
ON COMPOSABLE SYSTEM TIMING, TASK
TIMING, AND WCET ANALYSIS1

Peter Puschner2 and Martin Schoeberl3

Abstract
The complexity of hardware and software architectures used in today’s embedded systems make a hi-
erarchical, composable timing analysis impossible. This paper describes the source of this complexity
in terms of mechanisms and side effects that determine variations in the timing of single tasks and en-
tire applications. Based on these observations, the paper proposes strategies to reduce the complexity.
It shows the positive effects of these strategies on the timing of tasks and on WCET analysis.

1. Introduction

Until the early 90s of the 20th century the computer architectures used in embedded hard real-time
systems were relatively simple. In the light of these simple architectures, hierarchical (composable)
timing models – models that separated the low-level task timing issues from the real-time scheduling
problem at the high level – had been conceived. Worst-case execution-time analysis (WCET analysis)
had started to become an independent field of investigation within real-time systems research.

Since then, researchers working on WCET analysis have developed methods to identify (in)feasible
paths through pieces of code and strategies to compute WCET estimates for code running on different
hardware architectures. Over the years, the results of WCET analysis allowed its researchers to
compute WCET estimates for code running on more and more complex computer architectures.

While new computer hardware had entered the stage and advances in WCET analysis were made to
deal with these changes (e.g., to model the effects of instruction pipelines and caches on task timing),
the overall timing models still remained unchanged. I.e., although the temporal (de)composability
of task execution times had been lost, real-time schedulers and schedulability analysis still use the
strategies that had been conceived at a time when task execution times were independent. The only
available measure to deal with the lack of composability in task timing is the addition of an extra anal-
ysis step. This analysis uses information including the periods, priorities, and the physical-memory
maps of tasks to make a pessimistic assessment of the worst-case effects of the timing interactions
between tasks, see, e.g., [14].

Tools that assess the worst-case side effects of task executions on overall system timing are valuable
at the moment. In the long run, however, we will have to get rid of the side effects of tasks on system
timing instead of analyzing these effects. Only the elimination of the side effects provides the basis
for a development and analysis process that is hierarchical and thus much less complex than what is
currently state of the art. It is therefore the purpose of this paper to identify the properties of current

1The research leading to these results has received funding from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement no. 214373 (ARTISTDesign).

2Vienna University of Technology, A1040 Vienna, Austria; email: peter@vmars.tuwien.ac.at
3Vienna University of Technology, A1040 Vienna, Austria; email: mschoebe@mail.tuwien.ac.at

ECRTS 2008 
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 
http://drops.dagstuhl.de/opus/volltexte/2008/1662

1



task-execution models that adversely affect the decomposability of tasks and make timing analysis
difficult. Based on these findings we introduce a restrictive hardware and software architecture that
allows us to return to a hierarchical timing analysis of manageable complexity. The discussion will
highlight the consequences of this proposal on task design, on task timing characteristics, and – as a
consequence – on WCET analysis.

2. Hierarchic Timing Analysis

Traditionally the timing analysis of hard real-time systems, comprising the CPU-time scheduling
or schedulability analysis and the worst-case execution-time analysis, is a hierarchical process. At
the lower level, tasks are analyzed for their worst-case execution time (WCET). The results of this
low-level analysis are used either for constructing a CPU schedule that meets the timing constraints
of the application or for the purpose of schedulability analysis – the latter ensures that a task set
characterized by its task parameters (including execution times) will indeed be scheduled correctly.

A hierarchic decomposition as sketched above reduces the complexity of the timing analysis and the
real-time systems engineering process. According to [13], such a decomposition requires that the
subsystems are nearly decomposable, i.e., the interactions among the subsystems are weak but not
negligible [13].

2.1. A Model of Simple Tasks

In this work, our main interest is to investigate phenomena related to the time consumption of tasks.
For this purpose we assume that all tasks are S-tasks [6], simple tasks that do not have any synchro-
nization points inside. As a precondition to the execution of each task instance we assume that all
inputs for the task are available. During task execution there is no I/O or other blocking. A simple
task produces outputs by writing to defined locations within its local memory – the availability of the
outputs is part of the postcondition of each task execution. Outputs are read and further processed
(copied or transmitted in a message) by the operating system after the completion of the task.

For the sake of simplicity we assume that tasks are stateless, i.e., they do not preserve any data values
between invocations. Note that tasks that need a state can be converted to stateless tasks by making
their state an input/output variable. Each instance of such a converted task reads this input/output
variable after its start and writes its contents back as an output before it terminates. So the next
instance can read in the “state” again, and so on.

The interface between a task and its environment (the other tasks and the physical world) is charac-
terized by its control properties, temporal constraints, the functional intent and its data properties [6].
Tasks communicate with the environment with the help of the operating system, that reads resp. writes
the interface (input/output) variables of the tasks. One can observe that the interactions between the
tasks of a computer system influence the execution times of the tasks. Some interactions (e.g., the
exchange of data) are due to phenomena that are observable parts of the task interface. Other interac-
tions (e.g., the modification of the contents of a shared cache which, in turn, influences the execution
time of other tasks) cannot be traced back to the task interface. The latter are called side effects.

During the execution of a task instance, the values of the interface variables of the task are not defined.
Therefore it is not safe to access these variables from outside the task while the task is in progress.
The termination of the task commits the outputs. The outputs can then be propagated and processed

2



by the task environment.

2.2. Simple and Complex Computer Architectures

In simple computer architectures [6], the timing of each instruction can be determined locally, from
the knowledge of the instruction, the operands of the instruction, and a small execution context of the
instruction (often consisting only of the instruction itself). In these architectures, the execution of an
instruction can influence the execution time of another instruction in another task only via the explicit
change of values in a data memory that it shares with one or more other tasks. There are, however,
no implicit effects (side effects) of task behaviour on the execution times of other tasks. This way
we have clearly defined interactions between subsystems (tasks) that can be taken into account by
the scheduler, resp. schedulability analysis at the system level. Timing interactions between tasks are
limited to the effects of the data exchanged at the interfaces of the tasks.

In complex computer architectures the interactions between the different subsystems (tasks) are in
general not weak. This is because interactions are no longer restricted to a limited amount of explicit
timing dependencies that are caused by data sharing (including access to physically shared memory
as well as message communication) via the interfaces of the tasks. These architectures are char-
acterized by a number of additional timing effects due to the competition in the reservation of and
access to scarce, shared system resources. Depending on the particular computer system architecture
shared resources include pipelines for processing instructions and loading data, instruction and data
cache memories, and fast on-processor caches or registers for speculative branch and trace prediction.
Besides these mechanisms, the sharing of buses and memories for instructions and data among the
processors of chip-multiprocessing systems adds another source for temporal side effects between
tasks.

Because complex computer architectures are more and more used in embedded real-time systems, we
have to be aware of these implicit side effects that influence execution times. We have to identify
and analyze these interactions, and we have to investigate into appropriate ways of eliminating the
hidden side effects, thus avoiding that the reasoning about the temporal properties of real-time systems
becomes unmanageably complex.

3. Interactions of Task Timing

In the following we investigate the timing interactions between tasks in more detail. We describe both
the reasons for the interactions and the resulting phenomena that can be observed.

3.1. Task Interactions in Simple Architectures

In general the execution times of simple tasks vary. Such variations are due to effects of differences
in the inputs that are passed to the task via its interface.

Variable, data-dependent execution times of CPU instructions: A number of processors implement
(part of) the CPU instructions in micro code where more complex instructions execute repetitive steps
over a number of CPU clock cycles. In some cases the number of steps depends on the actual operands
which leads to execution-time variations (e.g., shift, multiply, and division).

Consequences for task timing analysis: If the operands of instructions with data-dependent timing

3



are not exactly known at analysis time, static analysis has to use pessimistic abstractions instead. In
measurement-based analyses, variable instruction timing in general increases the number of different
execution-time combinations of instructions that have to be compared in search for the worst case.
Roughly, every instruction with k different execution times increases the number of different scenarios
by a factor k. To deal with this increase in complexity, one either needs to use knowledge about the
instruction behaviour when generating input data for measurements or, alternatively, increase the
number of test cases significantly to obtain results of sufficient quality.

Different execution paths: In numerous algorithms the conditions of conditional branches that de-
termine the actual instructions executed during an execution directly or indirectly depend on the task
inputs. Upon execution, differences in inputs result in different test results in conditionals which, in
turn, produce different execution traces or paths, and thus possibly different execution times.

Consequences for task timing analysis: As every conditional branch essentially doubles the number of
possible execution paths – an effect that multiply occurs in loops – the number of possible execution
paths of a task is usually too high to analyze the timing of all possible paths one by one. As a
consequence, static timing analysis uses pessimistic abstractions which, in turn, can lead to over-
estimations in the result of WCET analysis.

3.2. Task Interactions in Complex Architectures

In addition to the above-mentioned explicit timing interactions between tasks, the following mecha-
nisms of complex computer architectures give rise to temporal side effects.

Intra-task effects on hardware state: Let us at this point consider a single periodic task that is per-
fectly shielded from external side effects. Still, the different instances of this task, operating on dif-
ferent inputs, may execute on different paths. This leaves the hardware of the computer system (e.g.,
the instruction cache, branch prediction buffers, etc.) in different states when the task completes. As
the hardware state at termination equals the start state of the next instance of the tasks, each execution
of a task influences the timing of subsequent instances of the task. Depending on whether the hard-
ware state evolves monotonously and converges to a fixed point after a certain number of executions
or not (as in the case of conditional cache conflicts within single task instances), the state effects on
execution times may stabilize or not.

Effects on task timing: One observes variations in execution time due to different hardware states
at the task start. In particular the first instance of a task cannot benefit from state changes (e.g., the
loading of cache lines) of previous executions, thus usually consuming much more time than follow-
up instances. Depending on whether there are conflicting state effects within task instances, timing
effects between instances may disappear after the state has reached its fixed point or not. Even if
a such a fixed point exists, the number of executions needed to reach the fixed point is in general
unknown.

Consequences for task timing analysis: Which starting state should be assumed? What is the “worst-
case starting state”, i.e., the starting state from which an execution of maximum duration starts? Do
we really want to consider the worst-case starting state in the execution time analysis given that the
cost for building up the state in the first instance of a task is usually much higher than the state-
dependent cost of successive executions, or shall we discern between the first/first N – what N? –
and all other executions that follow?

4



In static WCET analysis, the pessimistic approximation of possible start states leads to pessimism
in the computed WCET bounds. In measurement-based analyses, intra-task state effects increase the
space of parameters that are relevant for execution times, which has a negative effect on the percentage
of possible situations that can be assessed with a given set of resources.

External hardware state modifications between invocations (no preemption): So far we assumed
that the hardware state of a task is not modified between successive executions. In real-world scenar-
ios, however, other tasks and operating system activities alter the state left by the task, and thus the
starting state of further instances.

Effects on task timing: The effects on timing are not limited to the intra-task effects mentioned above.
Although state changes from prior executions of the task may still be effective, other tasks and oper-
ating system activities interfere with the task state, i.e., there are task-external influences on the task
execution times as well.

Consequences for timing analysis: As above, there is the question about which start states are rele-
vant for WCET analysis, resp. which abstractions should be used for the analysis. In contrast to the
previous discussion, timing effects are not local to the task, however. Therefore, besides the WCET
analysis one needs some extra, global analysis to account for task interferences between task exe-
cutions and their effects on the overall timing of the real-time computer system. A question in this
context is: What are useful abstractions for each of these analysis steps in order to achieve a clean
separation between WCET analysis and the timing analysis that accounts for the interferences?

External modification of state during execution (preemption): In systems with preemptive schedul-
ing, the situation gets even more complex as preemptions may have almost arbitrary effects on a the
state of a task during its execution.

Effects on task timing: The effects of preemptions on the state of a task depend on a number of factors,
e.g., the number of preemptions, the state of the task at preemption time, the state modifications
performed by the preempting code.

Consequences for timing analysis: As above, in addition possible interferences during task preemp-
tions have to be considered, which again adds complexity/pessimism to the analysis. A simple hier-
archical timing analysis that decomposes into a low level WCET analysis and a high-level scheduling
or schedulability analysis is beyond reach because of the strong interactions between the two levels.

Dynamic state-sensitive resource allocation and scheduling: Actual out-of-order processors perform
speculative execution even over predicted branches where the branch outcome is not yet known. As a
consequence around 100 instructions2 can be in the pipeline on the fly between instruction fetch and
instruction retirement.

Effects on task timing: The execution time of a single instruction depends on a very large execution
history. Assuming a flushed pipeline on a basic block start is not an option anymore.

Consequences for timing analysis: Modeling the state of about 100 instructions per clock cycle and
the speculative execution will result in a state space explosion. The situation can get worse in the

2On a Pentium 4 the minimum latency of an instruction between fetch and retire is 31 clock cycles and up to 3 instructions
can be fetched each cycle [1]. Register renaming restricts the number of micro operation in execution to 128.

5



presence of so-called timing anomalies, i.e., when the dynamic scheduling of instructions can lead
to non-monotonic timing relationships between instruction sequences and the constituents (parts) of
these sequences. The latter poses a major obstacle to a safe compositional timing analysis.

3.3. Task Interactions in Chip-Multiprocessors

Due to the ever increasing transistor budget [8] for a chip several functions (or IP cores) can now be
integrated into a single chip. This integration is often referred to as System-on-a-Chip (SoC). SoC is
categorized into two types:

Heterogenous multiprocessors contain a number of different IP cores (e.g., general purpose proces-
sor, DSP co-processors, small memory units) on a single chip. The cores are connected either
by point-to-point links or by a network on chip (NoC). Those systems are called multi-processor
SoC (MPSoC).

Homogenous multiprocessors contain several identical processors with some on-chip memory. Those
systems are also referred as chip multiprocessors (CMP).

Both architectures are common in embedded systems. Due to the power wall [1] CMP systems are
now also state-of-the-art in desktop and server processors. In this paper we consider CMP systems
and the impact of the shared memory on the timing analysis. Three, quite different CMP architectures
are state-of-the-art: (1) multicore versions of super-scalar architectures (Intel/AMD), (2) multicore
chips with simple RISC processors (Sun Niagara), and (3) the CELL architecture.

Most cores for CMP allow fine-grain multithreading within a single core. Multithreading in a core can
hide latencies due to cache misses. With simultaneous multithreading (SMT) more than one thread
can execute in a single pipeline stage when enough functional units are available. Multithreading
increases throughput for server type workloads due to higher processing resource utilization; the
individual task execution time increases.

Complex processor CMP: Mainstream desktop processors from Intel and AMD include two or four
out-of-order executing processors. Those processors are just replications of the original, complex
cores that share a 2nd level cache and the memory bus. Cache coherence protocols on the chip keep
the level 1 caches coherent and consistent. Furthermore, those cores also support SMT, sometimes
also called hyper-threading.

RISC based CMP: Sun took a completely different approach with their Niagara T1 [5] by abandoning
the super-scalar architecture that tries to extract instruction level parallelism (ILP) from sequential
code. Eight simple cores implement fine-grain multithreading to support thread level parallelism often
found in server workloads. Each core consists of a simple six-stage, single-issue pipeline similar to
the original five-stage RISC pipeline. The additional pipeline stage adds fine-grained multithreading.
Four threads are supported on each core that are scheduled in round-robin fashion. With 8 cores the
Niagara can execute 32 independent threads of execution. When a thread stalls due to a cache miss or
a load-use dependency it is skipped in the schedule. The first version of the chip contains just a single
FPU that is shared by all 8 processors.

Local memory based CMP: The Cell multiprocessor [2, 3, 4] takes an approach similar to a distributed
memory multiprocessor. The Cell contains, beside a PowerPC microprocessor, 8 synergistic proces-

6



sors (SP). The SPs contain 256 KB on-chip memory instead of a cache. The PowerPC, the 8 SP, and
the memory interface are connected via a 4 ring network. Communication between the cores in the
network has to be setup explicitly. All memory management, e.g. transfer between SPs or between
on-chip memory and main memory, is under program control, resulting in a new programming model.

Simultaneous multithreading: The tight coupling of the CMP cores introduces several timing in-
teractions that are hard to predict. The simplest form of multiprocessing within a single pipeline is
introduced by fine-grain or simultaneous multithreading. The hardware managed threads of execution
interact in a very fine grain manner: each stall in one thread influences the execution time of the other
threads. The best WCET estimates we can provide for hardware multithreading is the same time as
executing those threads serially on the same pipeline.

Keeping caches coherent and consistent: Cache coherence protocols (bus snooping or directory
based) enforce a coherent and consistent view of the main memory. These protocols exchange the
cache information between all cores on each memory access and introduce a high variability of the
cache access time even when the access is a cache hit.

Shared caches and memory: Probably the main source of timing interaction comes from the shared
2nd (and probably 3rd) level of cache and the shared main memory. The shared memory provides
an easy-to-use programming model at the cost of unpredictable access time to the data. With global
multiprocessor scheduling a task can migrate from one core to another – even within a single period
of execution. A migrated tasks completely looses its L1 cache state.

4. Avoiding Unwanted Interactions

We have seen that a number of factors contribute to variations in task execution times. Some of the
effects are malign as they are not local to a single task execution but invalidate the hardware state that
other tasks or other instances of the same task have built up. These interactions cause side effects that
obstruct a hierarchical timing analysis.

In this section we propose some ways to eliminate these interactions. The central idea is to protect the
time-relevant state of a task from dynamic changes that make it unpredictable. To this end, we aim at
the spatial separation of tasks and we replace dynamic run-time decisions by unalterable, pre-planned
control mechanisms where all decisions have been taken offline, at implementation time. In detail,
our solution builds on the following mechanisms:

• The use of single-path code in all tasks,

• The execution of a single task/thread per core,

• The use of simple in-order pipelines, and

• Statically scheduled access to shared memory in CMPs.

4.1. Use of Single-Path Code

When considering simple architectures, we think that data-dependent instruction execution times can
be eliminated easily. In fact there are a number of processors with constant instruction execution

7



times around. Timing variations due to the execution of different execution paths and the intra-task
effects on the hardware state that occur in complex architectures can be eliminated by transforming
the code into so-called single-path code [11]. In the single-path transformation [9], all control depen-
dencies in the code are removed. Instead, the input-dependent conditionals are replaced by predicated
instructions that have invariable execution times.

Effects on task timing: As single-path code always executes the same trace, there are no execution-
time variations due to multiple paths in simple architectures. For single-path task implementations,
execution-time variations due to intra-task timing effects are restricted to the warm-up phase of the
task. As all executions of a task run the same trace the hardware state stabilizes after a limited number
of executions. After this fixed point has been reached, the timing of the task remains constant. To
avoid that the single-path conversion yields code with very poor performance, we suggest the use of
WCET-oriented programming strategies and algorithms [10].

Consequences for timing analysis: The timing analysis of single-path tasks is trivial. On simple
architectures it is sufficient to measure the execution of a single task instance, with any input data,
to obtain the (single) execution time of the task. For the complex architectures, the execution time
of isolated tasks can be measured after a limited number of executions, once the hardware state has
stabilized at its fixed point.

4.2. Execution of a Single Task per Core

Both types of external modifications (inter-task effects) of the hardware state of a task – those occur-
ring between invocations and those due to preemptions – can only be eliminated by protecting the
hardware state against influences from other tasks. One way to achieve this is saving and restoring
the state whenever a task completes or a task gets preempted. As the administrative overhead for this
state management seems to be pretty high, we propose a more rigorous shielding of tasks that benefits
from the current trends in hardware development – assigning each task/thread to a dedicated core of a
chip multiprocessor. As the used simple tasks do not access shared data during their execution, each
processor builds up its own private state and a spatial separation of the timing relevant state of the
tasks is achieved. The timing impact of accesses to shared data for the purpose of communication and
I/O (as performed by the operating system) does, of course, need special consideration. The latter
will be discussed below (see Section 4.4).

Effects on task timing and timing analysis: Assigning each task to a dedicated processor core elimi-
nates all of the mentioned inter-task timing effects. This way, task timing analysis only has to consider
task-internal effects on the state. This, in turn, can reduce the state space of the execution-time ana-
ysis significantly, thus yielding tighter (static analysis) or safer (measurement-based analysis) results
of WCET analysis. In addition to simplifying the task timing analysis, the elimination of task inter-
actions reduces the side effects on task timing, thus allowing for a better composibility in the overall
timing-analysis process.

4.3. Simple in-order CMP Pipelines

Extracting ILP from sequential code in one task with speculating out-of-order pipelines consume a
lot of resources and is hard to analyze. For time predictable systems the transistor budget for future
CMPs is better spent by replication of simple RISC pipelines. The additional available cores can
be utilized to shield individual tasks as proposed in the former section. We assume local data and

8



instruction memory per core either program managed or organized as a cache.

Current trends in computer architecture actually simplify WCET analysis. Besides the Intel/AMD
approach, the CMP pipelines are simpler than the former mainstream complex processors. The archi-
tectures target at thread-level parallelism instead of ILP – an abstraction that can be better handled in
real-time systems.

The pipeline of Sun’s Niagara CMP is a simple in-order pipeline where timing anomalies [7] are not
an issue anymore. The CELL SP elements are dual-issue SIMD in-order pipelines. The SP contains
no cache and no virtual memory. In the CELL processor each data exchange between the cores has
to be setup under program control. Therefore, we can apply the time triggered approach of data
exchange on the CELL architecture.

Effects on task timing and timing analysis: Single issue, in-order execution pipelines are well under-
stood for WCET analysis. The speedup due to pipelining can be modeled for basic blocks and also
for larger constructs, such as loops.

4.4. Statically Scheduled Access to Shared Memory

In a CMP system the competition for shared resources shifts from the CPU to the memory bandwidth.
Imagine an extreme CMP system with more CPUs than tasks to execute. In that case there is no
competition for the CPU – we even can avoid scheduling at all. However, all CPUs access the single
global memory. A shared resource where the access has to be scheduled, e.g., through an arbiter.
Even when this example is not practical at the moment, it shows the trend towards integrating the
competition for the memory bus into the timing analysis.

We consider a static, preplanned scheduling of the memory access [12] for all cores. The arbitration
of the memory access is time sliced. Integrating the knowledge of the access time slices into the
WCET analysis provides safe estimates for load/store instructions and instruction cache fills. The
time slicing does not have to be regular. We can introduce a relative boost (longer slices) for some
cores at the cost of other cores that run tasks with enough slack time.

To avoid hard-to-predict task-migration (from one core to another) costs we pin each task to a ded-
icated core. If a CPU supports hardware multithreading, only one of the virtual CPUs can be used.
The other virtual CPUs need to be disabled.

Consequences for timing and schedulability analysis: The scheduling of the memory access has to
be integrated into the WCET analysis. With a static schedule of the memory arbitration the access
time property is well known and independent from the activity of the other cores. With few tasks – or
even a single task – executing on a core, the traditional scheduling for the CPU resource disappears.
Scheduling is performed at the memory access level. The low overhead of a task switch at the memory
arbitration allows fine grain access control: either time sliced down to a single memory access or a
percentage based bandwidth scheduling are feasible.

5. Summary and Conclusion

In this paper we investigated into the problems of nowadays timing analysis. We showed that, due to
the properties of the used hardware and software architectures, tasks cannot be considered indepen-

9



dent in their execution. As a consequence, task timing is not an isolated property, which makes the
analysis of both task timing and system/application timing highly complex.

We analyzed the reasons for the complexity of timing analysis and identified ways to make a hier-
archical compositional timing analysis possible. Our solutions utilizes the architectural features of
chip multiprocessors that bring along performance and the parallelism we need to reduce the resource
competition between tasks.

• For each single task we make task timing easier to predict and stable, the latter meaning that
each execution of a task has the same execution time. Regarding software, we use the single-
path conversion to reduce the number of execution paths (or traces) to one, and WCET-oriented
programming to get reasonable performance. On the hardware side we use processors with
constant instruction execution times. Further, we rely on in-order pipelines to eliminate the
effects of dynamic instruction scheduling, a central source of timing anomalies.

• When considering the whole task set of an application, our main goal was to eliminate the inter-
task timing effects. By allocating each task to a dedicated CPU core we avoid those timing
interferences that are due to the competition for scarce CPU and memory resources. The pre-
runtime, offline planning of all accesses to shared memory removes all other interferences,
which are due to the – necessary and inevitable – data exchange between tasks.

To summarize, the introduced mechanisms simplify the structure of single tasks and shield different
concurrent tasks from one another, both in the spatial and in the temporal domain. The mechanisms
both simplify the overall timing analysis – in that they make a hierarchical timing analysis possible
– and in parallel simplify the execution characteristics of tasks, thus paving the way back to a simple
WCET analysis.

References

[1] John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach, 4th ed.
Morgan Kaufmann Publishers, 2006.

[2] H. Peter Hofstee. Power efficient processor architecture and the cell processor. In HPCA, pages
258–262, 2005.

[3] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduction
to the Cell multiprocessor. j-IBM-JRD, 49(4/5):589–604, 2005.

[4] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor communication
network: Built for speed. Micro, IEEE, 26:10–25, 2006.

[5] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-way multi-
threaded sparc processor. IEEE Micro, 25(2):21–29, 2005.

[6] Hermann Kopetz. Real-Time Systems. Kluwer Academic Publishers, 1997.

[7] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled micropro-
cessors. In RTSS ’99: Proceedings of the 20th IEEE Real-Time Systems Symposium, page 12,
Washington, DC, USA, 1999. IEEE Computer Society.

10



[8] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–
117, 1965.

[9] Peter Puschner. Transforming execution-time boundable code into temporally predictable code.
In Bernd Kleinjohann, K.H. (Kane) Kim, Lisa Kleinjohann, and Achim Rettberg, editors, De-
sign and Analysis of Distributed Embedded Systems, pages 163–172. Kluwer Academic Pub-
lishers, 2002. IFIP 17th World Computer Congress - TC10 Stream on Distributed and Parallel
Embedded Systems (DIPES 2002).

[10] Peter Puschner. Algorithms for Dependable Hard Real-Time Systems. In Proc. 8th IEEE Inter-
national Workshop on Object-Oriented Real-Time Dependable Systems, Jan. 2003.

[11] Peter Puschner and Alan Burns. Writing Temporally Predictable Code. In Proc. 7th IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems, pages 85–91, Jan.
2002.

[12] Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebo Peng. Bus access optimization for pre-
dictable implementation of real-time applications on multiprocessor systems-on-chip. In Pro-
ceedings of the Real-Time Systems Symposium (RTSS 2007), pages 49–60, Dec. 2007.

[13] Herbert Simon. The Sciences of the Artificial. MIT Press, Cambridge, MA, 3rd edition, 1996.

[14] Jan Staschulat, Simon Schliecker, and Rolf Ernst. Scheduling analysis of real-time systems with
precise modeling of cache related preemption delay. In Proc. 17th Euromicro Conference on
Real-Time Systems, pages 41–48, Jul. 2005.

11




