the timetable.

ATMOS 2017
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Figure 6 An example of a train type network G(S), where the dotted lines represent arcs in both
directions.

Figure 7 The number of passengers in trains
bound for Shinjuku at Chofu.

Figure 8 The number of passengers in trains
bound for Shinjuku at Hashimoto.

We remark that this function is obtained by adding Na in the denominator to (2). For
a ∈ Āchange, we set t̄a(fa) based on the time needed for transfer.

We make use of OD pairs between 7:00 and 8:30 obtained from the computational results
in Section 4. Table 3 compares the train type network and the event-activity network. We
can compute a Wardrop equilibrium in the train type network much faster than in the
event-activity network.

By finding a Wardrop equilibrium in the train type network, we obtain the number of
passengers who get on trains of type t ∈ T for each pair of successive stations. We now
check the validity of passenger flows in the train type network. Figures 7–8 compare the
number of passengers in trains with each type between 7:00 and 8:30 obtained with the train
type network to that obtained with the event-activity network. Keio Line has three types
of trains bound for Shinjuku (Local, Semi-Express, Express) in the target period. We can
see that flows in the train-type network succeed in approximating passenger flows in the
event-activity network. This is attributed to the fact that the congestion rate of each train is
very high during morning rush hour.

6 Local search algorithm to optimize stopping patterns

If we are given stopping patterns S, we evaluate S by using a Wardrop equilibrium in the
train type network G(S) as follows. Let fa be a passenger flow obtained by computing a
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Wardrop equilibrium in G(S). A function to evaluate S is defined by

eval(S) =
∑

a∈Ādrive∪Āchange

fa · t̄a(fa) +
∑
v∈V

cv(S), (6)

where cv(S) denotes the number of train types except Local which make a stop at v.
The first term is determined by congestion rates and travel time. Consider the train type

network G(S) in Figure 6 as an example. The second term cv(S) is given by
∑
v∈V cv(S) = 16,

because we have cv1(S) = 5, cv2(S) = 1, cv3(S) = 2, cv4(S) = 3, cv5(S) = 5.
Since the value of the first term is much larger than that of the second term, eval(S) is

affected by the first term in most cases. The second term is useful when there exist stopping
patterns S and S ′ such that the values of the first term in eval(S) and eval(S ′) are exactly
equal. In this case, we select the stopping patterns with smaller value of the second term,
because superior trains are desirable to stop at fewer stations.

For example, consider the train type network in Figure 6 again. Let S be the stopping
patterns given in Figure 6. Assume that we have stopping patterns S1 = S ∪ {(v3, 3)}
and S2 = S ∪ {(v3, 3), (v3, 4)} such that the values of the first term are equal. Then
eval(S1) < eval(S2) holds. In the stopping patterns S1, Express makes a stop at v3 but
Semi-Special Express does not, while both Express and Semi-Special Express make a stop at
v3 in S2. The inequality eval(S1) < eval(S2) with the same values of the first term means
that adding only (v3, 3) is enough to reduce the first term and Semi-Special Express does
not need to stop at v3.

Our problem is to find S which minimizes eval(S). We find S by the following local search
algorithm. Let S be the current solution. We repeat replacing S with a better solution in its
neighborhood. If we cannot find a better solution, the algorithm outputs S and terminates.

In designing local search algorithms, an initial solution, a function to evaluate solutions, a
move strategy, and a neighborhood are important ingredients. An initial solution S0 is given
by S0 = {(v, t) | v ∈ Vleaf , t ∈ T} ∪ {(v, 0) | v ∈ V }, where Vleaf is the set of Shinjuku and
stations corresponding to leaves (vertices with degree one) of the network given in Figure 2.
The set S0 means that every train stops at stations in Vleaf and local trains (t = 0) stop at
all stations. We use (6) as an evaluation function. In addition, we adopt the first admissible
move strategy, i.e., when we find a better solution in its neighborhood, we move to the
solution immediately. A more sophisticated move strategy is presented at the end of this
section.

For the current solution S, we use the following two kinds of neighborhoods, called Nop(S)
and Ncl(S). Let (v, t′) /∈ S. An opening operation is an operation which adds {(v, t) | t ≤ t′}
to S. The neighborhood Nop(S) is defined as the set of all solutions which can be obtained
from S by an opening operation. For (v, t′) ∈ S \ S0, we use a closing operation, which
deletes {(v, t) | t ≥ t′} from S. The neighborhood Ncl(S) is defined as the set obtained by a
closing operation. We remark that these operations are defined so that if a train of type t
stops at v, then trains of inferior types also stop at v.

Since S0 is set to be an initial solution, we design an algorithm which emphasizes an
opening operation over a closing operation. If we cannot find a better solution in Nop(S), we
exploit a closing operation. The outline of our algorithm is as follows. In the algorithm, c
denotes the number of fails to find a better solution than the current solution S. We set a
parameter γ by γ = 50.
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Table 4 Comparison of four move strategies.

Proposed FA BA1 BA2
Best Average Best Average BA1 BA2

Eval. value 16,056,810 16,205,030 16,084,948 16,219,808 16,144,254 16,147,615
Time (sec.) 598 332 296 454 443 651
#iteration 88 55 64 75 15 21

Local search algorithm with first admissible move strategy

Step 0. Set S ← S0 and c← 0.
Step 1. Choose (v, t′) /∈ S randomly.
Step 2. Let S ′ denote the set obtained by an opening operation with (v, t′). If eval(S ′) <

eval(S), then set S ← S ′, c← 0 and return to Step 1.
Step 3. Set c← c+ 1. If c < γ, then return to Step 1. Otherwise set c← 0.
Step 4. Choose (v, t′) ∈ S \ S0 randomly.
Step 5. Let S ′ denote the set obtained by a closing operation with (v, t′). If eval(S ′) <

eval(S), then set S ← S ′, c← 0 and return to Step 1.
Step 6. Set c← c+ 1. If c < γ, then return to Step 4. Otherwise output S and stop.

We adopt Nop(S) as a neighborhood in Steps 1–2 and Ncl(S) in Steps 4–5. We try to
find a better solution by an opening operation while c < γ, but switch to a closing operation
if we fail γ times. The algorithm terminates if we fail γ times by an opening operation and
γ times by a closing operation. It should be noted that we need to compute a Wardrop
equilibrium in the train type network G(S ′) in Steps 2 and 5.

The first admissible move strategy has a drawback that it sometimes selects bad moves,
because we choose (v, t′) randomly in Steps 1 and 4. With an aim for a better performance
of the first admissible move strategy, we present a new strategy, where we find several better
solutions than the current solution and then move to the best solution among them.

Let d denote the number of better solutions which we find before moving to the next
solution. We set a parameter κ by κ = 5 (the digit in the tens place of γ). A detail of the
strategy in Steps 1–3 is described below:

Sophisticated move strategy

At the first of the algorithm, we set d← κ.
If d < κ and we execute Step 1 at most κ times to find d better solutions, update
d← d+ 1.
If we execute Step 1 more than κ times to find d better solutions, we decrease the value
of d. In the case study given in Section 7, we update d← d− q, where q is the digit in
the tens place of the number of executions of Step 1.

The number of solutions to be checked depends on iterations. If the neighborhood has a
lot of better solutions, we select where to move after checking several solutions. If it is not
easy to find a better solution, the strategy adopts the first admissible move strategy (d = 1).
A similar strategy is also used in Steps 4–6.
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Figure 9 Evaluation value eval(S) (top), value of the first term in eval(S) (middle), and value of
the second term in eval(S) (bottom), where • represents when we move to a better solution.

Figure 10 Value of d (solid line) and adopted operation in each iteration, where • and x represent
an opening operation and a closing operation, respectively. The height of • and x shows when we
find the corresponding solution in d trials.

7 Case study: Keio Railway Lines

We apply the local search algorithm described in Section 6 to Keio Railway Lines in the time
period from 7:00 to 8:30. Table 4 compares solutions obtained by the following four move
strategies: sophisticated move strategy (Proposed), first admissible move strategy (FA), best
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Figure 11 Stopping patterns on Keio Line obtained by the local search algorithm.

Figure 12 Stopping patterns on Keio Line in 2016.

Figure 13 Comparison of congestion rates
for Express (t = 3).

Figure 14 Comparison of congestion rates
for Semi-Express (t = 2).

Figure 15 Comparison of congestion rates
for Local (t = 0).

Figure 16 Comparison of travel time, where
a red line indicates that travel time is the same.
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Table 5 Top ten arcs of Ādrive for the obtained stopping patterns.

Train type Successive stations Congestion rate
Semi-Express Chitose-kayasuyama → Sasazuka 231.54%

Express Chitose-kayasuyama → Sasazuka 229.22%
Local Shimo-takaido → Meidaimae 217.76%
Local Sakurajosui → Shimo-takaido 203.23%
Local Kami-kitazawa → Sakurajosui 197.71%

Semi-Express Chofu → Chitose-kayasuyama 189.63%
Local Hachiman-yama → Kami-kitazawa 187.33%
Local Sengawa → Chitose-kayasuyama 184.79%

Express Chofu → Chitose-kayasuyama 184.44%
Semi-Express Sasazuka → Shinjuku 176.63%

Table 6 Top ten arcs of Ādrive for 2016 timetable.

Train type Successive stations Congestion rate
Express Chitose-kayasuyama → Sakurajosui 232.18%
Express Sakurajosui → Meidaimae 232.04%

Semi-Express Sakurajosui → Meidaimae 228.60%
Semi-Express Chitose-kayasuyama → Sakurajosui 225.86%

Local Shimo-takaido → Meidaimae 221.34%
Semi-Express Meidaimae → Sasazuka 206.40%

Local Sakurajosui → Shimo-takaido 206.15%
Local Kami-kitazawa → Sakurajosui 202.46%

Express Meidaimae → Sasazuka 200.61%
Express Tsutsujigaoka → Chitose-kayasuyama 200.61%

admissible move strategy (BA1), and modified best admissible move strategy (BA2). For the
first two strategies, we run the algorithm 50 times. In BA1, we move to the best solution
among all the solution obtained by an opening operation and a closing operation, while BA2
adopts a closing operation only when we cannot obtain a better solution by using an opening
operation. We can see that all the evaluation values in Table 4 greatly improve 17, 565, 000,
which is the evaluation value for the stopping patterns of 2016 timetable.

BA2 uses smaller neighborhood than BA1, but leads to longer computational time. This
indicates that the number of iterations has a stronger effect on computational time than the
neighborhood size. The proposed strategy attains shorter computational time than BA1 and
BA2 on average and sometimes finds better solutions.

Next, we analyze the best solution obtained by the proposed strategy, which has the
minimum evaluation value in Table 4. Figure 9 depicts a behavior of the evaluation value
and Figure 10 shows which operation is adopted in each iteration. In most iterations of
the early stage, the algorithm adopts opening operations and d is large. In the latter stage,
the algorithm adopts both opening/closing operations and d = 1 (the first admissible move
strategy is selected) in many iterations.

We now focus on Keio Line and further analyze the best solution obtained by the
proposed strategy. Keio Line has three types of trains bound for Shinjuku (Local, Semi-
Express, Express) and six types of trains bound for Keio-hachioji between 7:00 and 8:30.
Figure 11 shows the obtained stopping patterns on Keio Line. Superior trains (Express, Semi-
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Special Express, Special Express) have fewer stops than 2016 timetable given in Figure 12.
The obtained stopping patterns emphasize a difference between superior trains and the other
trains, while they have common stops with 2016 timetable.

Trains bound for Shinjuku are extremely crowded during morning rush hour. Let us
compare congestion rates in Figure 13–15. Figure 13 shows that in the obtained stopping
patterns, the maximum congestion rate is almost the same, while passengers who depart
from Keio-hachioji suffer less congestion than 2016 timetable. Thus, we conclude that we
can make full use of express trains even if we reduce stopping patterns of 2016 timetable. In
Figures 14–15, the congestion rate becomes large at stations indexed as 0–10 in Semi-Express
and 11–15 in Local. However, this causes no problem because the rate is less than 100%.
Moreover, the congestion rate of local trains at stations indexed as 16–20 and 23–27 is a bit
improved.

Figure 16 compares travel time for each OD pair in the train type network. We can see
that a lot of OD pairs whose travel time are more than 60 minutes have shorter travel time,
while some passengers with short distance have longer travel time.

Tables 5 and 6 show the top ten arcs of Ādrive in the train type network for the obtained
stopping patterns and 2016 timetable. We have only 4 arcs with congestion rate more than
200% in Table 5, while we have 10 arcs in Table 6. Although the maximum congestion rate is
almost the same, the obtained stopping patterns have fewer arcs with congestion rate more
than 200% than 2016 timetable.

8 Conclusion

We have presented a local search algorithm to optimize stopping patterns with the evaluation
function determined by a Wardrop equilibrium. First, we have computed time-dependent
passenger flows subject to congestion phenomena by finding a Wardrop equilibrium in the
event-activity network. Then, we have introduced a simple network such that a Wardrop
equilibrium in this network approximates a Wardrop equilibrium in the event-activity network,
which enables us to devise an efficient algorithm. In a case study for Keio Railway Lines in
Tokyo, we have succeeded in relaxing congestion with a small effect on travel time.

It is left for future work to design timetables for the obtained stopping patterns. Another
future work is applying the framework of our algorithm to optimize the number of train
types and the number of trains of each type, which are determined based on 2016 timetable
in this paper.
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Abstract
We consider the problem of finding cheapest flight routes through free route airspaces in a 2D
setting. We subdivide the airspace into regions determined by a Voronoi subdivision around the
points from a weather forecast. This gives rise to a regular grid of rectangular regions (quads)
with every quad having an associated vector-weight that represents the wind magnitude and
direction. Finding a cheapest path in this setting corresponds to finding a piece-wise linear path
determined by points on the boundaries of the quads. In our solution approach, we discretize
such boundaries by introducing border points and only consider segments connecting border
points belonging to the same quad. While classic shortest path graph algorithms are available
and applicable to the graphs originating from these border points, we design an algorithm that
exploits the geometric structure of our scenario and show that this algorithm is more efficient in
practice than classic graph-based algorithms. In particular, it scales better with the number of
quads in the subdivision of the airspace, making it possible to find more accurate routes or to
solve larger problems.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations, G.2.2 [Graph Theory] Path and Circuit Problems

Keywords and phrases Flight planning, Geometric shortest path, Free route airspace, Vector
weighted paths, Vector weighted planar subdivisions
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1 Introduction

In flight planning, users seek the cheapest flying route between departure and arrival airports.
The cost of a route is determined by a function of fuel consumed and flying time. These
measures are related as they depend on weather conditions, which are dynamic. The flight
routes are calculated through a network of waypoints and airways representing a discretization
of the 3D airspace. Additionally, different types of constraints are imposed on these routes
by a central control institution. For example, there are constraints with the purpose of
regulating traffic or avoiding specific airspaces. These constraints can be updated several
times a day. Therefore, flight routes are planned only few hours before the flight and efficient
algorithms are needed. The particular cost dependencies and constraints make the problem
more challenging than classic shortest path problems [3, 14, 13].
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A free route airspace (FRA) is a specified airspace within which users can freely plan a
route between a defined entry point and a defined exit point, with the possibility of routing
via intermediate (published or unpublished) waypoints. In this case, we face the problem of
finding a best path through a continuous airspace between two endpoints. However, because
of wind conditions, the best path is not in general a straight line and hence not trivially
determined – see for example [2], providing an example of a wind-optimal route from Jakarta
to Honolulu that is 11% longer than the direct great circle route, but 2% faster and uses 3%
less fuel. Usage of the jet stream for flights over the Atlantic is also a common example of
this (see e.g. [11]).

The motivation for introducing free route airspaces is to try to overcome some of the chal-
lenges in aviation, such as efficiency, capacity, and even environmental problems. According
to Eurocontrol, the European Organization for the Safety of Air Navigation [9], using FRAs
has the potential to reduce flying distances by approximately 7.5 million nautical miles per
year, representing a 45, 000 tons fuel save, or a reduction of emissions of 150, 000 tons. Also,
FRAs offer fewer conflicts in terms of aircraft collision avoidance, as aircrafts are more evenly
spread out across the airspace compared to the current fixed route network.

Currently, FRAs can arise as part of the more common airways network, but for the
reasons above, they are expected to become more widespread in the future. The planning
tools to deal with them do not exploit the full potential and rely on several heuristics. For
example, a common procedure is to introduce arbitrary intermediate airway points in the
FRA and to consider all possible airways between them and the entry/exit points. Beside
not finding real optimal paths, such an approach is also computationally demanding.

In this work, we investigate the problem of finding an optimal path through a free route
airspace between two entry/exit points, taking wind conditions into account. We propose
a data structure for discretizing the airspace into regions of constant wind and present a
geometric algorithm to solve the problem in this discretized environment. We show that our
algorithm is able to exploit wind conditions and find near-optimal solutions for the given
weather forecast. We perform an experimental study of the scaling of the running time with
respect to the number of regions that subdivide the airspace and show that our algorithm
scales more efficiently in comparison with more classic graph-based approaches that find the
same solutions. In an extension of this work, we design heuristics to join adjacent regions
with similar wind conditions and show that our algorithm exhibits better behavior than
classic approaches also with respect to the trade-off of accuracy vs. efficiency that these
heuristics allow to explore.

According to [4, 5], the problem of finding a geometric shortest path on the plane with
polygonal obstacles is solvable in O(n log(n)), where n is the total obstacle vertices. This
run time has been shown to be optimal. On the other hand, the same problem in the 3D
space with polyhedral obstacles is NP-hard and has attracted research for approximation
algorithms.

A few versions of the problem of finding shortest path queries in a continuous environment
with weighted regions have been studied. For example, in [12], a particular case is investigated
in which the cost of a continuous path is determined by a cost-weighting function that depends
on the position and the direction of motion. The authors approach the problem by only
considering paths formed by concatenating straight-line segments for a suitable discretization
of the environment. This work is aimed at unmanned air vehicles (for military purposes) for
finding best low-risk paths in an environment with hostile ground defenses that should be
avoided.

Another work [15] considers shortest path problems on the plane with a weighted polygonal
subdivision. This algorithm applies the “continuous Dijkstra” paradigm and exploits a
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physical property of such paths (that they obey Snell’s law of refraction). However, the
complexity of the algorithm does not seem promising since the best bound given is O(n8L),
where n is the number of vertices of the subdivision and L some parameter that specifies the
precision of the problem instance and linked to the desired approximation margin.

An improvement of [15] is given in [1]; these authors present an approximation scheme
(computing paths whose costs are within a factor of 1 + ε of the shortest paths costs, for
arbitrary ε > 0) for the problem of finding shortest paths on a polyhedron consisting of n
convex faces and each face with a positive non-zero real valued weight. Their algorithm runs
in O

(
n
ε log( 1

ε )( 1√
ε

+ log(n))
)
.

We found inspiration for our work in the approach described in [6] and [16]. In these
works, the authors represent the environment using quad-trees (for 2D) and oct-trees (for
3D), that is, tree based data structures whose leaves represent regions of constant weight.
Each region at the leaves of the tree is framed with smaller square cells that determine
the granularity of the search space. Further, the authors propose an efficient geometric
algorithm for finding a shortest path between the smaller cells on the frame of the quad-tree
leaves, running in O (P log(P )) +O(Tneighbor), where P is the total number of cells in the
discretization and Tneighbor is the time to update neighbor pointers in the quad-tree data
structure. They provide a (somewhat natural) extension to 3D, in which they propose an
algorithm that runs in O

(
n2 log(m)

)
, where n is the number of cells on a side in a region

(if the region was filled, it would contain n3 cells) and m ≤ P the size of the heap. These
algorithms are a factor n better than previous grid based approaches. However, the 3D
algorithm is only able to compute paths w.r.t. metrics L1 and L∞ (that is, not L2). In this
paper, we reconsider those approaches by introducing border points rather than border cells,
which we believe should make the algorithm simpler. Moreover, all the methods mentioned
assume real number weights on the regions while in our case we need to consider vector
weights, since the wind has both a magnitude and a direction. A main contribution here is
the generalization of the geometric arguments from [6] to vector weights, resulting in a more
efficient search space examination.

Due to space constraints, many details are omitted in this conference version. Proofs
of all results, claims and theorems have been established and these will be given in a full
version of the paper.

2 Preliminaries

A FRA is in general a subset of the atmosphere of Earth. Here we assume that a FRA is
the 3D space between a top and bottom face, both defined by a single 2D polygon. Such
a polygon, denoted by F , can be described by the set of its vertices, F = {~p1, ~p2, . . . , ~pk},
where ~pi = (φ, ψ), i = 1, . . . , k, φ being the latitude and ψ being the longitude. On the
border of a FRA, there are special waypoints that we call entry/exit points.

We restrict ourselves to FRAs at a fixed altitude and thus consider FRAs that are 2D
polygons. Neglecting the third dimension simplifies our approach but keeps our solutions
relevant in practical terms. Indeed, a typical way of looking at flight routes is by decomposing
them into their 2D projections on the surface of the Earth and their vertical profiles [14, 3].
The vertical profile is commonly decomposed into three phases: climbing, cruising, and
descending.1 The cruising phase is the dominant, and takes place at an altitude that is

1 See http://flightaware.com/ or http://flightradar24.com, for example.
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favorable for the performance of the aircraft. Therefore, in most situations, the flight has to
cross FRAs in the cruising phase, where the airplane has reached its desired altitude and a
2D solution is sufficient. Alternatively, in situations where one of the end points of a route
lies inside an FRA, the best 2D path through it may still be used to plan a 3D path.

The weather forecast service may be provided by the World Area Forecast System
(WAFS) [17]. Wind data on Earth is available for each 1.25th degree of latitude and 1.25th
degree of longitude and for several altitudes, yielding a 3D grid of geodesic points. For each
such point, wind barbs are available, providing a visual description of the wind speed and
direction. In mathematical terms, they define wind vectors. This weather data is updated
at regular intervals of 6 hours, with a resolution of 3 hours. In our 2D simplification, we
consider a 2D grid of points, W , corresponding to one single level of the 3D grid given by a
desired altitude.2

Locations of points in a three dimensional spherical space can be described by means of
Cartesian coordinates on the plane by applying a Mercator projection. In such a projection
of the world map, lines of constant latitude and longitude become straight horizontal and
vertical lines, respectively. Hence, once projected to the Cartesian plane, the 2D weather
grid becomes a regular, rectangular grid.

Wind conditions in other locations than those provided by the grid W can be inferred by
interpolation; by linear regression, for example. Here, we prefer another approach and assume
that every point in the Cartesian plane has the same wind vector as the grid point of W at
the smallest Euclidean distance. Denoting by ~pi,j the location of the point (i, j) ∈W and by
~wi,j the associated wind vector, we can determine the regions Ri,j ⊆ R2 with constant wind
vector ~wi,j as follows: Ri,j = {~p ∈ R2 | ∀ (r, s) ∈ W, (r, s) 6= (i, j) : ‖~p− ~pi,j‖ ≤ ‖~p− ~pr,s‖}.
This yields a Voronoi tessellation (partitioning) of the plane (see e.g. [8]), which preserves
the regular, rectangular structure of W .

In what follows for a polygon F representing a FRA, we assume that we also have a
rectangular tessellation Q of F consisting of rectangular regions (quads) Qi, i = 1, . . . ,K
and Q = Q1 ∪Q2 ∪ . . . ∪QK such that all points of a region have the same wind vector ~wi.
It is easy to think of this rectangular tessellation as the same Voronoi tessellation derived
from the wind grid. However, it can also be a more general rectangular tessellation, in which
several regions of similar wind conditions are joined together; see Fig. 1.

Wind-dependent travel time function. Consider two points ~p, ~q ∈ R2 of a region of constant
wind ~w, and let ~p be the position of the aircraft and ~q its desired destination. With respect
to the ground, the aircraft travels along the direction −→pq = ~q − ~p, where ‖−→pq‖ is the ground
distance between ~p and ~q. When the aircraft flies through the air, it is affected by the wind;
see Fig. 2. To hit the goal ~q, it has to head in a proper direction, possibly different from −→pq.
This direction, relative to the atmosphere and hence called air velocity, is denoted by ~vA
and ‖~vA‖ = h is the true airspeed. The ground velocity ~vG in the direction −→pq is given by:
~vG = ~vA + ~w.

Expressing the wind vector in polar coordinates ~w = (ω, θ), where ω is the wind magnitude
and θ the angle between ~w and −→pq, and using the laws of trigonometry, we can derive the

2 Latitude degrees are defined from 90 deg north to 90 deg south and longitude degrees from 180 deg
west to 180 deg east. Thus, real-life 2D weather data is given for a 2D grid of 144 × 288 points, i.e.,
W = {(i, j) | i = 0, 1, ..., 143 and j = 0, 1, ..., 287}.
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Figure 1 Left: a polygon defined by points pi, i = 1, ..., 12, representing a (fictional) free route
airspace. Our problem is to find the best path between a source s and a goal g in terms of travel
time, which depends on the wind conditions, represented by wind vectors indicating direction and
magnitude at evenly spaced locations. Right: A path from s to g in a tessellation of a flying area
(different from the left one). Border points are emphasized by circles.

travel time for the aircraft to go from ~p to ~q. That is,

t~p,~q(~w) = ‖
−→pq‖
‖~vG‖

= ‖−→pq‖
ω cos θ +

√
h2 − ω2 sin2 θ

. (1)

Under the reasonable assumption that the true airspeed h is larger than the wind speed ω,
then h2 − ω2 sin2 θ > 0 and Eq. (1) gives a valid value.

3 Algorithms for Cheapest Path through Vector-Weighted Regions

We discretize the flight route problem to obtain a graph representation. This makes it
possible to apply classic Dijkstra and A? algorithms directly. Then, we define our new
algorithm, which uses the same search graph, but exploits geometric properties of the
environment it models to reduce the run-time. The algorithms we present are optimal up to
the approximation due to the discretization. Intuitively, we then approach the continuous
optimal route when the number of border points increase.

We assume that we have a 2D polygon F representing a FRA at a specific flight level,
and two additional points, s and g, representing a source and a goal, respectively. Further,
we assume that we have a tessellation (partition) Q of the polygon F in rectangular regions
(quads) Q1, . . . , QK , and vector weights ~w1, . . . , ~wK associated with each quad, representing
the direction and intensity of the wind. The situation described is sketched in Fig. 1, left.

A continuous curve in F is a path P and its cost is cP =
∑n
i=1 tPi(~wi), where tPi(~wi)

denotes the travel time of the intersection of P with the quad Qi, that is, Pi = P ∩ Qi.
Given two distinct points s and g in P , a minimum cost (s, g)-path joining s and g is called a
geometric shortest path. With constant vector weights associated with each quad, geometric
shortest paths are simple (non-self-intersecting) and consist of a sequence of linear segments.
We define linear paths to be simple paths consisting of quad-crossings exclusively. A linear
path P is made by a sequence of segments or, equivalently, as a sequence of the endpoints
a0, . . . , a` of these segments.

In order to search for such paths, we discretize the borders of quads into a set of border
points. For a quad Q ∈ Q, we refer to its four sides from the perspective of an entering path
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Figure 2 Left: an aircraft traveling along −→pq with ground velocity ~vG affected by wind vector ~w
travels with true air velocity ~vA. The individual components of the wind vector, wC = ω · sin θ and
wT = ω · cos θ denote the crosswind and tailwind components, respectively. The ground speed ‖~vG‖
is given by wT +

√
‖~vA‖2 − w2

C . Right: a quad Q with border points (i, S), S ∈ {B, T, L,R} and
the local coordinate system.

as bottom (B), opposite (or top) (T ), left (L) and right (R). The definition is relative to
a point on the side of Q that is denoted as B. We also define a local coordinate system
with its origin (0, 0)Q at the bottom (B) left (L) corner of the quad. We decorate the sides
S ∈ {B, T, L,R} with a set of equi-distant vertex points. Let kS be the number of points on
side S and let kS = m if S = {L,R} and kS = n if S = {B, T}. Let also λS be the length
of a side S ∈ {B, T, L,R}, with λL = λR and λT = λB. The border points are placed at a
distance εS = λS/kS apart. For example, the coordinates with respect to the local system of
the points on the side L are (εS/2, 0)Q, (εS(1/2 + 1), 0)Q, . . . , (εS(1/2 + kS − 1), 0)Q. There
are no border points at the corners of the quads. We represent a border point p ∈ Q by the
tuple (i, S)Q, where i ∈ {0, 1, ..., kS} is the index of the point on side S ∈ {B, T, L,R}; see
Figure 2.3

For each quad Q ∈ Q, we let an adjacent quad be any quad that shares (part of) a border
with Q. Thus, Q is essentially implemented as a planar graph with an adjacency list for
each quad. Hence, the amount of memory required to store the tessellation and the border
points is O(Kn), where we assume n = m. If the tessellation is derived from the original
weather grid, then it is a regular grid, where each quad can be identified by two indices (i, j),
and neighboring quads can be derived by incrementing or decrementing the indices, and
adjacency lists are not needed.

We indicate by AQ the set of border points on the four sides of Q ∈ Q and by ASQ the
border points on each single side S ∈ {B, T, L,R} of Q. Border points on a common side
of two quads Q,Q′ ∈ Q belong to both AQ and AQ′ . Let Qs and Qg denote the quads
containing s and g, respectively. We limit the reachability of border points of a side of a
quad to points on one of the other three sides and the two closest points to the left and
right on their own side. As a special case, a most extreme border point on a side can
also reach the neighboring point on the side which is a continuation of its own side (in
the neighboring quad). Thus, the set of reachable points R(p) from p = (i, 0)Q ∈ Q is
R(p) =

⋃
S∈{T,L,R}A

S
Q ∪ ({(i− 1, 0)Q, (i+ 1, 0)Q} ∩ABQ).

For the tessellation Q, we define the graph Gsg = (V,E), where vertices in V represent
border points and edges in E represent links between reachable border points. Formally,

3 Sometimes we represent a border point p also by means of the local coordinates of the quad to which it
belongs; although, in this case, it would be more appropriate to denote p as a vector we continue to
denote the point simply by p.
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V =
⋃
Q∈QAQ and E = {uv | v ∈ R(u), u ∈ AQ, Q ∈ Q\ {Qs, Qg}} ∪ {sv | v ∈ AQs} ∪ {ug |

u ∈ AQg}; see Figure 3, showing a tessellation Q with four quads and the corresponding
graph Gsg. The cost cuv associated with an edge uv ∈ E is the travel time between the
corresponding border points pu, pv ∈ AQ, that is, tpu,pv (~wQ).4

For a border point p, let φ(p) = (s = a0, a1, a2, . . . , ak−1, ak = p) be the cheapest path
from s to p, across k border points ai ∈ Qi ∈ Q for i = 2, . . . , k and a1 ∈ Qs as the first
border point on the path from s to p. To each border point p ∈ Q, we associate the following
data: the travel time tp from s to p along path φ(p) defined by cp =

∑k−1
i=0 caiai+1 and a

pointer αp to p’s predecessor in φ(p), hence αp = ak−1.
Initially, each border point is assigned a large value to tp and a null pointer to αp. We

say that a border point u ∈ Q covers another border point v ∈ Q when a path ending at u is
extended to v and the values tv and αv are, consequently, updated. Once the initial values
tp and αp of a border point p have been updated, we say that the border point p is covered.
A border point p ∈ AQ that has been covered by a point u not in Q is said to be an entry
point for Q. Points covered by points on the same side are not categorized as entry points.

Graph-based approaches. We can find shortest paths in G by applying classic Dijkstra [7]
and A? algorithms. These algorithms expand records of vertices from an open list H until a
path from source to goal is proven optimal. The expansion of a vertex v amounts to inserting
all vertices reachable from v into the heap H, or updating their keys if they are already in H.
When extracting a vertex v ∈ V from the open list, priority is given to the one of smallest
cost (best-first) or smallest sum of the cost of the path to v and a heuristic estimate h(v) of
the cost from the corresponding node to the goal (in case of A?). The algorithm terminates
when the goal g has been reached and the incumbent best path to g is cheaper than the
cheapest record in H. Using best-first, the solution returned is optimal. For A?, the solution
returned is optimal if the heuristic is admissible (it never overestimates the cost from v to
the goal). If the heuristic is also consistent (for each edge uv ∈ E, h(u) ≤ cuv + h(v)), then
we only need to expand a node once.

For any vertex v ∈ V corresponding to a border point pv, we define the heuristic
value h(pv) to be the travel time needed to traverse the straight line distance with a tail
wind of intensity equal to the largest in the FRAs. Formally, h(pv) := tpvg(~w′pvg), where
~w′pvg :=

−−→pvg
‖−−→pvg‖ωmax and ωmax = maxQ∈Q ‖~wQ‖. This heuristic is admissible and consistent.

We have implemented the open listH as a min-heap. For a vertex v ∈ V , the corresponding
point pv = (i, S), S ∈ {B, T, L,R}, i = 1, . . . , kS , and αpv are stored with the key tp. Smaller
keys indicate higher priority in the list and the heap supports all the usual operations needed
for the implementation of Dijkstra’s algorithm. The use of H thus defined leads to an
asymptotic running time for Dijkstra of O((V +E) log(V )) or, in other terms, since each of
the K AQ contains O(n) points and O(n2) edges, O(Kn2 log(Kn)).5

Geometric algorithm. The main idea is to speed up node expansion by avoiding to expand
to border points that can be reached more conveniently from other nodes already in the

4 Note that the definition of cost for edges between vertices representing points on the same side is
ambiguous because we defined border points to belong to both quads Q and Q′ sharing the side. We
break this ambiguity in the search algorithms by always considering the wind vector of the quad Q
in which u is an entry point. An alternative choice would have been to consider on that segment the
average of the wind vectors in the two adjacent quads. However, this choice would break the triangular
inequality and require more computation.

5 Using Fibonacci heaps [10], this could be brought down to O(Kn log(Kn) +Kn2).
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1 Function GeomBestFirst(Q, s, g)
2 foreach quad Q ∈ Q do
3 foreach point p ∈ AQ do
4 tp ←∞, αp ← NIL

5 H = new empty priority queue
6 Find quad Qs ∈ Q that contains s and Qg ∈ Q that contains g
7 Ds = AQs
8 βs = arg min{csp | p ∈ Ds}
9 H.Insert(cβs,s, s)

10 while not H.IsEmpty() and not all points in AQg are covered do
11 γr, r = H.ExtractMin() . Smallest key and associated point
12 tβr = γr; αβr = r . Cover βr
13 foreach S ∈ {B, T, L,R} do
14 DS

βr
, pS = CompeteOnSide(βr, S)

15 ββr = arg min{tβr + cβr,pS | S ∈ {B, T, L,R}}
16 H.Insert(tβr + cβr,ββr , βr) . Smallest new key and associated point
17 if Dr is not empty then
18 βr = arg min{tr + cr,p | p ∈ Dr}
19 H.Insert(tr + cr,βr , r)

20 return φ(g)
Algorithm 1: Main path finding algorithm.

open list. This can be achieved by exploiting the geometry of the environment and the
vector weights. An overview of the algorithm is given in Alg. 1; many of the ingredients are
described below. Differently from the previous Dijkstra and A? algorithms, the key of an
element v ∈ V stored in the open list H is not the cost of the path from source to v, but the
cost of the path from the source, through v, to v’s cheapest reachable successor node.

To every border point u ∈ AQ, Q ∈ Q, we associate a domain set Du, which is a subset
of uncovered border points in AQ that the point may try to cover in the future. DS

u ⊆ Du is
the domain set restricted to points on side S. The set DS

u is a connected interval of points,
which can be represented as DS

u = [iu, iu]. The first entry point p that enters a side B of Q
will initially have all other border cells in Q as its domain. However, if another entry point of
Q on the same side B, q, is extracted from H, then p and q compete for their domains. Thus,
the border points of Q are partitioned into two subsets such that the domain of q becomes
the border points that are less costly to reach from q than from p, and vice versa. We say
that an entry point is active as long as its domain is not empty. When an entry point is no
longer active, we say that it is blocked.

For this algorithm, we extend the information maintained at a border point p to contain,
in addition to tp and αp, the domain of the point and the cheapest reachable node in the
same quad, βp. Note that this is again a point, so the notation ββp is meaningful.

After the initialization of the data associated with border points (lines 2–4), all nodes
v ∈ V representing border points of Qs are assigned to the domain of s and s is inserted
into H with the cost to the cheapest reachable point in AQs as its key (lines 6–9). For each
iteration of the main loop (lines 10–19), a border point r is extracted from the open list and
border points from the same quad considered for coverage. The extracted point indicates the
cheapest point βr it can reach. If βr is already covered, then it is ignored because another



C.K. Jensen, M. Chiarandini, and K. S. Larsen 14:9

vertex already covered it with a cheaper path. If βr is not yet covered, then it is covered by
r. Once covered, βr triggers a domain competition to determine its domain Dβr in Q. As a
consequence, the domain of other entry points on the same side may be updated. The details
of these operations depend on the side of the quad. Next, we determine ββr = p∗, i.e., the
cheapest reachable point from Dβr and insert βr into the queue with the cost to p∗ as key.
When the quad containing the target point is completely covered, the algorithm terminates
and a fastest path from s to g can be constructed by backtracking the predecessor pointers
from g to the starting point s, or more precisely, the fastest path from s to g is simply φ(g).

The function CompeteOnSide varies depending on sides. Before we describe it, we need
to introduce some further elements.

Let ESQ be the set of entry points on side S ∈ {B, T, L,R} in quad Q currently in H and
let ES-S′Q ⊆ ESQ be the subset of entry points on side S still active towards side S′. In order
to retrieve entry points to the left and to the right of a point p ∈ S efficiently, we maintain
each ES-S′Q in the form of a balanced binary search tree (a red-black tree).

Let p ∈ ASQ be a border point on some side S ∈ {B, T, L,R} in a quad Q ∈ Q. For
two entry points a, b ∈ EBQ , we say that a dominates b over p and we write a �p b, if
ta + tap ≤ tb + tbp (ties may be broken arbitrarily). Likewise, if for all border points p ∈ ASQ
on a side S ∈ {B, T, L,R}, we have that a �p b, we say that a completely dominates b on
side S and write a �S b. Alternatively, if there exists a border point p on side S for which
a �p b we say that a partially dominates b on side S.

Compete on arrival side. For an entry point p on side B, the domain on the same side
consists of the two closest points, one on the left and one on the right, including the first
border point on the continuation of the side into the neighboring quads, if they exists. If
both those points are themselves entry points or covered, then p is blocked on the arrival
side. The cheapest reachable point will be one of those (at most two) points in the domain.

Compete on the opposite side (T). In domain competition on the opposite side T , we
decide the entire domain DT

a for each a ∈ EB-T
Q when a new point b entering on the side B

of the quad Q. The point b is determined by the pointer βr of the point r extracted from
the open list and it becomes an entering point after it has been covered. When an entry
point a is the first entry point on side B of a new quad, its domain DT

a will be assigned ATQ.
However, when another entry point b arrives, the two entry points compete for their domains
on side T . This means that ATQ is partitioned into two subsets DT

a ⊆ ATQ and DT
b ⊆ ATQ.

Letting each entry point compete for its domain with every other entry point would lead
to a worst case time complexity of O(n2 log(Kn)) for competing on side T (O( log(Kn)) is
the extraction cost of an entry point from H). Instead, we do this in O(n log(Kn)) time
by extending an algorithm from [6] to the case of vector weights. In that article, costs are
determined by Euclidean distances. This allows to easily determine domination between
points and save competitions. For example, for a quad Q ∈ Q, an entry point a at (xa, 0)Q
dominates another entry point b at (xb, 0)Q, if xa < xb and ta < tb. This condition does not
hold trivially with vector weights. However, we can derive something similar with a bit more
work.

For a new entry point b arriving on B, we need to compete with the active entry points
in EB-T

Q to its left and right in order of increasing distance.
For a point a to the left (right) of b, the following cases may arise:

1. a completely dominates b on T : the examination on the left (right) can be prematurely
terminated since all further points in EB-T

Q on the left (right) of a would also dominate b.
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2. b completely dominates a on T : a becomes blocked on side T and the examination
continues with the next point in EB-T

Q to the left (right) of a.
3. b partially dominates a on T : the domains of b and amust be updated, but the examination

to the left (right) can be prematurely terminated because no further points in EB-T
Q to the

left (right) of a will need to update its domain (since the domain of a will not be empty
and its influence on other points from EB-T

Q different from b was already determined).

When examining points from EB-T
Q , we update ib if moving to the left and ib if moving to

the right. The update occurs only in Cases 2 and 3. After this update, if b is not blocked on
T , it becomes part of EB-L

Q .

I Theorem 3.1 (Separation point). For two points a, b ∈ ABQ, Q ∈ Q, domination and
domain computation on side T can be carried out in constant time by determining the point
z = (xz, λL)Q that separates the domains. The value xz is found by solving

tb + tbz(~wQ) = ta + taz(~wQ). (2)

For points a to the left of b, if xz > ia, then we are in Case 1, while if xz < ia, then we are in
Case 2. Otherwise we are in Case 3 and xz is the new value of ia and ib. Similar derivations
can be made for points a to the right of b.

Although xz can be determined in constant time, the required retrieval and storage
involves searching and updating the heap. This can be done in time amortized O( log(Kn))
per point. Thus, the total cost for carrying out domination for one side of a quad is
O(n log(Kn)).

Once the domains are updated, we need to determine the cheapest reachable point from
DT
b .

I Theorem 3.2 (Cheapest reachable point). For an entry point p in ABQ, Q ∈ Q, the point
z∗ ∈ DT

p that minimizes the travel time can be found by solving the following optimization
problem:

z∗ = arg min{f(z) = tp,z(~wQ) | z = (xz, λT ), xz ∈ R} .

The problem has the closed form solution xz∗ = w1λT
w2−h , where ~wQ = (w1, w2)Q.

Compete on the lateral sides (L and R). Competition on the two lateral sides is conducted
in a manner very similar to the opposite side. The general algorithm with the three cases
remains the same and separation points and cheapest points can be derived in constant time.
Consequently, also the overall running time of O(n log(Kn)) is preserved.

Note that a further small speed up is possible on the opposite and lateral sides. For a
first arriving entry point p at side B of a quad Q, let z∗ be the cheapest reachable point on
a side S ∈ {T, L,R} and let tmin be tpz∗(~wQ). Let also z0 and zkS−1 be the first and last
border point of side S, respectively, and tmax = max{tpz0(~wQ), tpzkS−1(~wQ)}. Then all later
arriving entry points q will be blocked if tq > tp + tmax − tmin.

This is because p will be able to cover all points on the side S before q could cover them.
This would already be discovered later by realizing that p completely dominates q (Case 1),
but the above observation could save some cumbersome calculations. With regard to the
runtime, the following holds:

I Theorem 3.3 (Overall Time and Space Complexity). A cheapest path in a vector-weighted
tessellation Q of size K of a polygon F with n border points on each side of the quads of Q
can be found in O(Kn log(Kn)) time using O(Kn) space.
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s

g

Figure 3 Left: four quads with four border points on each side and the source s and goal g nodes
together with the corresponding graph Gsg with its vertices (circles) and edges (red segments). Right:
The execution of our geometric algorithm on a 4× 4 tessellation with source in the top-left quad and
goal in the bottom-right quad. The path in bold black represents the optimal path, which deviates
considerably from the straight line. The black lines represent the work done by our algorithm and
the gray lines the work done by Dijkstra.

4 Experimental Analysis

For our experiments, we use rectangular polygons with tessellations consisting of 2i × 3i
square quads, i = 2, . . . , 10. We also consider different choices for the number of border
points n ∈ {9, 12, 18, 21, 25, 42} on each side of the quads. So we consider instances of the
problem with up to 51, 891 border points. For varying n, the inter-point distance is kept
as constant as possible. Thus, the polygon grows in size as n increases. The wind vectors
associated with each quad are generated independently at random as follows: Let ω be the
magnitude and θ be the angle of the vector. We set ~w = (ω, θ) = (r1 · 2/3 · h, r2 · 2π), where
r1, r2 are sampled independently and uniformly at random from [0, 1) and h = 50 is the
speed of the aircraft.6 In all instances, we consider a query for a path from a source s located
in the center of the top left quad to a goal g located in the center of the bottom right quad.

In Fig. 3 right, we give evidence that cheapest paths may deviate considerably from the
straight line path. The figure shows a screenshot of the execution of our geometric algorithm
in a tessellation Q. The circle in each quad has radius ĥ = 2/3 ·h and indicates the maximum
intensity of the wind, while the segment from the center indicates the actual wind vector.
The bold black path indicates the cheapest path. The black segments are part of the cheapest
tree from s to each border point in Q. As expected, quads with strong headwind are avoided
by cheapest paths. The gray segments belong to those paths that Dijkstra relaxed during its
search when a better path to a node is found and they represent, therefore, the work saved
by our geometric algorithm.

6 We omit the unit of measure which is irrelevant for synthetic data.
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Figure 4 Comparison of running time between our algorithm (geometric vector-weighted region
shortest path) and the two graph-based ones. The best run-times out of 5 runs are reported and a
local regression line is superimposed on the points. The number of border points n on a side of each
quad is increased in the panels from left to right.

Scaling. We study how the algorithms described (Dijkstra’s, A? search, and our geometric
algorithm) scale with respect to increasing: size of the (rectangular) tessellations and number
of border points. At each tessellation size and number of border points, we create three
instances as explained above. For each instance and algorithm, we perform 5 runs and record
the best running time.

Results are shown in Fig. 4. We see that for instances of the same number of quads,
the running time increases with n. Dijkstra’s algorithm consistently performs worst for any
number of border points. A? performs slightly better than our algorithm for n = 9, but as
we increase the number of border points, our algorithm performs better than A? search, with
a margin that increases with n.

In practical situations, where the size of the polygon is fixed, increasing the number
of border points allows us to decrease the inter-point distance among them and therefore
naturally we want as many border points as possible, as this increase the accuracy of solutions.
Thus, it is relevant to opt for our algorithm with the best running time performance.

Solution quality. We argued that the accuracy of the solutions increases when increasing
the number of border points. In Fig. 5, we show two cases where this statement becomes
evident. For an instance with 16 × 24 quads, we show the variation of solutions attained
by our algorithms when increasing the number of border points from 1 to 25 with intervals
of 1, while keeping the wind data constant. In particular, the solution represented in black
is attained with the highest resolution (n = 25) while the others are depicted in gray. We
observe that in these two cases, substantial differences in the paths arise. However, in general,
the differences among the final cost of the solutions were less impressive. We argue that
this behavior is due to the specific data that we used. That is, the instances were randomly
generated and the quantities were dimensionless. While the number of quads 16 × 24 is
realistic – for example, the case of FRA between Denmark and Sweden has 12× 20 quads –
the sizes of the quads and the inter-point distances were probably not. Hence, we believe that
our analysis does not provide conclusive answers in this regard. A more precise assessment of
the variation of solution quality with respect to resolution must necessarily include real-life
data and quantify the variations in monetary terms.
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Figure 5 Visual comparison of solutions attained by our algorithm for increasing number of
border points. For an instance with 16× 24 quads, we increased the number of border points from 1
to 25 while keeping the wind data constant. In black, we show the solution attained with the highest
resolution (n = 25) while the others are shown in gray.

5 Conclusions and Future Work

We have proposed a geometric algorithm for finding a shortest path in a polygon with a
tessellation (partitioning) in vector-weighted regions. The algorithm has practical relevance
in the context of finding flight routes in free route airspaces. Our algorithm is able to
find routes that exploit wind forecast and because of this it is more effective than what is
currently used in practice. We have provided a theoretical analysis of the running time of our
algorithm, and experimentally, we have compared the running time of our algorithm with
other classic graph-based algorithms such as Dijkstra and A?. Thanks to our set-up, our
geometric algorithm is able to find the same routes as these algorithms, but its running time
grows much more slowly when the tessellation size and the number of border points increase.

When computation time is an issue, it is possible to approximate optimal paths by
joining adjacent regions of similar vector-weights. We have designed two heuristic algorithms
for joining regions and studied the impact of these operations on the quality and on the
computational cost of our algorithms. Although not reported here for reasons of space, this
further analysis has shown another favorable feature of our algorithm. While joining quads
and keeping the overall number of border points constant yields an increase in running time
for classic Dijkstra and A? because the number of edges increases, our algorithm is able
in fact to decrease its running time. This result indicates that our algorithm offers more
flexibility with respect to computation time than the other two.

We have used travel time as the cost to be minimized. In practice, the monetary cost
rather than travel time is used, which depends on fuel consumption as well. The viability of
our approach in that context has to be understood better. Further, we could not find an
easy way to extend our geometric considerations to A? search algorithms. Investigations in
this direction would be interesting for future research. Finally, the flight route optimization
problem is in fact a 3D problem that we have simplified to a 2D problem. Extensions of our
ideas to three dimensions would be interesting.
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1 Introduction

In this work, we introduce the shortest path problem with crossing costs (SPPCC), which
seeks to find a minimum-cost path between two given nodes in a directed graph. As opposed
to the classical shortest path problem (SPP), where the objective function is the sum of
weights corresponding to the arcs of the path, we also consider crossing costs. These are
associated with regions in the directed graph, which are defined as sets of arcs. Every
time a path intersects a region, the corresponding crossing costs are determined using the
region’s cost function, which depends on the arcs in the intersection. Crossing costs come
up as overflight costs in aircraft routing, where the regions correspond to countries [15], in
passenger routing in public and rail transport, where fare zones and air distance dependent
tariffs are common [11], and in intermodal routing, when modes are changed [3].

The SPPCC constitutes a generalization of the classical SPP, see [18] for an excellent
survey, and of several NP-hard variants such as the resource constrained shortest path
problem and the minimum label path problem [10]. While the first can be approximated in
polynomial time [16], the second cannot within a polylogarithmic factor unless P=NP [13].
Exact algorithms for the resource constrained shortest path problem have been suggested by
[14], and for a simplified version of the minimum label path problem, the problem of finding
a path with the smallest number of different colors in an arc-colored graph, by [7].

We study the variant of SPPCC where a path’s crossing costs are linear and depend only
on the first and last nodes it uses in each region. To the best of our knowledge, this problem
has not yet been studied in the optimization community. The paper makes the following
contributions:
1. The Two-Layer-Dijkstra Algorithm, which solves the problem to optimality in polynomial

time.
2. Two cost-projection methods (one combinatorial, one LP-based) that transform crossing

costs into regular arc weights, these are used to approximate the problem by a related
standard shortest path problem.

3. A computational evaluation of all algorithms presented.
We will show that cost projection allows to deal with complex crossing costs in a way that is
highly accurate on real world data, computationally efficient, and allows to deal with changes
of arc weights according to, e.g., weather.

Our motivation for studying the SPPCC stems from an application in flight trajectory
optimization, as described in [15]. This problem can be described as follows. The input is
an airway network, origin and destination airports, an aircraft of a given weight, a weather
forecast, and countries’ overflight fees functions, among other factors. The output is a flight
route. The objective is to minimize the trajectory-dependent costs (as opposed to constant
costs such as airport fees), which are usually the sum of fuel costs, overflight costs, and
time costs. Fuel costs and time costs are in general directly proportional to the length of
the trajectory, and can thus, after some simplifications, be projected down onto the airway
segments (i.e., the arcs of a graph representation), essentially reducing the problem to a
(time-dependent) shortest-path problem, which can be solved to optimality by using a variant
of Dijkstra’s algorithm. Overflight fees, however, are determined by very diverse cost models,
many of which make Dijkstra’s algorithm deliver suboptimal solutions.

Overflight costs, also known as ATC charges, are the means by which Air Traffic Control
authorities finance themselves. For each airspace (in general corresponding to a country)
used during a flight, airlines are required to pay a fee, determined by factors such as the type
of aircraft and the way in which the airspace is overflown. To the best of our knowledge,



M. Blanco et al. 15:3

Table 1 Examples of airspaces and different cost models, as of April 2016.

Function
Distance GCD FD

Linear European countries,
USA, Thailand

Brazil, Ghana,
Saudi Arabia, Iran

Constant Egypt, Sudan, Myanmar, Japan

Piecewise-constant Ethiopia ASECNA1, Angola,
Vietnam

Other India, D.R. Congo Argentina, Kenya

all currently used models define the overflight cost on an airspace as a function that takes
three parameters: The distance defined by the flight trajectory in the airspace, the aircraft’s
maximum take-off weight, and the origin-destination pair. Since the last two are independent
of the trajectory, we will assume from here on that the overflight cost function is solely
dependent on the distance.

There exist two widely used definitions of the distance determined by the intersection of a
flight trajectory and an airspace. The first and most natural variant is to consider the flown
distance (FD), which is the total ground distance traversed by the aircraft in the airspace.
The second variant uses the great-circle-distance (GCD), defined in this context as the length
of the great circle connecting the coordinates where the aircraft enters and exits the airspace.
If a trajectory intersects an airspace multiple times, the distance considered is the sum of
the distances defined by each intersection.

The cost function itself is always non-decreasing and usually linear, constant, or piecewise-
constant. This results in six different combinations, which encompass nearly all cost models
currently in use, and which lead to problems with varying degrees of difficulty. The only
outliers, as of April 2016, are India, Argentina, Philippines, Democratic Republic of Congo,
and Kenya; where the function used is piecewise-linear or even non-linear. In the remainder of
this paper, we will ignore these cases. In Table 1 we list some representative airspaces which
use the aforementioned models. Notice that when the cost function is constant for an airspace,
it is irrelevant whether the distance type used is GCD or FD. Official documentations of
overflight cost models can be found for example at [1], [2], or [9].

The problem of flight trajectory optimization under consideration of overflight costs is
essential for minimizing airlines’ operational expenses. In a case reported in [8], an airline
could save 884 USD in overflight charges on a single flight from San Francisco to Frankfurt
by deviating from the standard, most direct route; thus avoiding Canada’s expensive charges.
However, despite their obvious importance, the literature on overflight costs is scarce. The
problem is presented in [15], but no solution approaches are discussed. The authors in [6]
consider the linear/GCD model, but their optimal control algorithm approximates overflight
costs by using FD instead of GCD. Similarly, in [19], several variants of overflight charges
are introduced (including linear/GCD and flat-rate), but the optimization algorithm deals
only with linear/FD costs. [17] introduces the linear/GCD model as well as the piecewise-
constant/FD model, but their heuristic solution method allows no à posteriori quality
assessment.

In this paper, we study the flight trajectory optimization problem with overflight costs
through the more abstract shortest path problem with crossing costs (SPPCC). We present

1 ASECNA is a cost airspace encompassing 18 African countries, with an area of approximately 1.5 times
that of Europe.
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the first formal framework for classification of existing overflight cost models. Furthermore,
we introduce efficient algorithms to handle a problem variant that is one of the most relevant
in practice. The paper is structured as follows. In Section 2.1, we formally introduce the
SPPCC, which models the problem of flight trajectory optimization with overflight costs. In
Sections 3 and 4, we focus on one of the most important variants of the SPPCC. We present
both the Two Layer Dijkstra Algorithm, a polynomial, exact algorithm; as well as two novel
cost-projection techniques that reduce the problem (heuristically) to a standard shortest
path problem. In Section 5 we present computational results on real-world data.

2 Problem Description

This section gives a formal definition of the shortest path problem with crossing costs. For
consistency with the literature, we will first introduce a general, NP-hard version and then
proceed for the remainder of the paper with a polynomially solvable version, which is relevant
for the applicatons in aircraft (and intermodal) routing that we have in mind.

2.1 The General SPPCC
Let D = (V,A) be a directed graph, with source and target nodes s and t. Let d : V × V →
[0,∞) be a metric function that we call distance. For the special case where (u, v) = a ∈ A,
we use the notation da := d(u, v). We also have a constant factor ϕ > 0, which represents
the unit weight on arcs. For each a ∈ A, we refer to ϕa := ϕ · da as the weight of arc a.

Let R = {R1, . . . , Rk} ⊆ 2A be a family of sets of arcs, not neccessarily disjoint, that we
shall call regions, such that

⋃
R∈RR = A. Furthermore, let RG,RF ⊆ R be a partition of

R. RF represents the regions where every arc belonging to a solution path is important for
computing the costs. For regions in RG, only the nodes used to enter and exit the region are
relevant. For every R ∈ R, let fR : [0,∞)→ [0,∞) be a non-decreasing function. For a path
p in D and a region R ∈ R, let Pp

R be the set of all maximal subpaths of p contained in R.
The nodes t(p) and h(p) denote the first and last nodes in a path p, respectively. Similarly,
for an arc a = (u, v), we use the notation t(a) = u, h(a) = v.

Finally, we can define the crossing cost corresponding to R ∈ R and an (s, t)-path p:

γR(p) =



fR

∑
q∈Pp

R

d (t(q), h(q))

 if R ∈ RG and R ∩ p 6= ∅

fR

 ∑
a∈R∩p

da

 if R ∈ RF and R ∩ p 6= ∅

0 if R ∩ p = ∅

I Definition 1. The shortest path problem with crossing costs (SPPCC) is defined as follows:
Input: Directed graph D = (V,A), arc weights ϕ : A ≥ R+, regions R ⊆ 2A, crossing costs
γ, nodes s, t ∈ V .
Objective: Compute an (s, t)-path p in D that minimizes the cost function

c(p) =
∑
a∈p

ϕa +
∑
R∈R

γR(p). (1)

I Example 2. We illustrate the definition of the SPPCC with the example in Figure 1.
There, we have regions R = {R1, R2, R3, R4, R5, R6}, with the corresponding crossing cost
functions given in Table 2. In this example, we define the arc weights as ϕa := 2da for each
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Figure 1 Example of an SPPCC instance with six regions. Arcs are labeled with the distances
da between their endpoints, and the (s, t)-path p is represented by the continuous arrows. Dashed
arrows represent distances between nodes that are not connected by an arc in the path.

Table 2 Crossing cost functions for Example 1.

i 1 2 3 4 5 6

fRi(x) 3x 2x 10
{

8 if x ≤ 6
20 if x > 6

{
5 if x ≤ 10
10 if x > 10 15

a ∈ A. We also suppose R2, R4 ∈ RG; R1, R5 ∈ RF . Since fR3 and fR6 are constant, it is
irrelevant whether they belong to RG or RF , but for the sake of completeness let us say
R3, R6 ∈ RF . Given that R2 and R4 belong to RG, we use the distances between the first
and last nodes of the intersecting subpaths to evaluate the crossing cost functions. The total
cost of the example path is thus:

c(p) =
∑
a∈p

ϕa + γR1(p) + γR2(p) + γR3(p) + γR4(p) + γR5(p) + γR6(p)

=88 + fR1(9) + fR2(4) + fR3(7) + fR4(10) + fR5(10) + 0 = 158.

The problem of flight trajectory optimization with overflight costs, as described in
Section 1, can be modeled using the SPPCC as follows: We use V to represent waypoints and
A to represent airway segments. The nodes s and t represent the departure and destination
airports. An airspace, which is defined as a geographical region, can be modeled by a set
R ∈ R. For each a ∈ A, the cost ϕa can be seen as the fuel cost corresponding to traversing
airway segment a, multiplied by a wind distortion that will be explained in the next subsection.
Furthermore, the great-circle-distance between two points u and v is represented by the
function d(u, v). RG represents the set of airspaces that use the GCD-model for measuring
distance, RF those that use FD.

The five important airspace cost models outlined in Section 1 induce several different
variants of the SPPCC. An extensive analysis of their complexity can be found in [5]. In this
paper, we will focus on a variant which is of particular interest in our application.

2.2 The SPPCC With Wind Influence
In the remainder of the paper, we will focus on a case that best matches our application and
turns out to be polynomial. We assume that RG = R, RF = ∅, and that fR is linear for all
R ∈ R. This allows to model the overflight fees used, for example, in Canada, USA, and
most European states. We also assume that the regions in R are pairwise disjoint. This

ATMOS 2017
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Figure 2 Typical distributions of the weight distortion factors ωa over all arcs, for two different
weather prognoses (November 2016 on the left, April 2017 on the right).

is natural, since usually there is a one-to-one correspondence between cost airspaces and
countries, and the latter do not overlap.

What about the weather? Of course, overflight fees do not depend on the weather, but
the time needed to fly between two nodes (and thus the corresponding fuel consumption)
varies greatly as the wind speed and direction change with time, see [4] for a more detailed
discussion of this phenomenon. Luckily, these two cost factors can be separated in such a way
that we can deal with crossing costs in in a preprocessing step independently of the weather,
and with the wind at query time by multiplying each arc weight ϕa with an appropriate
distortion factor ωa. Figure 2 tries to provide some intuition on the distribution of these
factors in our application. Motivated by this data, we will assume ωa ∈ [0.7, 1.4] ∀a ∈ A
throughout the paper.1 We refer to the resulting variant of the SPPCC as SPPCC-W:

I Definition 3. The shortest path problem with crossing costs and wind influence (SPPCC-W)
is defined as follows:
Input at preprocessing time: Directed graph D = (V,A), arc weights ϕ : A ≥ R+, regions
R ⊆ 2A, crossing costs γ.
Input at query time: Nodes s, t ∈ V , distortion factors ω : A→ [0.7, 1.4].
Objective: Compute an (s, t)-path p in D that minimizes the cost function

c(p) =
∑
a∈p

ωaϕa +
∑
R∈R

γR(p). (2)

3 The Two-Layer-Dijkstra Algorithm

We introduce in this section the Two-Layer-Dijkstra Algorithm (2LDA), which solves the
SPPCC-W to optimality in polynomial time. Recall that RG = R, that is, for each region,
crossing costs are given by a linear function evaluated at the distance between the first and
the last nodes used in that region (or the corresponding sum of distances, in case a region is
intersected multiple times). The main difficulty is that two different paths crossing a region
and using the same nodes to enter and leave it incur the same crossing costs. It can be
overcome by considering a coarse graph on a subset of the nodes of the original (fine) graph,
whose arcs correspond to shortest paths traversing a region in the fine graph. We run a
Dijkstra algorithm on the coarse graph, determining arc costs on-the-fly by repeatedly using

1 We do not use these bounds explicitly, but the knowledge that ωa is always “close to 1” is an important
motivation for our algorithms in Section 4.
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Dijkstra’s algorithm on the fine graph. Finally, from the optimal path in the coarse graph,
the minimum-cost path in the fine graph is reconstructed. We recall that, in Section 2.2,
we assumed that the arc weights are multiplied with a distortion factor after preprocessing.
Since the 2LDA does not have a preprocessing phase, we will ignore distortion in this section,
without loss of generality.

Let p be a path in D. The intersections of p with a region R ∈ R are the sub-
paths pR

1 , . . . , p
R
r . By the assumption of linearity of all crossing cost functions, there

exists αR > 0 such that the crossing costs of p in R can be written as γR(p) = αR ·(
d(t(pR

1 ), h(pR
1 )) + · · ·+ d(t(pR

r ), h(pR
r ))
)
. Recall that t(·) and h(·) denote a path’s first and

last nodes, or an arc’s tail- and head nodes.
Some more definitions are necessary before introducing the algorithm. For R ∈ R, define

the sets of nodes that can be used to enter or exit R as follows:

V entry(R) :=
{
{v ∈ V |δ−(v)\R 6= ∅, δ+(v) ∩R 6= ∅} ∪ {s} if δ+(s) ∩R 6= ∅
{v ∈ V |δ−(v)\R 6= ∅, δ+(v) ∩R 6= ∅} if δ+(s) ∩R = ∅

V exit(R) :=
{
{v ∈ V |δ−(v) ∩R 6= ∅, δ+(v)\R 6= ∅} ∪ {t} if δ−(t) ∩R 6= ∅
{v ∈ V |δ−(v) ∩R 6= ∅, δ+(v)\R 6= ∅} if δ−(t) ∩R = ∅

where δ−(v) is the set of arcs incident to v and δ+(v) is the set of arcs going out from
v. V entry(R) and V exit(R) will be referred to as the sets of entry and exit nodes of R,
respectively. We assume that for R ∈ R we have V entry(R) ∩ V exit(R) = ∅. If this is not the
case, we can achieve it through a simple transformation that duplicates nodes and assigns
incident arcs in an appropriate way, which does not affect the hardness of the problem.

Consider a directed graph D̄ = (V̄ , Ā), where

V̄ :=
⋃

R∈R
(V entry(R) ∪ V exit(R)) and Ā :=

⋃
R∈R

(V entry(R)× V exit(R)).

Given that a node cannot simultaneously be an entry- and an exit node of the same
region, and since we assume that R partitions A, there exists a unique region Rā for each
ā ∈ Ā such that the tail node of ā is an entry point of Rā and its head node an exit point. Let
D|Rā denote the subgraph of D induced by Rā. We define the function ComputeCost(ā)
as follows, for every ā ∈ Ā: First we compute the shortest (t(ā), h(ā))-path in D|Rā

using
arc weights ϕ. Let zā be the corresponding optimal value, or +∞ if no such path could be
found. ComputeCost(ā) then returns zā + fRā

(d(u, v)).
Given these definitions, the Two-Layer-Dijkstra Algorithm is very simple. It runs in two

phases, and works as follows:
Phase 1 is identical to the classical Dijkstra algorithm searching a shortest (s, t)-path on

D̄ except for one detail. Whenever an arc ā is examined by the algorithm, we do not know
its costs a priori. Instead, we compute them on-the-fly by calling ComputeCost(ā). In
Phase 2, each arc ā in the optimal solution is expanded to a subpath in D by recomputing
the shortest (t(ā), h(ā))-path in D|Rā

using arc weights ϕ. Finally, all such subpaths are
concatenated to return an (s, t)-path in D. See Appendix A.1 for a formal description.
I Theorem 4. The Two-Layer-Dijkstra Algorithm returns the optimal solution to SPPCC-W.
Proof. Analogously to the classical Dijkstra algorithm, a simple inductive process on the
number of visited nodes in D̄ shows that the Two-Layer-Dijkstra Algorithm finds the optimal
solution from s to every v̄ ∈ V̄ ; and in particular to t. J

Since the algorithm does O(|V |2) iterations of the Dijkstra algorithm, it has a total
running time of O(n2m+ n3 log(n)), where n = |V | and m = |A|. Thus, we conclude:
I Corollary 5. SPPCC-W can be solved in polynomial time.
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4 The Cost Projection Method

While polynomial, the 2LDA is too slow for practical purposes. This motivates the devel-
opment of fast heuristics. For this purpose, we introduce what we call the cost projection
problem. It is based on the idea of replacing crossing costs in a preprocessing phase with
shadow arc weights xa and adding these to the original arc weights ϕa, thus resulting in
a related SPP instance. Intuitively, the goal is to define the arc shadow weights in such
a fashion that the path hierarchy (with respect to total costs) is preserved after the cost
transformation. Formally:

I Definition 6. The cost projection problem (CPP) is the following:
Input: SPPCC-W instance (see Definition 3).
Objective: In a preprocessing phase (i.e., without knowledge of s, t and ω), construct projected
costs x : A→ R+ so that, for any two paths p, q in D, it holds:∑

a∈p

ωaϕa +
∑
R∈R

γR(p) ≤
∑
a∈q

ωaϕa +
∑
R∈R

γR(q)⇔
∑
a∈p

(ωaϕa + xa) ≤
∑
a∈q

(ωaϕa + xa).

It is clear that, if we could successfully solve the CPP, then the SPPCC-W could
be reduced to a simple SPP, and then solved very efficiently. Unfortunately, due to the
enormous number of potential paths, the non-linear nature of the crossing costs, and the
non-deterministic properties of the distortion factors ω, the CPP does not have a feasible
solution in general. Some progress can be made by observing that, for our purposes, it would
suffice if the optimal path in the original SPPCC-W instance were mapped to the optimal
path in the transformed SPP instance. However, this is an equally unrealistic goal. We
will therefore try to construct projected costs in such a way that the path found by solving
the transformed SPP instance to optimality has a small optimality gap w.r.t. the original
SPPCC-W instance. We suggest to do this by focussing on the subpaths in each region that
are likely to be contained in the optimal SPPCC path.

I Definition 7. For each region, we define a set of good paths: Given R ∈ R, r ≥ 1, u ∈
V entry(R) and v ∈ V exit(R), we say that a (u, v)-path p is r-good if∑

a∈p

da ≤ r · d(u, v). (3)

We denote the set of r-good paths in R by GR
r . For any subset G ⊆ GR

r , the subset of arcs in
R used by at least one path in G is denoted by A(G).

Intuitively, since arc weights ϕ are defined as a constant multiple of arc lengths, a path is
good if it is not much longer than the theoretically shortest possible path. Recalling the
assumption we made in Definition 3 on the possible ranges for the distortion factors ωa, it is
clear that the shortest paths within an airspace at query time are likely to be good paths,
after a suitable choice of the parameter r (see Section 5). Finally, note that the size of GR

r is
exponential in the number of arcs.

We propose two approaches for solving the CPP.

4.1 Averaging Unit Costs: A Combinatorial Cost Projection Method
The first method we discuss is purely combinatorial and very simple, we call it Averaging
Unit Costs (AUC). The idea behind the approach has the following motivation:
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Suppose all paths in GR
r in a region R are pairwise disjoint. A path p ∈ GR

r has length
d(p) =

∑
a∈p da and costs γR(p). A natural way to define projected costs on an arc a ∈ p is

to do so proportionally to its length:

xR,p
a := da ·

γR(p)
d(p) . (4)

As a consequence of regions being disjoint, an arc a ∈ A belongs to exactly one region
R ∈ R. Hence, to ease notation, we omit the index R in xR,p

a . Since, in addition, all paths
in GR

r are disjoint, projected costs (4) for each arc in a good path are unique. Particularly,
for each path p ∈ GR

r , we have the following:

x(p) =
∑
a∈p

xp
a = γR(p). (5)

If (5) were to hold for all paths in all regions, then the CPP would be solved. However,
this assumption is not realistic. In practice, an arc a ∈ CR is usually contained in more
than one good path. Furthermore, as noticed above, the size of GR

r is exponential, making
the iteration over all good paths impractical. For that reason, we restrict ourselves to a
polynomially-sized subset ḠR

r ⊂ GR
r (a possible way of constructing ḠR

r is presented in Section
5), and define the final projected costs xa of an arc a as the average over the projected costs
(4) of a derived from all paths p ∈ ḠR

r covering it. Formally:
Let a ∈ A(ḠR

r ), and let GR
a ⊆ ḠR

r be the subset of good paths in ḠR
r containing a. Note

that GR
a 6= ∅, since a ∈ A(ḠR

r ). Then, the final projected cost xa of a is defined as

xa :=
∑

p∈GR
a
xp

a

|GR
a |

. (6)

Note that at this point, projected costs xa have been defined only for arcs a ∈ A ∩A(ḠR
r ),

i.e., all arcs covered by at least one good path in our set. By construction, the optimal
path of the SPPCC-W instance is likely to be fully or mostly contained in this set. For
that reason, we assign projected costs that are higher than average to the other arcs. We
define mR := max

a∈A(ḠR
r )

xa

da
. That is, mR is the maximum cost-distance ratio in R. Then, for

a ∈ A\A(ḠR
r ), we define xa := mR · da.

A computational evaluation of the AUC approach is presented in Section 5.

4.2 Bound Underestimation: An LP-Based Cost Projection Method
In this section, we present linear programming (LP) based method for computing projected
costs that we call BOUND. We use the following formulation:

(LP-B)

min
∑
a∈R

xa (7a)

s.t. x(p) ≥ η · γR(p) ∀p ∈ GR
r (7b)

xa/da ≥ α ∀a ∈ R (7c)
xa/da ≤ β ∀a ∈ R (7d)
β ≤ τ · α (7e)
α , β ≥ 0 (7f)

where 1 > η > 0, τ ≥ 1 are parameters. The heart of (LP-B) is given by constraints (7b),
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which can be seen as a relaxation of equality (4). For a good path it ensures that the
total projected costs are not allowed to underestimate the corresponding crossing costs by
much. Combined with the objective function (7a), it forces crossing costs and corresponding
projected costs to be close to each other. Constraints (7c)-(7f) are meant to keep unit costs
within reasonable bounds, thus avoiding projected costs that are negative or very close to zero.
Note that the number of constraints (7b) is exponential. However, we have the following:

I Proposition 8. (LP-B) can be solved in pseudo-polynomial time.

Proof. Given x ∈ RR
+, α, β > 0, our goal is to show that we can separate over all constraints

of (LP-B) in pseudo-polynomial time. This reduces to separating over constraints (7b), since
all others are polynomial in number. Given an entry-exit pair (u, v) ∈ V entry(R)× V exit(R),
we know that the right-hand side of (7b) will be the same for all (u, v)-paths in R, say
γR

uv. Thus, we would like to know whether there exists an (u, v)-path in GR
r such that∑

a∈p xa < γR
uv. We recall that, by definition, p ∈ GR

r if and only if
∑

a∈p da ≤ r · d(u, v).
It is thus clear that (since there is a polynomial number of entry-exit pairs), solving the
separation problem is equivalent to solving an instance of the resource constrained shortest
path problem (RCSPP) with costs x, resources d and resource limit r · d(u, v) for each
entry-exit-pair (u, v) of a region. It is well-known [12] that the RCSPP can be solved in
pseudo-polynomial time, thus completing the proof. J

5 Computational Results

In this section, we evaluate the performance of the algorithms on real-world instances.
All algorithms were implemented in C++ and compiled with GCC 5.4.0. All computations

were performed on machines with 132 GB of RAM and an Intel(R) Xeon(R) CPU E5-2660 v3
processor with 2.60GHz and 25.6 MB cache. The computation of projected costs was carried
out in parallel using 28 threads. All other computations were carried out in single-thread
mode. We used Gurobi 7.0.2 as our LP-solver.

5.1 Instances
All instances used in our computations correspond to real-world data, provided by Lufthansa
Systems GmbH & Co. KG. This data comprises the airway network graph, the weather
prognoses, and the set of overflight charges.

For our queries, we use a list of 4917 Origin-Destination (OD) pairs for which a commercial
aircraft route exists and such that the optimal route does not leave the European airspace for
any of the given weather prognoses. The reason for selecting these particular instances is that
all airspaces involved define overflight fees using linear functions and the great-circle-distance
(see Table 1), which is the variant that we considered in this paper.

The directed graph D corresponds to an horizontal layer of the airway network at 30, 000
feet altitude, which is a flight level common for cruising. It consists of 97, 534 nodes and
136, 903 arcs. Moreover, we consider three weather prognoses corresponding to January 6th
2015, November 21st 2016, and April 25th 2017. We identify them by the names Jan, Nov,
and Apr, respectively. These prognoses contain the wind information defining the distortion
factor ωa for each arc a ∈ D (see Figure 2). We use overflight charges and average fuel costs
corresponding to an Airbus 320 aircraft. The fuel cost used is 1.73USD/km.

To gain some perspective on the size of the regions used for our computations, in Table 3
we describe a few properties of some of the instances used.
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Table 3 The first three columns show the number of arcs, entry- and exit nodes corresponding
to a few European airspaces. The fourth column represents the cost per km used for the airspaces’
overflight charges, i.e., the factor αR defined in Section 3.

entry nodes
(#)

exit nodes
(#)

arcs
(#)

cost per km
(USD)

Germany 1938 1906 6361 1.58
Italy 1078 1258 7361 1.82
Norway 1705 1636 6863 1.08
Sweden 4922 4905 9561 1.39
USA 5689 5341 88782 0.22

5.2 Computational Results
The two cost-projection methods presented rely on sets of good paths ḠR

r and GR
r , respectively.

For comparability and computational efficiency, in this section we restrict both algorithms to
use a single set ḠR

r , which we define as follows for every region R ∈ R.
We start with an empty set ḠR

r . For every entry-exit pair (u, v) in R and for every a ∈ R,
we compute the ϕ-shortest (u, v)-path in R that contains the arc a (easily obtainable by
concatenating two ϕ-shortest paths and a), and insert it to ḠR

r only if it is cycle-free and
it satisfies (3). Furthermore, for every (u, v) we store only the 10 shortest paths obtained
in this way. For our experiments, we use r = 1.2. We also set the parameters in (LP-B) to
η = 0.98 and τ = 1.1.2.

While the LP models for all European airspaces could be solved in a reasonable time by
Gurobi, and we only consider OD-pairs crossing these regions, the long-term goal is to use
these methods worldwide. For that reason, we also compute projected costs for the USA
airspace, which is particularly challenging, due to its size (see Table 3). In particular, even
after restricting the set of good paths used as described above, the number of constraints
(7b) exceeds 58 million. In conjunction with approximately 88, 000 variables, this leads to
Gurobi quickly running out of memory. Inspired by the framework presented in Section 4.2,
we implemented a rudimentary constraint generation algorithm which stores all constraints
in memory, then iteratively adds subsets of those that are violated to the model and solves
it, until no constraints are violated. This simple approach makes it possible to solve the
LP model for USA. For completeness, we ran this constraint generation approach on all
instances.

Figure 3 shows the preprocessing times needed to compute projected costs in each
European region. As could be expected, the LP-based approach is always slower than
the combinatorial AUC method. In our testing environment, we can handle the size of the
generated models using the BOUND method. In nearly all cases, the latter is easier to solve in
a single run than using constraint generation. However, for a couple of large regions (Norway
and USA), the reverse is true.

Using constraint generation for the USA region enables us to solve the corresponding
model. To do so, Gurobi requires 63.6GB of memory and it takes 8, 696s to find an optimal
solution. Only 27.9 million constraints have to be added to the model, since all others never
get violated.

2 This seemingly deliberate selection of parameters yielded the best results among some tested variants.
However, there is definitely plenty of room for further parameter optimization. The value for r was
chosen inspired by the results shown in Figure 2.
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Figure 3 Time needed to compute projected costs using different methods on all airspaces

Table 4 For each weather prognosis, we present the time needed by 2LDA. For both heuristics,
the average error, relative error, and speedup with respect to 2LDA is shown. Column exact lists
the percentage of perfect hits, i.e., instances for which the error is zero.

AUC BOUND

abs err
(USD)

rel err
(%)

exact
(%)

speedup
(×)

abs err
(USD)

rel err
(%)

exact
(%)

speedup
(×)

Jan 34.84 1.03 35.27 382.63 4.83 0.16 36.89 380.00
Nov 34.60 1.03 34.29 362.15 4.73 0.16 36.81 363.48
Apr 35.44 1.06 35.57 361.63 4.70 0.16 37.60 364.44

Finally, in Table 4 we measure the quality and efficiency of our algorithms. Both cost-
projection heuristics find solutions with a very small optimality gap. In particular, there is
a large percentage of instances for which they find the optimal solution. Furthermore, the
speedup of more than a factor of 350 with respect to 2LDA (running time 2.325s on average)
is remarkable.

6 Conclusions

In this paper, we introduced the SPPCC and the SPPCC-W, which models the flight trajectory
optimization problem under influence of overflight fees and wind. We presented the Two-
Layer-Dijkstra Algorithm for solving the SPPCC-W to optimality in polynomial time. We
also developed a novel cost-projection method and suggested two computational procedures.
In the corresponding computations, we showed that they achieve approximation errors well
below 1%, while yielding a speedup of over 350 with respect to the Two-Layer-Dijkstra
Algorithm.

Acknowledgements. We thank Lufthansa Systems GmbH & Co. KG for providing us with
the data used in this paper, as well as for the many fruitful discussions.
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A Appendix

Here, we give a detailed description of the Two-Layer-Dijkstra Algorithm presented in
Section 3.

A.1 The Two-Layer-Dijkstra Algorithm
The complete version of the Two-Layer-Dijkstra Algorithm can be found in Algorithm 1.
We use the same notation as in Section 3. In particular, we make use of the subroutine
ComputeCost(ā) defined before. We also define the subroutine ShortestPath(s, t,D, ϕ),
which takes a directed graph, a pair of nodes in it, and a non-negative real function on the arcs;
and uses Dijkstra’s algorithm to return the shortest path connecting both aforementioned
nodes.

Algorithm 1 Two-Layer-Dijkstra Algorithm for SPPCC
Input: D, s, t, ϕ, disjoint regions R and linear fR for R ∈ R.
Output: (s, t)-path p in D
1: Construct D̄, insert dummy node vnull to V̄ . D̄ as in Section 3
2: for all v̄ ∈ V̄ do
3: dist[v̄]←∞ . initialize distances
4: pred[v̄]← vnull . initialize predecessors
5: dist[s]← 0
6: Q← V̄

7: while Q 6= ∅ do
8: ū← argminv̄∈Q(dist[v̄]) . choose node with minimum distance
9: if ū = t then

10: break
11: Q← Q\{v̄}
12: for all v̄ s.t. (ū, v̄) ∈ Ā do
13: `ū,v̄ ← ComputeCost((ū, v̄)) . compute cost corresponding to arc (ū, v̄)
14: if dist[v̄] > dist[ū] + `ū,v̄ then . if new cost is better
15: dist[v̄]← dist[ū] + `ū,v̄ . update distance
16: pred[v̄]← ū . update predecessor
17: p← ∅, u← t

18: while pred[u] 6= vnull do
19: p← ShortestPath(pred[u], u,D, ϕ) ∪ p . reconstruct path in D recursively
20: return p

http://dx.doi.org/10.2514/6.2015-2596
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Abstract
Through the development of efficient algorithms, data structures and preprocessing techniques,
real-world shortest path problems in street networks are now very fast to solve. But in reality, the
exact travel times along each arc in the network may not be known. This led to the development
of robust shortest path problems, where all possible arc travel times are contained in a so-called
uncertainty set of possible outcomes.

Research in robust shortest path problems typically assumes this set to be given, and provides
complexity results as well as algorithms depending on its shape. However, what can actually be
observed in real-world problems are only discrete raw data points. The shape of the uncertainty is
already a modelling assumption. In this paper we test several of the most widely used assumptions
on the uncertainty set using real-world traffic measurements provided by the City of Chicago.
We calculate the resulting different robust solutions, and evaluate which uncertainty approach is
actually reasonable for our data. This anchors theoretical research in a real-world application and
gives an indicator which robust models should be the future focus of algorithmic development.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases robust shortest paths, uncertainty sets, real-world data, experimental
study

Digital Object Identifier 10.4230/OASIcs.ATMOS.2017.16

1 Introduction

The problem of finding shortest paths in real-world networks has seen considerable algorithmic
improvements over the last decade [2]. In the typical problem setup, one assumes that all
data is given exactly. But also robust shortest path problems have been considered, where
travel times are assumed to be given by a set of possible scenarios. In [18], it was shown
that the problem of finding a path that minimises the worst-case length over two scenarios is
already weakly NP-hard. For general surveys on results in robust discrete optimisation, we
refer to [1, 15].

There are many possibilities how to model the scenario set that is used for the robust
optimisation process (see, e.g., [16, 8]), and it is not obvious which is ”the right” one. Part of
the current research ignores the problem by simply assuming that the uncertainty is ”given”
in some specific form, while this does not happen in reality.

In fact, the starting point for all uncertainty sets is raw data, given as a set of observations
of travel times. This data is then processed to fit different assumptions on the shape and size
of the uncertainty set, and preferences of the decision maker. So far, the discussion of these
uncertainty sets has been led by theoretical properties, such as the computational tractability
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of the resulting robust model. We believe that this leads to a gap in the literature, where
models are not sufficiently underpinned by actual real-world data to verify results. The
purpose of this paper is to close this gap. We use real-world traffic observations by the City
of Chicago to create a selection of the best-known and most-used uncertainty sets from the
research literature. Using these uncertainty sets, we calculate different robust solutions and
compare their performance. This allows us to determine which uncertainty sets are actually
valuable for the real-world robust shortest path application at hand. Our results give strong
impulses for future research in the field by pointing out which problems are most worthy to
solve more efficiently, assuming that a similar performance can be reproduced on other data
sets.

In Section 2 we briefly introduce all six uncertainty sets used in this study, and discuss
the complexity of the resulting robust problems. The experimental setup and results are
then presented in Section 3, before concluding this paper in Section 4.

2 Uncertainty Sets for the Shortest Path Problem

Let a directed graph G = (V,A) with nodes V and arcs A be given. In the classic shortest
path problem, each arc e has some specific travel time ce ≥ 0. Given a start node s and a
target node t, the aim is to find a path minimising the total travel time, i.e., to solve

min{cccxxx : xxx ∈ X}

where X ⊆ {0, 1}n denotes the set of s-t-paths, and n = |A|. For our setting we assume
instead that a set R of travel time observations is given, R = {ccc1, . . . , cccN} with ccci ∈ Rn.
This is the available raw data. In the well-known robust shortest path problem we assume
that an uncertainty set U is produced based on this raw data, and solve the robustified
problem

min
xxx∈X

max
ccc∈U

cccxxx,

that is, we search for a path that minimises the worst-case costs over all scenarios. In the
following sections we detail different possibilities from the current literature to generate the
shape of U based on R. They are illustrated by an example in Figure 1. Each set is equipped
with a scaling parameter to control its size (see also [13] on the problem of choosing the size
of an uncertainty set with a given shape).

2.1 Convex Hull
In this approach, also known as discrete uncertainty (see [18, 15]), we set UCH = R. The
resulting robust problem can then be written as

min z

s.t. z ≥ cccixxx ∀i ∈ [N ]
xxx ∈ X

where we use the notation [N ] = {1, . . . , N}. Note that this problem is equivalent to using
UCH = conv({ccc1, . . . , cccN}), where conv denotes the convex hull of a set of points. The
problem is known to be NP-hard already for two scenarios [18].

Scaling: Let ĉcc be the average of {ccc1, . . . , cccN}, i.e., ĉcc = 1
N

∑
i∈[N ] ccc

i. For a given λ ≥ 0, we
substitute each point ccci with ĉcc+ λ(ccci − ĉcc), and take the convex hull of the scaled data points.
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2.2 Intervals
We set UI =×i∈[n]

[
minj∈[N ] c

j
i ,maxj∈[N ] c

j
i

]
as the smallest hypercube containing all data.

For ease of notation, we write ci := maxj∈[N ] c
j
i and ci := minj∈[N ] c

j
i . The resulting robust

problem is then

min cccxxx
s.t. xxx ∈ X

which is a classic shortest path problem. Robust shortest path problems with interval
uncertainty are therefore easy to solve, but frequently used, especially in the so-called
min-max regret setting (see [10]).

Scaling: We use UI =×i∈[n]

[
ci+ci

2 − λ ci−ci

2 ,
ci+ci

2 + λ
ci−ci

2

]
for some λ ≥ 0.

2.3 Ellipsoid
Ellipsoidal uncertainty sets were first proposed in [3, 4] and stem from the observation that
the iso-density locus of a multivariate normal distribution is an ellipse. We use an ellipsoid
of the form UE = {ccc : (ccc−µµµ)tΣΣΣ−1(ccc−µµµ) ≤ λ} with scaling parameter λ ≥ 0 that is centred
on ĉcc. We create it using a normal distribution found as a maximum-likelihood fit. Recall
that the best fit of a multivariate normal distribution N (µµµ,ΣΣΣ) with respect to data points
ccc1, . . . , cccN is given by

µµµ = ĉcc = 1
N

(ccc1 + . . .+ cccN )

and

ΣΣΣ = 1
N

∑
i∈[N ]

(ccci −µµµ)(ccci −µµµ)t

The resulting problem can then be formulated as

min ĉccxxx+ z

s.t. z2 ≥ λ
(
xxxtΣΣΣxxx

)
xxx ∈ X

which is an integer second-order cone program (ISOCP), see [3] for details. Due to the
convexity of the constraints, the problem can still be solved with little computational effort
by standard solvers.

2.4 Budgeted Uncertainty
This approach was introduced in [6], and is based on interval uncertainty U =×i∈[n] [ĉi, ci].
To reduce the conservatism of this approach one assumes that only at most Γ ∈ {0, . . . , n}
many values can be simultaneously higher than the midpoint ĉcc. Formally,

UB = {ccc : ci = ĉi + (ci − ĉi)δi for all i ∈ [n], 000 ≤ δδδ ≤ 111,
∑
i∈[n]

δi ≤ Γ} .
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Using the dual of the inner worst-case problem, the following compact mixed-integer program
can be found:

min ĉccxxx+ Γπ +
∑
i∈[n]

ρi

s.t. π + ρi ≥ (ci − ĉi)xi ∀i ∈ [n]
π,ρρρ ≥ 0
xxx ∈ X

This approach has the advantage that probability bounds can be found that compare favorably
with those for ellipsoidal uncertainty [7], while this problem also remains polynomially solvable
by enumerating possible values for the π variable. This means that O(n) many problems of
the original type need to be solved. For these reasons, the budgeted uncertainty approach
has been very popular in the literature (see, e.g., [14]).

2.5 Permutohull
The final two uncertainty sets we consider were proposed in [5]. The original inspiration
comes from risk measures; the authors show that any so-called distortion risk measure leads
to a polyhedral uncertainty set. A risk measure µ is a distortion risk measure if and only if
there exists qqq ∈ {qqq′ ∈ ∆N : q1 ≥ . . . qN}, where ∆N denotes the N -dimensional simplex such
that

µ(xxx) = −
∑
i∈[N ]

qi(ccc(i)xxx)

where the sorting (i) is chosen such that ccc(1)xxx ≥ . . . ≥ ccc(N)xxx.
The conditional value at risk CV aRα with α ∈ (0, 1] is a well-known distortion risk

measure. Intuitively, it is the expected value amongst the α worst outcomes. Using the
matrix

QQQN :=


1 . . . 1

N−2
1

N−1
1
N

...
...

...
...

...
0 0 1

N−2
1

N−1
1
N

0 . . . 0 1
N−1

1
N

0 . . . 0 0 1
N


the jth column of QN induces the risk measure CV aRj/N . The corresponding polyhedra
are called the qqq-permutohull and defined as

Πqqq(ccc1, . . . , cccN ) := conv

∑
i∈[N ]

qσ(i)ccc
i : σ ∈ SN


 .

To find the resulting robust problem, we first consider the worst-case problem for fixed xxx ∈ X .

max
∑

i,j∈[N ]

qi(cccjxxx)pij

s.t.
∑
i∈[N ]

pij = 1 ∀j ∈ [N ]

∑
j∈[N ]

pij = 1 ∀i ∈ [N ]

pij ≥ 0 ∀i, j ∈ [N ]
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Table 1 Uncertainty sets in this study.

UCH UI UE UB UP H USP H

Complexity NPH P NPH P NPH NPH
Model IP LP ISOCP MIP MIP MIP

Add. Const. N 0 1 n+ 1 N2 N2

Add. Var. 1 0 1 n 2n 2n

Dualising this problem then gives the robust counterpart

min
∑
i∈[n]

(vi + wi)

s.t. vi + wj ≥ qi(cccjxxx) ∀i, j ∈ [N ]
vvv,www ≷ 0
xxx ∈ X

which is a mixed-integer program (note that this approach is actually the same as the ordered
weighted averaging method, see [9]). The problem is NP-hard, as it contains the convex hull
of {ccc1, . . . , cccN} as a special case. Through the choice of qqq, there are N possible sizes of this
uncertainty.

2.6 Symmetric Permutohull

In the same setting as before, the symmetric permutohull was also introduced in [5]. By
using the bN/2c+ 1 columns of the matrix

Q̃QQ := 1
N



1 2 2 . . . 2
1 1 2 . . . 2
1 1 1 . . . 2
...

...
...

...
...

1 1 1 . . . 0
1 1 0 . . . 0
1 0 0 . . . 0


it was shown that the resulting polyhedra are symmetric with respect to ĉcc. Note that these
problems are also NP-hard, as Q̃QQ contains the min-max approach for N = 2 as a special case.

2.7 Summary of Uncertainty Sets

In total we described six methods to generate uncertainty set U based on the raw data R.
Figure 1 illustrates these sets using a raw dataset with four observations (shown as red
points). The complexity to solve the resulting robust models, as well as the type of program
with the numbers of additional variables and constraints compared to the classic shortest
path problem are shown in Table 1.

While the robust model with budgeted uncertainty sets can be solved in polynomial time
using combinatorial algorithms, we still used the MIP formulation for our experiments, as it
was sufficiently fast.
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(c) Ellipsoid with λ = 3 and λ = 1.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

(d) Budgeted uncertainty with λ = 1, Γ = 1
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Figure 1 Example uncertainty sets.
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3 Real-World Experiments

3.1 Data Collection and Cleaning
We used data provided by the City of Chicago1, which provides a live traffic data interface.
We recorded traffic updates in a 15-minute interval over a time horizon of 24 hours spanning
Monday March 27th 2017 morning to Tuesday March 28th 2017 morning. A total of 96 data
points were thus used.

Every data point contains the traffic speed for a subset of a total of 1,257 segments.
For each segment the geographical position is available, see the resulting plot in Figure 2a
with a zoom-in for the city center. The complete travel speed data set contains a total
of 54,295 records. There were 1,027 segments where the data was recorded at least once
of the 96 data points. Nearly for 88% of the segments, speeds were recorded for at least
50 data points with only 1% (10 segments) where only one data point was recorded. We
used linear interpolation to fill the missing records keeping in mind that data was collected
over time. The data after removing missing records and filling missing values can be found
at www.lancaster.ac.uk/~goerigk/robust-sp-data.zip. Segment lengths were given
through longitude and latitude coordinates, and approximated using the Euclidean distance.

As segments are purely geographical objects without structure, we needed to create a
graph for our experiments. To this end, segments were split when they crossed or nearly
crossed, and start- and end-points that were sufficiently close to each other were identified as
the same node. The resulting graph is shown in Figure 2b; note that this process slightly
simplified the network, but kept its structure intact. The final graph contains 538 nodes and
1308 arcs. Using arc length and speed, we calculate their respective traversal time for each
of the 96 data points. In the following, we refer to 96 scenarios generated this way.

3.2 Setup
Each uncertainty set is equipped with a scaling parameter. For each parameter we generated
20 possible values, reflecting a reasonable range of choices for a decision maker:

For UCH and UI , λ ∈ {0.1, 0.2, . . . , 2}.
For UE , λ ∈ {0.2, 0.4, . . . , 4}.
For UB , Γ ∈ {5, 10, . . . , 100}.
For UPH , we used columns qqq1, qqq3, . . . , qqq39.
For USPH , we used columns qqq1, qqq2, . . . , qqq20.

Each uncertainty set is generated using only every second scenario (i.e., 48 out of 96), but all
96 scenarios are then used to evaluate the solutions. Furthermore, we generated 200 random
s− t pairs uniformly, and used each of the 6 · 20 methods on the same 200 pairs. Each of our
120 methods hence generates 200 · 96 = 19, 200 objective values.

It is highly non-trivial to assess the quality of these solutions, see [12]. If one just uses
the average objective value, as an example, then one could as well calculate the solution
optimising the average scenario case to find the best performance with respect to this measure.
To find a balanced evaluation of all methods, we used three performance criteria:

the average objective value over all s− t pairs and all scenarios,
the average of the worst-case objective value for each s− t pair, and
the average value of the worst 5% of objective values for each s− t pair (as in the CVaR
measure)

Note that many more criteria would be possible to use.

1 https://data.cityofchicago.org
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For all experiments we used a computer with a 16-core Intel Xeon E5-2670 processor,
running at 2.60 GHz with 20MB cache, and Ubuntu 12.04. Processes were pinned to one core.
We used Cplex v.12.6 to solve all problem formulations (note that specialised combinatorial
algorithms may be available for some problems).

3.3 Results

We present our findings in the two plots of Figure 3. In each plot, the 20 parameter settings
that belong to the same uncertainty set are connected by a line. They are complemented
with Figure 4 showing the total computation times for the methods over all 200 shortest
path calculations.

The first plot in Figure 3a shows the trade-off between the average and the maximum
objective value; the second plot in Figure 3b shows the trade-off between the average and
the average of the 5% worst objective values. All values are in minutes. Note that for all
performance measures, smaller values indicate a better performance – hence, good trade-off
solutions should move from the top left to the bottom right of the plots. In general, the
points corresponding to the parameter settings that give weight to the average performance
can be on the left sides of the curves, while the more robust parameter settings are on the
right sides, as would be expected.

We first discuss Figure 3a. In general, we find that most concepts indeed present a
trade-off between average performance and robustness through their scaling parameter. The
symmetric permutohull solutions have the best average performance, while interval solutions
are the most robust. Interestingly, that even holds for interval solutions where the scaling
parameter is very small. The budgeted uncertainty does not give a good trade-off between
worst-case and average-case performance, which confirms previous results on artificial data
[11]. Scaling interval uncertainty sets achieves better results than using budgeted uncertainty.
Solutions generated with ellipsoidal uncertainty sets slightly outperform (dominate in the
Pareto sense) solutions generated with permutohull uncertainty. We also note that methods
that are computationally more expensive tend to achieve better average performance at
the cost of decreases robustness. The simplest and cheapest method, interval uncertainty,
gives the most robust solutions. Solutions using the convex hull of raw data tend to be
outperformed by the approaches that process data.

We now consider the results presented in Figure 3b. Here the average is plotted against
the average performance of the 5% worst performing scenarios, averaged over all s− t pairs.
We note that for interval uncertainty, these two criteria are connected, with the best solutions
for small scaling parameters dominating all solutions for larger scaling parameters. For the
permutohull and the ellipsoidal uncertainty solutions, the order slightly changed with the
former often dominating the latter. Permutohull solutions are designed to be efficient for
the CVaR criterion, and the best-performing solution with respect to this aspect is indeed
generated by this approach. However, also solutions with ellipsoidal, interval and convex
hull uncertainty perform well.

Regarding computation times (see Figure 4), note that the two polynomially solvable
approaches are also the fastest when using Cplex; these computation times can be further
improved using specialised algorithms. Using the convex hull is faster than using ellipsoids,
which are in turn faster than using the symmetric permutohull. For the standard permutohull,
the computation times are sensitive to the uncertainty size; if the qqq vector that is used in
the model has only few entries, then computation times are smaller. This is in line with the
intuition that the problem becomes easier if fewer scenarios need to be considered.

ATMOS 2017



16:10 An Experimental Comparison of Uncertainty Sets for Robust Shortest Path Problems

38.0

39.0

40.0

41.0

42.0

43.0

44.0

25.5 26.0 26.5 27.0 27.5 28.0 28.5

M
a
x
im

u
m

Average

Convex hull
Intervals
Ellipsoid

Budgeted
Permutohull

Symmetric Permutohull

(a) Average vs worst-case performance.

32.6

32.8

33.0

33.2

33.4

33.6

33.8

34.0

25.5 26.0 26.5 27.0 27.5 28.0 28.5

A
v
e
ra

g
e
 o

f 
W

o
rs

t 
5
%

Average

Convex hull
Intervals
Ellipsoid

Budgeted
Permutohull

Symmetric Permutohull

(b) Average vs CVaR performance.

Figure 3 Performance results.
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Figure 4 Computation times in seconds.

To summarise our findings in our experiment on the robust shortest path problem with
real-world data:

Convex hull solutions are amongst the more robust solutions, but tend to be outperformed
by the other approaches.
Interval solutions perform bad on average, but are the most robust. Especially when the
scaling is small they can give a decent trade-off, and are easy and fast to compute.
Ellipsoidal uncertainty solutions have very good overall performance and represent a large
part of the non-dominated points in our results.
We do not encourage the use of budgeted uncertainty for robust shortest path problems.
Scaling interval uncertainty sets gives better results and is easier to use and to solve.
Permutohull solutions offer good trade-off solutions, whereas symmetric permutohull
solutions tend to be less robust, but provide an excellent average performance. These
methods also require most computational effort to find.

In the light of these findings, the interval and discrete (=convex hull) uncertainty sets
that are widely used in robust combinatorial optimisation do warrant research attention,
as they may not produce the best solutions, but are relatively fast to solve. However,
permutohull and ellipsoidal uncertainty tend to produce solutions with a better trade-off,
while being computationally more challenging. The algorithmic research for robust shortest
path problems with such structure should therefore become a future focus.

4 Conclusion

In this paper we constructed uncertainty sets for the robust shortest path problem using
real-world traffic observations for the City of Chicago. We evaluated the model suitability
of these sets by finding the resulting robust paths, and comparing their performance using
different performance indicators.

Naturally, conclusions can only be drawn within the reach of the available data. In our
setting we considered solutions that are robust with respect to all possible travel times within
a day. A use-case would be that a path needs to be computed for a specific day, but the
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precise hour is not known. Using different sets of observations will result in solutions that
are different in another sense, e.g., one could use observations over different days during the
morning rush hours, or observations that span work days and a weekend. It is possible that
these sets will provide different structure.

Finally, we have observed that using ellipsoidal uncertainty sets provides high-quality
solutions with less computational effort than for the permutohull. If one uses only the
diagonal entries of the matrix ΣΣΣ, then one ignores the data correlation in the network. For
the resulting problem specialised algorithms exist, see, e.g. [17]. In additional experiments
we found that even by using Cplex, computation times were considerably reduced when only
using the diagonal entries of ΣΣΣ, but the solution quality remained roughly the same.
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Abstract
In this paper we deal with three consecutive planning stages in public transportation: Line
planning (including line pool generation), timetabling, and vehicle scheduling. These three steps
are traditionally performed one after another in a sequential way often leading to high costs in
the (last) vehicle scheduling stage. In this paper we propose three different ways to “look ahead”,
i.e., to include aspects of vehicle scheduling already earlier in the sequential process: an adapted
line pool generation algorithm, a new cost structure for line planning, and a reordering of the
sequential planning stages. We analyze these enhancements experimentally and show that they
can be used to decrease the costs significantly.
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1 Sequential versus integrated planning

Planning a public transport supply can have many goals. Two major goals are usually
minimizing the perceived travel times of passengers as well as the costs that incur to the
public transportation company. Motivated by this we consider a bi-objective model for
railway or bus planning with these two objectives.

Traditionally, public transportation planning is done in sequential stages. The first
stage after the design of a network, that is spanned by stops (or stations) and their direct
connections (edges or tracks), is line planning. In this stage, first a set of possible lines,
the line pool, has to be generated on the network. Research towards the effect of line pool
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generation, and an algorithm to find suitable line pools is presented in [7]. In the line planning
problem one then chooses a feasible subset of lines from the line pool, i.e., a set of lines such
that all passengers can be transported. See [21] for an overview. With a given line plan one
can create an event-activity network which constitutes the input for the timetabling stage.
Periodic timetabling consists of deciding when and how fast vehicles (trains or buses) should
drive along the edges and how long they should wait at stops (or stations). The problem is
modeled as a periodic event scheduling problem (PESP), see [23]. Other timetabling models
can be found in [10]. After a timetable is chosen, vehicle schedules are planned, determining
which vehicle should drive which route such that all lines are operated according to their
timetables. A survey on vehicle scheduling is given in [4]. Finally, crew scheduling and
rostering are planning stages to be performed after the vehicle schedules are found.

Obviously, proceeding sequentially does not need to lead to an optimal solution as there
are dependencies between the different subproblems. It would hence be beneficial to solve the
entire problem in an integrated system. Since this is computationally too complex, heuristic
approaches have been proposed as in [22].

Our contribution. We consider line planning, timetabling and vehicle scheduling in con-
junction with each other. To this end we formally define what an integrated transport
supply (LTS-plan), consisting of a line plan, a timetable, and a vehicle schedule, is and
how it can be evaluated. We propose three enhancements of the traditional approach which
consider the vehicle scheduling costs already in the line planning stage. Finally, we evaluate
them experimentally and show that our proposed enhancements lead to LTS-plans with
significantly smaller costs than the traditional sequential approach.

2 A bi-objective model for integrated planning in public
transportation

In this section we formally describe what a feasible transport supply (LTS-plan), consisting
of a line plan (L), a timetable (T), and a vehicle schedule (S), is and how its quality can
be evaluated. Note that for the single stages, i.e., for a line plan, for a timetable, and for a
vehicle schedule, this has been extensively discussed in the literature. However, it is in the
literature usually assumed that an event-activity network is already known for timetabling
and a set of trips is already given for vehicle scheduling. Since we plan from scratch, we also
have to describe the intermediate steps, i.e., how to build the event-activity network and how
to build the set of trips. In order to keep the timetabling step tractable, we restrict ourselves
in this paper to periodic LTS-plans for which all lines are operated with the same frequency.

As input for the bi-objective model we are given:
A public transport network PTN= (V,E) consisting of a set of stops V and direct
connections E between them.
For every node v ∈ V :

lower and upper bounds Lwait
v ≤ Uwait

v for the time vehicles wait at stop v,
lower and upper bounds Ltrans

v ≤ U trans
v for the time passengers need to transfer

between two vehicles at the same stop v.
We furthermore need for every pair v, u ∈ V the time(v, u) a vehicle needs if it drives
directly from stop v to stop u.

For every edge e = (v1, v2) ∈ E:
a length (in kilometers) lengthe,
lower and upper edge frequency bounds fmin

e ≤ fmax
e ,

lower and upper bounds on the travel times along the edge, i.e., Ldrive
e ≤ Udrive

e .
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An OD-matrix W with entries Wuv for each pair of stops u, v ∈ V . The OD-matrix is
assumed to be consistent with the lower edge frequencies, i.e., there exist paths Puv for
every OD-pair (u, v) through the PTN such that for every edge e we have:∑

u,v∈V : e∈Puv

Wuv ≤ Cap · fmin
e

for Cap being the capacity of the (identical) vehicles, i.e., each passenger can be trans-
ported,
a period length T , and the number of periods p to be considered for planning
a penalty pen for transfers,
a minimal turnaround time for vehicles Lmin,
cost parameters
c1 costs per minute for a vehicle driving with passengers,
c2 costs per kilometer for a vehicle driving with passengers,
c3 costs per vehicle for the whole planning horizon (p periods),
c4 costs per minute for a vehicle driving empty (i.e., without passengers),
c5 costs per kilometer for a vehicle driving empty (i.e., without passengers).

We then look for an LTS-plan, which consists of a line plan (L), a periodic timetable (T)
and a vehicle schedule (S) which are together feasible. These objects are defined as follows:

Line plan L

A line is a path through the PTN. A line plan is a set of lines L, which is feasible if

fmin
e ≤ |{l ∈ L : e ∈ l}| ≤ fmax

e , (1)

i.e., if each edge of the PTN is covered by the required number of lines. We assume that
lines are symmetric, i.e., they are operated in both directions. In our setting all lines are
operated with a frequency of 1.

Timetable T

Given a set of lines, a timetable assigns a time to every departure and arrival of every line at
its stops. These times are then repeated periodically. In order to model a timetable usually
event-activity networks N = (E ,A) are used (see, e.g., [11, 12, 14, 17, 18]). The set of events
E consists of all departures and all arrivals of all lines at all stops, and the set A connects
these events by driving, waiting and transfer activities. For each activity, the number of
passengers using this activity is usually given as input for timetabling. (It is subject of
ongoing research how this can be relaxed, see [3, 6, 19, 20]). The lower and upper bounds
La and Ua are set as

Ldrive
e and Udrive

e if a is a driving activity on edge e ∈ E,
Lwait

v and Uwait
v if a is a waiting activity in stop v ∈ V , and as

Ltrans
v and U trans

v if a is a transfer activity in stop v ∈ V .
A timetable π is an assignment of times πj ∈ Z to every event j ∈ E . It is feasible if it
respects the lower and upper bounds for all its activities, i.e., if

(πj − πi − La) mod T ∈ [0, Ua − La] for all a = (i, j) ∈ A. (2)

The objective function in timetabling minimizes the total slack times. If all passengers use
the paths they have been assigned to in the event-activity network this is equivalent to
minimizing the sum of passengers’ travel times.
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Vehicle schedule S

Given a set of lines and a timetable, a vehicle schedule determines the number of vehicles
and the exact routes of the vehicles for operating the timetable. To this end, we use the line
plan and the timetable to construct a set of trips T where each trip

t = (lt, vstart
t , vend

t , π̃start
t , π̃end

t ) ∈ T

is specified by a line lt together with its first and last stop vstart
t and vend

t and its corresponding
start time π̃start

t and end time π̃end
t . These times can be taken from the periodic timetable,

but we have to consider the real time (e.g. in minutes after midnight) by adding the correct
multiple of the period length. The end time π̃end

t of a line at its final stop is the arrival
time at this stop plus some minutes allowing passengers to deboard. Analogously, the start
time π̃start

t of a line at a stop is the time when it arrives at this stop, i.e., a bit earlier than
its departure time there. For every line l we receive two trips starting per period, namely
one forward and one backward trip. A route of a vehicle is given by its sequence of trips
r = (t1, . . . , tk) such that

(π̃start
ti+1

− π̃end
ti

) ≥ time(vend
ti

, vstart
ti+1

) for all i = 1, . . . , k − 1.

A set of vehicle routes R is feasible if all its routes are feasible and if each trip is contained
in exactly one route.

Evaluating an LTS-plan

An LTS-plan is specified by a line plan, a corresponding timetable and a corresponding
vehicle schedule, i.e., it is specified by the tuple (L, π,R). Given a feasible LTS-plan we use
the two most common evaluation criteria: the sum of passengers’ travel times (including a
penalty for every transfer) and the costs. These objectives are formally defined below:

Costs. The costs of an LTS-plan depend mainly on the costs of the corresponding vehicle
schedule and thus on the distance which is driven, the total duration of driving and the
number of required vehicles. For the distance and the duration of the trips we distinguish if
the vehicle drives on a trip which can be used by passengers (here called full ride) or if the
vehicle drives empty between two consecutive trips ti, ti+1 in the same vehicle route (here
called an empty ride) as the costs can be different for full and empty rides.

As the vehicle schedule in general is aperiodic, we consider the costs for a whole planning
horizon (e.g. a day) instead of a planning period by rolling out the periodic line plan and
timetable for a fixed time span which is given by the number of periods p it covers. Note that
we have to take special care at the beginning and the end of the roll-out period, regarding
lines traversing the period boundaries. For simplicity reasons we do not go into detail here
how this is handled explicitly.

Before defining the costs, we introduce the duration and the length of a line and an empty
ride. Let a line be defined as a sequence of nodes and edges.

The duration of a line can be determined after the timetable is known. We get

durl =
∑

a=(i,j)∈Adrive:
a belongs to e∈l

(Ldrive
e + (πj − πi − Ldrive

e mod T ))

+
∑

a=(i,j)∈Await:
a belongs to v∈l

(Lwait
v + (πj − πi − Lwait

v mod T )),
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i.e., all driving times along edges and waiting times at stops are added. When a heuristic
approach to timetabling is used where the duration of all driving and waiting activities is set
to their respective lower bounds, as done here, the duration of a line simplifies to

durl =
∑
e∈l

Ldrive
e +

∑
v∈l

Lwait
v . (3)

The length of a line is computed as sum over all edge lengths

lengthl =
∑
e∈l

lengthe

and is independent from the timetable. The duration of an empty ride between two trips
t1 = (lt1 , v

start
t1

, vend
t1

, π̃start
t1

, π̃end
t1

) and t2 = (lt2 , v
start
t2

, vend
t2

, π̃start
t2

, π̃end
t2

) can be computed as

durt1,t2 = π̃start
t2

− π̃end
t1

,

i.e., the time between the end of t1 and the start of t2.
The length of the empty ride is defined as

lengtht1,t2 = SP (vend
t1

, vstart
t2

),

i.e., we assume that a vehicle takes the shortest path from the last station vend
t1

of trip t1 to
the first station vstart

t2
of trip t2.

Now we can define the following cost components. Note that we have to count the full
duration and length of each line twice as two trips belong to every line (one in forward and
one in backward direction).

full duration, i.e., time it takes to cover all trips (full rides):

durfull =
∑
l∈L

2 · durl · p ,

full distance, i.e., distance driven along lines:

lengthfull =
∑
l∈L

2 · lengthl · p ,

number of vehicles: veh = |R| ,
empty duration, i.e., time of empty rides between trips:

durempty =
∑

r=(t1,...,tkr )∈R

kr−1∑
i=1

durti,ti+1 ,

empty distance, i.e., distance of empty rides between trips:

lengthempty =
∑

r=(t1,...,tkr )∈R

kr−1∑
i=1

lengthti,ti+1 .

In total we get

gcost(L, π,R) := c1 · durfull + c2 · lengthfull + c3 · veh+ c4 · durempty + c5 · lengthempty. (4)
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Travel times. For determining the travel time we follow the traditional approach of fixing
the passengers’ routes when constructing the event-activity network, assuming that the
passengers use these assigned paths. In the event-activity network, passengers are routed on
a shortest path according to the lower bounds on the activities and assigned as weights ca to
the activities a ∈ A. Additionally to the travel time, we consider a penalty pen for every
transfer. The total perceived travel time on these fixed paths can then be determined as

gtime(L, π,R) =
∑

a=(i,j)∈A

ca · (La + (πj − πi − La mod T )) +
∑

a∈Atrans

ca · pen. (5)

Note that the travel time does not depend on the vehicle schedule.
The two objective functions we have sketched here are common in the literature when

broken down to one single planning stage:
Nearly all papers dealing with vehicle scheduling minimize a combination of empty

kilometers and number of vehicles needed, i.e., veh + a · lengthempty. This is equivalent to
gcost if the duration of full and empty rides are weighted equally and a is chosen as a = c5

c3
since the duration and the length of the lines are all known due to the timetable being fixed.

In timetabling, the goal is usually to minimize the sum of (perceived) travel times for
the passengers. Since it is computationally very difficult, most papers make the simplifying
assumption that the number of travelers on every activity in the event-activity network is
known and fixed, as it is done here.

Pareto optimal LTS-plans. We call a feasible LTS-plan (L, π,R) Pareto optimal if there
does not exist another LTS-plan (L′, π′,R′) which satisfies

gcost(L′, π′,R′) ≤ gcost(L, π,R), gtime(L′, π′,R′) ≤ gtime(L, π,R)

with one of the two inequalities being strict.

3 Traditional sequential approach

The traditional approach is a combination of algorithms which have been described in the
literature. It goes through line planning, timetabling, and vehicle scheduling sequentially
and finds (close to) optimal solutions in each of the steps.

Step L: Line planning. There exists a variety of algorithms for line planning, see [21]. Some
of them assume a line pool to be given, others determine the lines during their execution
([2]). If a line pool is required, a line pool generation procedure can be used (see [7] and
references therein).
In our experiments: We use the cost model for a fixed line pool which is either given
(dataset Bahn) or generated by [7] (dataset Grid).

Step T: Timetabling. Solving the integer programming formulations is too time-consuming
for most instances, hence often heuristics ([9, 15, 16]) are used.
In our experiments: We use the fast MATCH heuristic [16].

Step S: Vehicle scheduling. There exists a variety of algorithms, see [4].
In our experiments: We use the flow-based model of [4].

We remark that even if all three steps are solved optimally, the resulting LTS-plan need
not be Pareto optimal. This is due to the sequential approach: the line plan is the basis
for the timetable and the vehicle schedule, but optimal lines cannot be determined without
knowing the optimal timetable and the optimal vehicle schedule.
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4 Look-ahead enhancements

As already mentioned, the vehicle schedules have a large impact on the costs of an LTS-plan.
Since the vehicle schedules are determined only in the last of the three considered planning
stages, the costs of an LTS-plan determined by the sequential approach are usually not
minimal. We propose three enhancements in order to receive LTS-plans with better costs
than in the sequential approach. We nevertheless also evaluate the perceived travel times for
the passengers.

4.1 Using new costs in the line planning step
When evaluating the costs of an LTS-plan, (4) shows that the costs are determined to a large
amount by the number of vehicles needed. Even if as few lines as possible are established it
is not clear how many vehicles are needed in the end and how many empty kilometers are
necessary.

In the traditional approach the costs of a line are usually assumed to be proportional to
its length with some fixed costs to be added, i.e.,

costl = costfix + c · lengthl (6)

where costfix ∈ IR+ and c ∈ IR+ is a scaling factor.
Here, we now try to compute the costs of a line as closely as possible to the costs it may

have later in the evaluation of the LTS-plan. The idea is to approximate the costs per line
by distributing the costs specified in (4) to the lines and computing the costs per period, i.e.,
we want to get

gcost ≈
∑
l∈L

costl · p.

For full duration and distance this can be done straightforwardly, as we only need to know
the number of planning periods which are considered in total as the length and duration of a
line does not change between periods. Under our assumptions, we know the duration of a
line beforehand by (3). The number of vehicles needed, the empty distance and the empty
duration are in general more difficult to approximate as they can differ between the planning
periods due to an aperiodic vehicle schedule. As upper bound we use a very simple vehicle
schedule where all vehicles periodically cover only one line and its backwards direction. This
gives us that the empty distance is always zero and can be neglected. The empty duration of
a line can be computed as

empty duration after driving on line l = T

2 − (durl mod T

2 ),

and for a given minimal turnaround time Lmin of a vehicle, the number of vehicles needed to
serve a line and its backwards direction can be approximated by

#vehicles needed for line l and backwards direction = d2 · (durl + Lmin)/T e .

Summarizing, we can approximate the line costs as:

costl = 2 ·c1 ·durl +2 ·c2 · lengthl + c3

p ·
⌈

2 · durl + Lmin

T

⌉
+2 ·c4 ·

(
T

2 − durl mod T

2

)
. (7)
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4.2 Line pool generation with look-ahead
The next idea is to take account of good vehicle schedules already in the very first step: we
construct the lines in the line pool in a way such that no empty kilometers are needed and
that the resulting lines are likely to be operated with a small number of vehicles.

To create a line pool which already considers the vehicle routing aspect, we modified the
line pool generation algorithm described in [7]. For a given minimal turnaround time Lmin
of a vehicle and a maximal allowed buffer time α we ensure that the duration durl as defined
in (3) of a line l satisfies

T

2 − Lmin − α ≤ durl mod T

2 ≤
T

2 − Lmin. (8)

Here, the duration of a line is computed according to the minimal driving time on edges
and the minimal waiting time in stops. Equation (8) ensures that at the end of a trip, i.e.,
the driving of a line, the vehicle has enough time to start the trip belonging to the backwards
direction of the same line and has to wait no more than α minutes to do so. Thus, we
get that the round-trip of forward and backward direction together differs from an integer
multiple of the period length by at most 2 · α.

4.3 Vehicle scheduling first
In our last suggestion we propose to switch Step T and Step S in the sequential approach,
i.e., to find (preliminary) vehicle schedules directly after the line planning phase. This is
particularly interesting if the line plan contains lines which can be operated efficiently by
one vehicle, i.e., lines with small α, since it ensures that the timetable will not destroy this
property. This is done as follows:

Step L: This step is done as in the traditional approach.
S-first: For every line l we introduce turnaround activities in the periodic event-activity

network between the last arrival event of the line in forward direction and the first
departure event of the line in backward direction, and vice versa. The lower bound for
these activities is set to Lmin and the upper bound to Lmin + 2 ·α. These activities ensure
that the timetable to be constructed in the next step allows the vehicle schedule we want,
namely that only one vehicle operates the line.

Step T: We then proceed with timetabling as in the traditional approach but respecting
the turnaround activities such that the resulting timetable does not destroy the desired
vehicle schedule.

Step S: After timetabling we perform an additional vehicle scheduling step as in the classic
approach: We delete the turnaround activities and proceed with vehicle scheduling as
usual. Nevertheless, it is likely, that many of the vehicle routes already determined in
S-first will be found again.

Note that S-first can be performed very efficiently in the number of lines in the line
concept. We furthermore remark that for a line plan in which all lines have a buffer time
α = 0, the Step S can be omitted since having line-pure vehicle schedules is an optimal
solution in such a case. Even if not all lines have zero buffer times, fixing a timetable in Step
T with respecting the turnaround activities often already determines the optimal vehicle
schedule. This means that vehicle scheduling in Step S is often redundant, which was not
only observable in most cases of our experiments, but is also illustrated more precisely in
Example 1 of the appendix.
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5 Experiments

We compared the traditional approach for finding an LTS-plan against the enhancements
proposed using LinTim, a software framework for public transport optimization [1, 8]. We
use the following parameters to describe the different combinations of our enhancements.
1. Using the new costs (7) in line planning (Step L) as proposed in Section 4.1 is denoted

by new cost, whereas traditional costs are denoted as normal cost.
2. The second option, described in Section 4.2 is to construct a new pool (new pool), whereas

normal pool uses some given (standard) pool for line planning (Step L). Combining
both pools has been done in a third option (combined pool).

3. The decision of computing the timetable or the vehicle schedules first (so using Step
S-first from Section 4.3), is denoted by TT first and VS first respectively.

As test instances we used two significantly different datasets.
Dataset Grid: A grid graph of 5 by 5 nodes and 40 edges, which is a model for a bus network

constructed in [5]. In this example, we have T = 20 and we used p = 24 periods. The
normal pool for this instance has been calculated with the tree based heuristic from [7].

Dataset Bahn: This is a close-to-real world instance which consists of 250 stations and 326
edges describing the German ICE network. The period length is T = 60, we computed for
p = 32 periods in order to achieve a reasonable time horizon for vehicle scheduling. Note
that p is even larger in practical railway applications. As normal pool we used a pool
of Deutsche Bahn. For the computations we used a standard notebook with i3-2350M
processor and 4 GB of RAM. The computation time for one data point of the Grid dataset
did not exceed 3 min, while computing a solution for the Bahn dataset took up to 30
minutes.

5.1 Dataset Grid
Figure 1 shows 12 solutions, one for every combination of our parameters. These are graphed
according to travel times (x-axis) and their costs (y-axis). We computed the costs and the
travel times of the LTS-plans as described in (4) and in (5). We observe the following:

The solution of the traditional approach (circle with grey marker, left side filled) is
dominated by the solution obtained when replacing normal pool by combined pool.
Using new cost (black markers) instead of normal cost (grey markers) always decreases
the costs.
Using combined pool always has better costs than using new pool or normal pool. The
travel times sometimes decrease and sometimes increase.
The option TT first yields better travel times compared to VS first while VS first
always has lower costs than TT first.
There are five non-dominated solutions, four of them computed by using new cost.
Whenever new pool or combined pool was used together with new cost the resulting
solution was non-dominated.

The new pool to be generated depends on the parameter α. In Figure 1, α = 3 was used.
We also tested the parameters α = 2, 3, . . . , 10 for all combinations. The result is depicted in
Figure 2. Note that α ≥ 10 implies no restrictions on the line lengths.

The basic findings described for α = 3 remain valid also for other line pools generated:
Solutions generated with new cost have lower costs while solutions generated with normal
cost have smaller travel times. The leftmost solutions correspond to TT first and bottom-
most solutions correspond to VS first. In fact, for every single LTS-plan that has been
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Figure 1 Different combinations of look-ahead steps.
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Figure 2 Different combinations of look-ahead steps and different choices for α.
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computed, VS first yielded a cheaper solution than TT first while the latter resulted in a
solution with smaller travel time than VS first. Finally, none of the solutions computed by
using normal pool is non-dominated; the Pareto front (i.e., the non-dominated solutions)
consists mostly of squares, i.e., solutions generated with combined pool. Nevertheless, we
see that the quality of the solution obtained depends significantly on the choice of the
parameter α. This is investigated in Figure 3.

First of all, we again see that for every fixed α new cost yields better solutions than
normal cost and that the combined pool always yields lower costs than new pool. If all
three look-ahead enhancements new cost, combined pool and VS first are applied, there
is a trend of increasing costs once α increases, corresponding to the conjecture that cheap
LTS-plans can be found by a small choice of α. For α = 0 and α = 1 the restrictions on the
line length implied by equation 8 is in this example of a grid graph so strict that no feasible
solution is possible.

5.2 Dataset Bahn

Applying the implemented enhancements to Bahn with the parameter choice α = 10 (Note
that α = 3 for T = 20 in dataset Grid is similar to α = 10 for T = 60 in dataset Bahn.)
yields the results depicted in Figure 4.

The remarkable thing observable in this scenario is that new and combined pool lead to
drastically vehicle cost reductions of more than 40%, whereas the travel time increases by up
to 20%. Next to the fact of combined pool leading to better costs also the behaviour of TT
first against VS first remains similar to the Grid instance. One can see that VS first
saves costs between 1 and 5% and TT first decreases the travel time by 1 to 3 %. Since
the size of the generated line pool had to be chosen small in comparison to the instance size
(because of runtime and memory limitations), also the number of feasible line concepts is
comparable small. Therefore, this example did not show any impact of using normal or new
cost to the vehicle scheduling costs.

6 Relation to the Eigenmodel

In [22], it is proposed to use different paths through the Eigenmodel (depicted in Figure 5
in the appendix) when optimizing an LTS-plan. In this model, the traditional approach
(normal cost, normal pool, TT first) has been depicted as the blue path starting with
line planning, then finding a timetable and finally a vehicle schedule. In this paper we
compared this traditional approach to two other paths:

The approach (normal cost, normal pool, VS first) corresponds to the red path in
which first a line planning step is performed, then vehicle schedules are determined and
finally a timetable. We have seen that this approach leads to significantly better costs
but to a higher travel time.
The approach (new cost, new pool, VS first) can be interpreted as the green path
in which we start with vehicle scheduling (by generating a line pool with small α only
containing lines with low vehicle scheduling costs), choose a line plan out of this pool and
finally determine a timetable which respects the preferred vehicle schedules. In Figure 1
we see that this approach generated the solution with lowest costs. Neglegting the tiny
difference between normal and new cost this also holds for the Bahn instance.
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7 Outlook and further research

Summarizing our experiments, all three look-ahead enhancements lead in the majority of
cases to a cheaper LTS-plan. Even choosing only one of the approaches will most likely
lead to this goal. It is remarkable that the implementation of the proposed algorithmic
ideas even performs very well on the Bahn dataset, that has the size and structure of a real
world instance. Since exact approaches are far away from solving data sets of this size, the
look-ahead heuristic proves itself useful for revealing the strength of considering integrated
public transportation optimization.

The presented look-ahead approaches are designed to find a cost-optimized LTS-plan.
One could also try to find heuristic approaches focussing on finding a passenger-convenient
LTS-plan. A possible step towards this direction would be to choose a different line planning
procedure, in order to optimize not with respect to the costs, but for example with respect
to the number of direct travelers in the network.

Further research could also be carried out regarding exact approaches of integrated public
transportation planning. It would be interesting to investigate different ways of decomposing
the integrated problem, in particular, if also routing decisions are included. First results are
under research, see [13].
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A Appendix

The following example shows that it is unlikely to find a better vehicle schedule in Step S.

I Example 1. Consider two lines l1 and l2 such that line l1 ends at the station that l2 starts
at as shown in Figure 6.

Let the duration of the lines be durl1 = T
2 +ε and durl2 = T

2 −ε such that durl1 +durl2 = T .
Then using S-first with Lmin = 0 we will need two vehicles vehicles to serve line l1 and an
additional vehicle to serve line l2, as the following computation shows. The corresponding
vehicle schedule can be seen in Figure 7.⌈

2 · ( T
2 + ε)
T

⌉
=
⌈
T + 2 · ε

T

⌉
= 2⌈

2 · ( T
2 − ε)
T

⌉
=
⌈
T − 2 · ε

T

⌉
= 1
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Figure 5 The paths investigated in the Eigenmodel.
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Figure 6 Lines overlapping at station u.
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Figure 7 Vehicle schedule derived by S-first.
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v u

u w

l1

l2

Figure 8 Optimal vehicle schedule.

However, both lines could also be served consecutively by the same vehicle, leading to a
total of two instead of three vehicles as can be seen in Figure 8.⌈

2 · ( T
2 + ε+ T

2 − ε)
T

⌉
=
⌈

2 · T
T

⌉
= 2 .

Nevertheless, it is very unlikely that this vehicle schedule is possible after the timetabling
stage T. Consider an OD-pair from v to w. These passengers have to transfer at station u
with a minimal transfer time of ε′ > 0. Then, during the timetabling stage (Step T), the
lines will be synchronized such that the passengers can transfer at station u. Therefore, the
vehicle schedule shown in Figure 8 will also need three vehicles:⌈

2 · ( T
2 + ε+ T

2 − ε+ ε′)
T

⌉
=
⌈

2 · T + 2 · ε′

T

⌉
= 3 .

This shows that the vehicle schedule computed in Step S-first is already optimal as the
vehicle schedule shown in Figure 7 is still feasible.
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