Approximate dynamic programming for rail operations

Warren B. Powell and Belgacem Bouzaiene-Ayari

Princeton University, Princeton NJ 08544, USA

Abstract. Approximate dynamic programming offers a new modeling and algo-
rithmic strategy for complex problems such as rail operations. Problems in rail
operations are often modeled using classical math programming models defined
over space-time networks. Even simplified models can be hard to solve, requir-
ing the use of various heuristics. We show how to combine math programming
and simulation in an ADP-framework, producing a strategy that looks like sim-
ulation using iterative learning. Instead of solving a single, large optimization
problem, we solve sequences of smaller ones that can be solved optimally using
commercial solvers. We step forward in time using the same flexible logic used in
simulation models. We show that we can still obtain near optimal solutions, while
modeling operations at a very high level of detail. We describe how to adapt the
strategy to the modeling of freight cars and locomotives.

For over 10 years we have been developing a series of models for optimiz-
ing locomotives and freight cars for a major freight railroad in the U.S. using
the principles of approximate dynamic programming. The projects span oper-
ational planning to strategic planning which generally impose very different
expectations in terms of the level of realism. In this paper, we review how these
projects unfolded and the surprising level of detail that was required to produce
implementable results, even for a strategic system.

The foundation of our solution strategy is approximate dynamic program-
ming, which combines the flexibility of simulation with the intelligence of op-
timization. ADP offers three distinct features that help with the development of
realistic optimization models in rail operations: a) It offers a natural way of de-
composing problems over time, while still offering near-optimal solutions over
the entire horizon. b) ADP allows us to model complex dynamics using the same
flexibility as a simulation model. c) ADP uses the same theoretical framework
as dynamic programming to solve multistage problems under uncertainty.

ADP is often presented as a method for solving multistage stochastic, dy-
namic problems. However, ADP can be thought of as a tool from three differ-
ent perspectives: 1) as a decomposition method for large-scale, deterministic
problems, 2) as a method for making simulations intelligent, and 3) as a set of
techniques for solving large-scale (possibly stochastic) dynamic programs. Our
original motivation for this work was as a decomposition technique for solving
a very large-scale driver management problem ([1]). The work in locomotives
described in this paper, while involving sources of uncertainty, has primarily
focused on solving deterministic formulations. These problems produce very

ATMOS 2007 (p.191-208)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1180

192 Warren B. Powell and Belgacem Bouzaiene-Ayari

large-scale integer programming problems which have been widely approached
using various heuristics (see [2] and [3]).

ADP offers two unexpected features for solving these large-scale problems.
The first is that by breaking large problems into smaller ones, we can solve
these subproblems optimally using commercial solvers such as Cplex. Thus, the
problem of assigning locomotives to trains at a single yard (or in a region) at a
point in time is solved optimally. We depend on approximations to capture the
impact of decisions now on the future, so our overall solution is not guaranteed
to be optimal, but comparisons against optimal solutions have been extremely
encouraging.

The second feature is that ADP allows us to model problems at a much
higher level of detail. Itis typically the case that large deterministic models typi-
cally introduce operational simplifications that impact the accuracy of the model
itself. ADP integrates simulation and optimization, allowing us to capture the
characteristics of the resources being used, as well as various operational rules,
at a very high level of detail. Thus, we are able to model each locomotive indi-
vidually, capturing detailed features such as its precise horsepower and adhesion
rating, its maintenance status, orientation on the track (is it pointing forward or
backwards), special equipment and ownership. This high level of detail does not
prevent us from solving subproblems to optimality.

Our work in freight transportation has spanned three classes of models:
1) strategic planning models, which address questions such as fleet size and
scheduling design, along with more complex studies of transit time reliability
and order acceptance policies, 2) short-term tactical planning, where we look
several days into the future to anticipate shortages of equipment and to manage
demands, and 3) real-time planning, where we wish to provide fast response to
user inputs and overrides.

The use of approximate dynamic programming to solve large, time-staged
optimization problems (which may or may not be stochastic) requires the use
of special modeling tools that are less familiar to a math programming-based
community (but common in simulation and control-theory communities). This
paper provides a general introduction to this modeling and algorithmic frame-
work, and then describes how it can be applied to both locomotive optimization
and the optimization of freight cars. We discuss the limitations of classical op-
timization models of fleet management, focusing not as much on the issue of
uncertainty but rather on the importance of capturing realistic operational de-
tails. We describe how the ADP paradigm makes it much easier to capture these
details, without losing the important features of optimization.

1 Literature review

There is an extensive literature on optimization models for rail operations. These
range from single commodity models for managing generic fleets of containers
(e.g., [4] and [5], to multicommodity models for handling multiple equipment
types with substitution ([6], [7], [8], [9], [10], [11], [12], [13], [14] and [15]). A

Approximate dynamic programming for rail operations 193

separate line of research has focused on handling the high level of uncertainty
in the demand for freight cars ([16], [17]); this research has continued under the
general heading of “stochastic fleet management” or “dynamic vehicle alloca-

tion” (see the reviews in [18] and [19], as well as [20]).

Many of these models are particularly well suited for managing fleets of
containers (box cars, trailers, intermodal containers). A separate literature has
evolved around the more complex problem of managing locomotives. This prob-
lem has been modeled almost exclusively as a large-scale integer programming
problem (see [11] for a review of the literature as of 1998). There are a host of
complicating issues with locomotives, including the cost of coupling and uncou-
pling groups of locomotives used to pull a single train, the handling of leader
locomotives, shop routing and a heterogeneous fleet of locomotives with differ-
ent levels of power (common in freight operations in the United States).

There has been significant recent interest in models for locomotive opti-
mization. [21] describes the use of modern branch and cut integer programming
algorithms for the locomotive problem, which was applied to Canadian National
Railway ([22]). [23] and [24] apply Benders decomposition to handle the si-
multaneous optimization of locomotives and cars. [2] presents a deterministic
optimization model of locomotive operations that takes into account the issue of
breaking up sets of locomotives that were joined to pull a previous train (“con-
sist busting”). The model is designed for strategic planning purposes; it does
not use a snapshot of the location of each locomotive, but instead works to iden-
tify repeatable cycles. The paper shows that the problem is NP-complete and
presents a neighborhood search heuristic.

2 Modeling rail operations

The management of freight cars and locomotives are both instances of resource
allocation problems. We begin by providing a general model, and then describe
how this was adapted to handle freight cars and locomotives.

2.1 A general resource allocation model

Rail operations can be modeled as “resources” (locomotives, freight cars) that
are serving “demands” (trains, customer orders). We model these using

a = the vector of attributes describing a resource,

R:, = the number of resources with attributec A in the system at
timet,
Rt = (Rta>a€A7
b = the vector of attributes describing a demand,
Dy, = the number of demands of typec B in the system at time,

Dy = (D) pes-

194 Warren B. Powell and Belgacem Bouzaiene-Ayari

We think of a (or a;) as the state of a single resource, didis the state of

all the resources (the resource state vector). The state of our system is given
by S; = (R, D¢), wheret represents the time at which a decision is made,
and S; is the information available at time New information is represented

as exogenous changes to the resource and demand vectors, as well as to other
parameters that govern the problem. These are modeled using

Ry, = exogenous changes i, from information that arrives during
time intervalt (betweent — 1 andt),

Dy, = exogenous changes g, from information that arrives during
time intervalt (betweent — 1 andt).

Ry, would be used to describe exogenous changes to resources such as equip-

ment failures and transit time delay®,;, would normally be used to describe
new customer requests, but could also be used to model changes in a customer
request (something that will be useful in the freight car problem). We describe

the exogenous information process generically using= (Rt, Dt). Through-
out, we model information as if it were arriving in continuous time, whégds
the information that arrived between decision epachsl andt. We always let
t index a decision epoch, not the time at which events actually happen (we can
decide at noon that a locomotive arriving at 3pm should be assigned to a train
leaving at 8pm).

Decisions are modeled using

DP = decision to satisfy a demand with attributgeach decision
d € DP corresponds to a demand attribtigec B),

DM = decision to modify a resource (each decisibre DM has
the effect of modifying the attributes of the resourd@@}! in-
cludes the decision to “do nothing,”

D =DPuDpM,

Zoq = the number of resources that initially have attributéhat we

act on with decisionl,
Ty = (l’tad)aeA,deD-

For resource allocation problems, decisions always have to satisfy the con-
straints

Z Ttad = Rtav (1)
deD
Z Ttad < Dy, d € DP, (2
acA

Ttad 2 0. (3)

Approximate dynamic programming for rail operations 195

For specific applications (this is especially true with locomotives), there will be
additional constraints. We let; be the feasible region, which would include
(1)-(3) as well as any other constraints that may be necessary.

Our problem is determining how to make a decision. For now, we represent
this step by assuming that we have a decision function, given by

X[(Sy) = afunction that returns a decision vecigre X;, wherer € IT
is an element of the set of functions (policid$)

The state of the system evolves over time in a way that is described using a
transition function, represented using

Sit1 = SM(Sy, 24, Wig).

The state transition function (known as the “system model” in some commu-
nities) can be broken down into components that act on specific parts of the
state. State transition functions are very familiar to specialists in simulation and
control, but not to the math programming community. It is important to realize
that this single equation hides a tremendous range of rules and calculations that
capture how the system evolves in time.

We are going to find it useful to divide the state transition into two steps:
the pure effect of the decision, and the pure effect of information. We write this
using

Sy = the post-decision state variable
= SM(Sy, x),
S = SMW(SE, Wiga).
The post-decision state variable is going to play a particularly important role in
our algorithmic strategy.
Of particular importance is the evolution of the attributes of a specific re-
source. For this, we define tlagtribute transition functiorwhich describes the

effect of a decisionl on a resource with attribute, after which we observe
informationW,; (information that arrives after timg. This is described using

M
agy1 = a” (ag, dg, Wiga).
For notational convenience, we introduce thesource transition functiothat

describes the collective effect of a set of decisions (described by the wggtor
on the resource vectdt; using

Rii1 = RM(Ry, m, Wii1).

To write this out algebraically, we first give the post-decision version of the
attribute transition function? = a**(as, d;). It is useful to think ofu? as the

196 Warren B. Powell and Belgacem Bouzaiene-Ayari

attribute of the resource which vexpecto happen as a result of a decision. We
then define the indicator function

| 1ifd = af = aM*(ay, dy),
dar(a,d) = {0 otherwise.

This allows us to write the post-decision resource vector as

fa’ = Z Z 5(1’(‘17 d)xtad-

acAdeD

We then letR; 1 , be the exogenous change to the resource véttas a result
of exogenous information such as a transit time delay. This allows us to write

" A
Rt—i—l,a = Rta + Rt+1,a-

For the moment, we model demands in a simple way. If a resource is as-
signed to a demand, then it is “served” and vanishes from the system. Otherwise,
it is held to the next time period. Let

0Dy, = the number of demands of typg that are served at time

= Z Ttad de DD7
acA
0Dt = (0D)ves-

The demand transition function can be written
D¥ = D; — 6Dy,
Dii1 = D¥ 4 Dyyq.

The last dimension of our model is the objective function. For our resource
allocation problem, we define a contribution for each decision given by

ciaq = contribution earned (negative if it is a cost) from using deci-
siond acting on resources with attribuge

The contribution function for time periadis assumed to be linear, given by

Ce(St,xt) = Y D Crad®ad-

a€AdeD

The objective function is now given by

max F {i Ct(Squr(St))} .
t=0

well

Approximate dynamic programming for rail operations 197

One policy for solving this problem is a myopic policy, which involves making
decisions using

x; = arg max C(Sg, x¢). 4)

T EXL

Here, we simply ignore the impact of decisions now on the future.

Most railroads in North America use a simple myopic model for assigning
freight cars to orders, although some use point estimates of supplies of and
demands for cars. There are several potential problems with a myopic model.
1) We might assign a car available now (on Monday) to an order that does not
have to be moved until Friday, that requires only a one-day transit time. This
ties up the car for four additional days, when a different car (not yet known)
might have covered the order. 2) It may be necessary to start moving cars now
to orders that have not yet been called in (and which may be highly uncertain).
3) Often, multiple car-types can be used to cover a particular order. It is helpful
to think about the value of different car-types at the destination of the order to
determine the best car to assign right now. 4) A railroad might want to make
decisions about whether to commit to a customer order for freight to be picked
up a week or two in the future. Myopic models cannot help with these decisions.
5) There are numerous planning problems, relating to issues such as the value of
freight, the value of cars of a particular type, the effect of transit time reliability
and the value of advance notice from shippers that require the ability to model
these effects.

This generic model for resource allocation problems allows us to describe
both freight cars and locomotives quite easily.

2.2 An adaptation for freight car management

The generic model given in section (2.1) can be applied directly to freight car
management. In the literature, the car distribution problem is almost always
modeled as a multicommodity flow problem using decision variables given by

xfij = the flow of resources of typk leaving node at timet going
to nodeyj.

We started a project with a major railroad using this same notation (see [25]),
but quickly found that it simply did not capture important characteristics of
the problem. By the completion of our project, we were using the following

198 Warren B. Powell and Belgacem Bouzaiene-Ayari

attributes:
ai Location (current or origin)
as Destination
as Departure time
| aa | _ | Estimated time of arrival
““las | " | car type
ag Equipment status
ar Cleanliness
as Shipper pool

A major point of departure with classical deterministic models is that we model
the time at which an event happens as an attribute, which can be modeled in
continuous time, even if we make decisions in discrete time. Thus, a car can
arrive at 7:33 am and depart at 11.52am. The importance of doing this took us
by surprise, but laboratory experiments confirmed the feeling at the railroad that
this was important.

The attributes of an order were given by

Number of orders

Zl Pickup location
b2 Delivery location
b3 Call-in time
- b4 _ | Pickup window
b5 Delivery window
bG Loading time
b7 Unloading time
bz Shipper/industry/commodity type

Car types allowed

A significant issue with the modeling of car distribution was the complexity
of the information process. Most models assume that everything is known in
advance. The extensive literature on stochastic models assumes that demands
are stochastic, but once they become known, everything becomes known. In
practice, information evolves over time. For example, after the initial order is
made (at the call-in time), we will know the origin of the order, but not the
destination. The shipper does not let us know if the car is clean enough until the
car is delivered to the shipper. Loading and unloading times are not known until
the car is loaded or unloaded. The estimated time of arrival (for the car) evolves
continuously over a trip.

The call-in process had to be modeled with some care. Initial orders (which
include an estimate of the number of loads, pick-up location but not destination)
are generally made the week before. But the railroad often has to move cars that
are empty on Monday before orders arrive later in the week. If a shipper does

Approximate dynamic programming for rail operations 199

not place his order on, say, Wednesday, the order may arrive on Thursday or
Friday, or not at all. Thus, the order process is not Poisson.

The contribution function depends on the shipper, the distance traveled (empty
or loaded), and the degree to which the order is being picked up or delivered
early or late.

2.3 An adaptation for locomotive operations

When assigning locomotives to trains, the first issue that has to be considered
is how much power is needed to pull the train. A train might require 2.2 horse-
power per trailing ton (“trailing tons” refers to the aggregate weight of all the
cars being pulled). A train weighing 9,000 tons (gross weight, including the
weight of the cars), requiring 2.2 horsepower per ton would require enough lo-
comotives to provide 19,800 horsepower. This horsepower can be provided by
a mixture of locomotives with anywhere between 1,700 to over 4,000 horse-
power. Of course, we have to use an integer number of locomotives, and we
can mix and match to produce the right amount of power. We could use seven
3,000 horsepower locomotives which produce 21,000 horsepower, or four 3,000
horsepower units with two 4,000 horsepower units for a total of 20,000 horse-
power. As a result, this is a fairly challenging integer programming problem.

If we simply had to schedule a fleet of locomotives taking into consideration
the mix of horsepower and integrality requirements, this by itself would be a
fairly hard integer programming problem. We also have to consider the fact that
if we group multiple locomotives to pull a single train (this group of locomotives
is called econsis}, there is a cost if we have to separate one or more locomotives
from the consist. This introduces a significant complication, over and above the
challenge of finding an integer number of heterogeneous locomotives to move a
train. This complexity motivated the design of the neighborhood search heuristic
reported in [2].

Our work has identified a number of other issues which have proven to be
important not just for operational models (these tend to be more complex since
the results have to capture enough realism for implementation), but also for
strategic planning models. These details include the handling of leader-qualified
locomotives, shop routing, late trains, equipment failures and foreign power.

Shop routing is particularly difficult. A locomotive can still pull a train while
itis being routed to shop, but while we are routing a locomotive toward its shop
location, we have to try to minimize how often consists are broken. Shop routing
can not be solved independently of the original problem.

In strategic planning applications, itis also important to take into account the
random additions and cancellations, as well as delays. If an extra train moves
out of a yard 20 percent of the time (to various destinations), then we cannot
pretend that we know exactly when, and to where, these additional trains will
move.

200 Warren B. Powell and Belgacem Bouzaiene-Ayari

3 Approximate dynamic programming

Approximate dynamic programming has been evolving as a powerful tool for
solving more complex types of dynamic programs. In a series of papers mo-
tivated by problems in freight transportation, ADP has been adapted to solve
multistage stochastic linear (and integer) programs. Classical dynamic program-
ming starts with Bellman’s equation, given by

Vi(St) = max (C(St, v¢) + YE{Vi+1(St4+1)[St}),)

reEAL

whereV;(S;) is the value of being in stat® at timet, andy is a discount factor.

It is widely known that Bellman’s equation is hard to use because of the “curse
of dimensionality” which prevents us from solving (5) for each statdf S; is

a vector (for our applications; is a very high-dimensional vector), we cannot
computeV;(s) for each stats.

In the remainder of this section, we describe a generic strategy for using
approximate dynamic programming to solve resource allocation problems, and
then describe how this was adapted for car distribution and locomotive opti-
mization.

3.1 A generic ADP strategy

The approximate dynamic programming community repla¢es;) with some
sort of approximation which we denotg(S;). For example, we might use

Vi(Se) =00+ > 015+ > 02(5u)°.

Now, we just have to estimate the three parametésst:, 6-). Aside from
the issue of whether this is an accurate approximation, this strategy still as-
sumes that we can compute the expectation in (5), and we need to find a high-
dimensional vectog;.

We avoid the expectation by formulating Bellman’s equations around both
the pre- and post-decision statgsandSy. This allows us to break equation (5)
into two equations

Vi(St) = max (C (S, xe) + Vi (5¢)),
T t
Vi (SE) = E{Vis1(Se1)[SF} -
Here,S¥ = S™=(S,, ;) and S;1 = SMW(SF W,.1). We do not actually

useV;(S;). Instead, we replacg?(S¥) with an approximatiorv; (S¥). We then
make decisions using

Ty = arg rré%gc (C(Sy,) +YVi(SF)). (6)
T t

Approximate dynamic programming for rail operations 201

We need to create a value function approximation so that this problem can be
solved using a commercial solver. For resource allocation problems, it is natu-
ral to create a value function approximation around the post-decision resource
vector RY (rather than the full state variablg”). A simple value function ap-
proximation is linear in the resource state,

Vi(RY) = Y DR,
acA

We have generally found that linear approximations are too unstable. A much
better approximation uses separable, piecewise linear approximations which we
write generically as

Vi(RY) = Via(RE,),
acA

whereV;,(R%,) is a piecewise linear, scalar function. This approximation has
proven to be very effective for fleet management problems (see [26], [27], and
[25]). These functions can be estimated quite easily by using the dual variables
for constraint (1). Thus, instead of using an estimate of the value of being in
a state, we are using derivatives (or estimates of derivatives). [28] provides a
simple description of an algorithm (the CAVE algorithm) for estimating these
functions. [29] proves that these algorithms are convergent for special problem
classes, and provides comparisons against optimal algorithms to support the
claim that this approach offers very high quality solutions with fast convergence.
Figure 1 provides a detailed description of the steps of the algorithm. The
algorithm is run iteratively, forward in time. At iteration, we follow a partic-
ular sample path, indexed ly”, forward in time, making decisions using the
value function approximatiol," ! (S#) computed in the previous iteration. We
represent the updating of the value function using

[N Viyn—1 gz,n ~n
V< U (VT 820, 07),

whereUV (-) is a general updating strategy. There are numerous ways for per-
forming this updating (in addition to the articles cited above, see the more com-
plete treatment in [30]).

3.2 An adaption for freight car management

The algorithm described in the previous section can be applied almost directly
to the freight car problem. The only adaptation involved the aggregation of the
resource vector in the value function approximation. Section 2.2 describes an
eight-dimensional attribute vector, which was needed to perform such calcula-
tions as computing the contribution function, and simulating the status of each
car. For the value function, we used a three-dimensional attribute capturing lo-
cation, estimated time of arrival and car type. This means that the dual vari-
able for an eight-dimensional attribute vector, denatgdwas used to update a

202 Warren B. Powell and Belgacem Bouzaiene-Ayari

Step 0. Initialization:
Step Oa. Initialize V2, t € 7.
Step Ob. Setn = 1.
Step Oc. Initialize S}.
Step 1. Choose a sample pati'.
Step 2. Dofort =0,1,2,...,T:
Step 2a. Solve:
af = arg max (Co(ST, @) + AV (SM7 (ST @) ™
t
and leto;* be the dual variables of the resource constraint (1).
Step 2b. If ¢ > 0, update the value function:

Vtyil — UV(VtTL_llv txiqvf)?)
Step 2c. Update the states:

Sim = 8MT(SE),

Sy = SMW(SE™ Wit (W™)).

Step 3. Incrementn. If n < N go to Step 1.
Step 4. Return the value functiond’;¥)7_;.

Fig. 1. A generic ADP algorithm using dual variables to update the value function.

separable, piecewise linear value function approximatiQR;,), wherea is
represented using a three-dimensional attribute vector.

Figure 2 illustrates what a subproblem looks like. Cars are assigned to known
orders or to locations, where the value of a location is represented by a piecewise
linear value function approximation. Note that a car may be available (“action-
able”) now or in the future, just as orders may be available to be moved now or
at some point in the future. One problem that myopic models have is that a car
available now may be assigned to an order that does not have to be moved for a
week or more.

The car distribution problem required that we simulate randomness in cus-
tomer demands (the number of orders from a location), transit times, load and
unload times, the destination of an order (which became known only after the
car was loaded) and the acceptability of a car to the shipper. These random vari-
ables were simulated as the system evolved through time.

The freight car management system can be run in three modes: a) as a real-
time system for assigning cars to orders, b) as a short-term forecasting system,
projecting activities over a two or three week period to help with demand man-
agement and fleet planning, and c) as a strategic planning system, which might
be used to evaluate contracts, fleet mix, transit time reliability and customer
behaviors.

Approximate dynamic programming for rail operations 203

Repositioning movements
based on forecasts

Assignmentsto booked
orders.

Fig. 2. The optimization model for cars at time showing assignment of cars to known orders
and to value functions

3.3 An adaptation for locomotives

Modeling locomotives can be handled using the same framework, but locomo-
tives are considerably more complicated. With freight cars, there is a constraint
(equation (2)) that requires that we have one car per order. With locomotives,
several locomotives may be used to move a single train. A train might require,
for example, 13,000 horsepower. A single locomotive might have between 1,750
and 4,400 horsepower. The model has to mix and match locomotives to achieve
at least 13,000 horsepower, but it is possible to assign more horsepower because
the location to which the train is going needs additional locomotives. Locomo-
tives may be “repositioned” either by putting more power than is needed on a
train, or through the use of “light engine moves” which are locomotives moving
without pulling any cars.

Locomotive assignment has to consider other issues. One attribute of a lo-
comotive is the train-ID on which the locomotive arrived. If three locomotives
share the same train-ID, then this means that they are coupled into a “consist
(locomotives have to be connected electrically and hydraulically to ensure that
they move as a common unit). If there are three locomotives in a consist but
we only want one or two of them, then we assess a consist-breakup cost (it

204 Warren B. Powell and Belgacem Bouzaiene-Ayari

Empty miles as a percent of total miles

60%

History

50%

\\\ Basic optimization model (engineering practice)

40%

a0% | With approximate value functions

20% -

10% +

0% T T T T T T T T T T T T T T T
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Iteration

Fig. 3. Empty miles as a percent of total from history, with a myopic optimization model, and
using approximate dynamic programming

also takes time). When we assign power to locomotives, we have to consider
consist-breakup (some authors refer to this as “consist busting”). We also have
to assign locomotives to trains that allow them to arrive at their shop location at

the scheduled time.

As we determine a good set of locomotives to pull a train, we also have to
take into account other requirements such as the need to have a leader-qualified
locomotive, or other special equipment requirements. For example, sometimes a
train moving up a steep grade requires the use of a radio-controlled locomotive
positioned at the middle of the train. That means that one of the locomotives in
the consist has to be equipped with radio power.

4 Experience with freight cars

An operational planning system based on approximate dynamic programming
has been implemented at the Norfolk Southern Railroad, one of the two ma-
jor freight railroads covering the eastern United States. We performed a set of
experiments comparing a myopic model and the solution obtained using ADP
to what was being achieved in history. The results are shown in figure 3. For
this dataset, cars were running 54 percent empty in history. A myopic model

reduced this to 48 percent, a result that is more than enough to justify the cost
of the model. Approximate dynamic programming reduced this to almost 35

percent.

Approximate dynamic programming for rail operations 205

45 4 41

35 30 32
04 5

en
ro
a
~No
[
~No
o=

15 106 12
77

0

Setouts Swaps Nonpreferred Underpowered Overpowered
consists

Fig. 4. Metrics from history and the model, where smaller is better

The freight car system can be run as a real-time assignment system (by
solving the single subproblem at time 0), but its primary use has been to provide
a forecast of activities over a three-week horizon. It can also be used to analyze
history to suggest new routing patterns, or as a strategic planning model to help
determine fleet size and mix, evaluate customers and analyze questions such as
the effect of transit time and transit time reliability on fleet requirements.

5 Experience with locomotives

Figure 4 provides a measure of the performance of the model for one major rail-
road, where we compare the model to history using five different performance
statistics such as setouts (breaking up a consist), swaps (exchanging locomo-
tives between trains, often to get a particular locomotive to a shop) and using
nonpreferred locomotives (the railroad preferred certain types of locomotives
on certain types of trains). We were able to outperform the railroad on all major
performance measures, including such detailed statistics as the productivity of
locomotives while they are being routed to shop.

In 2006, we began development of a second generation locomotive model,
drawing on a number of advances from our first generation model developed
over the 1996-2002 period. Figure 5 illustrates train coverage as the algorithm
adaptively learns the value function for the strategic planning model. The con-
vergence is fast and extremely stable, representing a significant improvement
over our first implementation (we attribute the stability to the use of nonlinear
value function approximations).

206 Warren B. Powell and Belgacem Bouzaiene-Ayari

Coverage
100
98 # ’
96 [
94 I
o 92
? 90
e 4
Q
o 88
86
84
82
80
1 11 21 31 41 51 61 71 81

Iteration

Fig. 5. Train coverage for strategic planning model during the learning process

One of our most difficult lessons has been the high level of detail required
to perform accurate fleet sizing for strategic planning purposes. It is well known
in the railroad modeling community that optimization models routinely recom-
mend significant reductions in the number of locomotives. These “savings” arise
not because of sophisticated algorithms finding optimal solutions, but rather
in the many simplifications that are typically made in a mathematical model.
We found that issues such as consist-breaking, leader locomotives and special
equipment (ranging from radio controllers to coordinate different locomotives to
the requirement for flush toilets in certain regions of the United States) can have
a surprisingly significant impact on fleet sizing. Shop routing, and the proper
handling of freight power, can also have significant impacts on fleet require-
ments.

6 Conclusions

Over 10 years of development with two separate railroads has shown us that we
can handle the high level of complexity required to produce an accurate model
of rail operations. For the car distribution problem, this means handling car at-
tributes such as equipment type, maintenance status and ownership, but most
importantly the complex information processes covering the number of cars be-
ing ordered, the destination of cars (known only after the car is loaded), load,
unload and transit times, and the acceptability of a car. For locomotives, this has
meant handling issues such as consists, horsepower and adhesion, maintenance
status and ownership.

Approximate dynamic programming for rail operations 207

It is well known that these problems cannot be solved optimally, producing
an extensive literature on heuristics. However, these heuristics are typically used
to find near-optimal solutions to simplified models, which invariably underesti-
mate what is required to meet a set of demands (cars or locomotives). In many
applications, the ability to handle uncertainty is important, although our models
are frequently applied to history (which is deterministic). For example, it is not
enough to plan the locomotive fleet size for a perfect schedule where there are
no delays or failures. We have to anticipate that problems will arise, and plan for
them. Approximate dynamic programming easily handles uncertainty, allowing
us to produce robust solutions that will work in field implementations.

References

1. Powell, W.B., Shapiro, J.A., S&@o, H.P.: An adaptive dynamic programming algorithm for
the heterogeneous resource allocation problem. Transportation S8ig(R@02) 231-249
2. Ahuja, R.K,, Liu, J., Orlin, J.B., Sharma, D., Shughart, L.A.: Solving real-life locomotive-
scheduling problems. Transportation ScieB6¢2005) 503-517
3. Glover, F., Kochenberger, G.: Handbook of Metaheuristics. Springer (2003)
4. White, W.: Dynamic transshipment networks: An algorithm and its application to the distri-
bution of empty containers. NetworRg1972) 211-236
5. Herren, H.: Computer controlled empty wagon distribution on the SSB. Rail Internadional
(1977) 25-32
6. Glickman, T., Sherali, H.: Large-scale network distribution of pooled empty freight cars over
time, with limited substitution and equitable benefits. Trans. R@§1985) 85-94
7. Dejax, P., Crainic, T.: A review of empty flows and fleet management models in freight
transportation. Transportation Scier¥(1987) 227-247
8. Crainic, T., Rousseau, J.M.: Multicommodity, multimode freight transportation: A general
modeling and algorithmic framework for the service network design problem. Transportation
Research R0B (1988) 290-297
9. Haghani, A.: Formulation and solution of a combined train routing and makeup, and empty
car distribution model. Transportation Resea28iB (1989) 433—-452
10. Crainic, T.G., Laporte, G.: Planning models for freight transportation. European Journal of
Operational Resear@v (1997) 409-439
11. Cordeau, J.F.,, Toth, P., Vigo, D.: A survey of optimization models for train routing and
scheduling. Transportation Scierg2(1998) 988-1005
12. Holmberg, K., Joborn, M., Lundgren, J.T.: Improved empty freight car distribution. Trans-
portation Scienc82(1998) 163-173
13. Joborn, M.: Optimization of empty freight car distribution in scheduled railways. Ph.D.
thesis, Department of Mathematics, Linkoping University, Sweden (2001)
14. Lingaya, N., Cordeau, J.F., Desaulniers, G., Desrosiers, J., Soumis, F.: Operational car as-
signment at via rail canada. Transportation Reesargb @002) 755-778
15. Joborn, M., Crainic, T.G., Gendreau, M., Holmberg, K., Lundgren, J.T.: Economies of scale
in empty freight car distribution in scheduled railways. Transportation Scig8¢2004)
121-134
16. Mendiratta, V., Turnquist, M.: A model for the management of empty freight cars. Trans.
Res. Rec838(1982) 50-55
17. Jordan, W., Turnquist, M.: A stochastic dynamic network model for railroad car distribution.
Transportation Scienckr (1983) 123-145

208

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Warren B. Powell and Belgacem Bouzaiene-Ayari

Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. In
Monma, C., Magnanti, T., Ball, M., edddandbook in Operations Research and Manage-
ment Scienge/olume onNetworks Amsterdam, North Holland (1995) 141-295

Powell, W.B., Bouzaiene-Ayari, B., Simao, H.: Dynamic models for freight transportation. In
Laporte, G., Barnhart, C., eds.: Handbooks in Operation Research and Management Science:
Transportation. (2006)

Crainic, T., Gendreau, M., Dejax, P.: Dynamic stochastic models for the allocation of empty
containers. Operations Reseadd(1993) 102-126

Ziarati, K., Soumis, F., Desrosiers, J., Solomon, M.: A branch-first, cut-second approach for
locomotive assignment. Management Scie#6¢1999) 1156-1168

Ziarati, K., Soumis, F., Desrosiers, J., Gelinas, S., Saintonge, A.:. Locomotive assignment
with heterogeneous consists at CN North America. European journal of operational research
97(1997) 281-292

Cordeau, J.F., Soumis, F., Desrosiers, J.: A Benders decomposition approach for the loco-
motive and car assignment problem. Transportation Sciaf¢2000) 133-149

Cordeau, J.F., Soumis, F., Desrosiers, J.: Simultaneous assignment of locomotives and cars
to passenger trains. Operations Resedf&{2001) 531-548

Topaloglu, H., Powell, W.B.: Dynamic programming approximations for stochastic, time-
staged integer multicommodity flow problems. Informs Journal on Compui#n@006)

31-42

Godfrey, G., Powell, W.B.: An adaptive, dynamic programming algorithm for stochastic
resource allocation problems I: Single period travel times. Transportation S&61(2@02)

21-39

Godfrey, G., Powell, W.B.: An adaptive, dynamic programming algorithm for stochastic
resource allocation problems II: Multi-period travel times. Transportation ScEH(2002)

40-54

Godfrey, G.A., Powell, W.B.: An adaptive, distribution-free approximation for the newsven-
dor problem with censored demands, with applications to inventory and distribution prob-
lems. Management Sciend& (2001) 1101-1112

Powell, W.B., Ruszchski, A., Topaloglu, H.: Learning algorithms for separable approxi-
mations of stochastic optimization problems. Mathematics of Operations Re2842ti04)
814-836

Powell, W.B.: Approximate Dynamic Programming: Solving the curses of dimensionality.
John Wiley and Sons, New York (2007)

