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Abstract. In this paper we study a general formulation of the train
platforming problem, which contains as special cases all the versions pre-
viously considered in the literature as well as a case study from the Italian
Infrastructure manager that we addressed. In particular, motivated by
our case study, we consider a general quadratic objective function, and
propose a new way to linearize it by using a small number of new vari-
ables along with a set of constraints that can be separated efficiently by
solving an appropriate linear program. The resulting integer linear pro-
gramming formulation has a continuous relaxation that leads to strong
bounds on the optimal value. For the instances in our case study, we
show that a simple diving heuristic based on this relaxation produces so-
lutions that are much better than those produced by a simple heuristic
currently in use, and that often turn out to be (nearly-)optimal.

1 Introduction

The objective of train platforming, which is the routing problem that generally
follows any timetabling phase, is to find an assignment of trains to platforms in
a railway station. The practical relevance of the problem inspired the definition
of a few different versions, which are relatively easy for small contexts, i.e.,
stations with very few platforms and alternative paths to route the trains, but
become extremely difficult when applied to complex railway station topologies
such as those associated with the main European stations, leading to instances
with hundreds of trains and tens of platforms. Moreover, most versions are not
concerned with the station topology and ignore the routing phase, whereas the
main European stations frequently have complex topologies and the routing issue
can be quite a complicated task.

A main station typically has several external lines (also called corridors,
generally with two tracks) connecting it to other main stations; these lines are
called directions in our context. Moreover, there are several points at which a
train may stop within the station to download/upload passengers and/or goods;
these points are called platforms in our context, and can be of different type and
length, some being dead-end and some being through-platforms. The connection
between directions and platforms is achieved by internal lines, called paths in
our context, which define a route within the station linking a given direction to
a given platform. Arrival paths can be used to go from an arrival direction to
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a platform, departure paths can be used to go from a platform to a departure
direction, and two-way paths can be used for both purposes.

Moreover, depending on the particular context, there may be other con-
straints or preferences due to the particular station layout, safety or signalling
requirements, operating or marketing policy. The problem aims at defining for
each train the platform where it will stop and the corresponding arrival and
departure paths, while ensuring that all the constraints are satisfied and mini-
mizing the deviation from some specified “desired” arrival/departure times and
stopping platforms for each train.

In this paper, we propose a general formulation of the problem, along with
an Integer Linear Programming (ILP) formulation whose Linear Programming

(LP) relaxation is used to drive a heuristic that turns out to widely outperform
a simple heuristic currently in use for the instances in our case study. Our main
contribution is to consider a general quadratic objective function, given that
the objective function is indeed quadratic in our case study, and to propose an
efficient way to linearize it by using a small number of new variables along with
a set of constraints that can be separated efficiently by solving an appropriate
LP.

1.1 Literature Review

In the following, we try to give a very quick but comprehensive view of the
existing work, referring to the survey by Caprara et al. [2] for a more detailed
description. As it is often the case with this type of problems, every reference
generally considers a different version, making it difficult to compare the pro-
posed methods. The easiest version is the one considered by De Luca Cardillo
and Mione [4] and Billionet [1], who address a simplified version in which, for
each train, the scheduled arrival and departure times cannot be changed and the
paths used to route the trains within the station are uniquely determined by the
choice of the platform. A more general version of the problem, in which arrival
and departure times and arrival and departure routes are not fixed a priori is
addressed in Zwaneveld [7], Zwaneveld et al. [9], Zwaneveld et al. [8], Kroon et
al. [6]. Finally, the version addressed in Carey and Carville [3] is an intermediate
one, in that arrival and departure times can be changed, but the assignment of
a train to a platform uniquely determines the routes that the train will follow
on its way to and from the platform.

1.2 The General Problem Considered

In this paper, we deal with a fairly general version of the problem, referred to
in the sequel as the Train Platforming Problem (TPP). The specific versions
previously considered in the literature, as well as the version of our case study,
are special cases of TPP.

The input to the problem is a timetable for a set of trains with complete
service details, i.e. train number, arrival and departure times and directions.
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In the following we will use the concept of pattern for a train t corresponding
to a stopping platform, an arrival and a departure path connecting respectively
the arrival and departure direction of train t to the given platform and a time
interval of occupation of the platform, implicitly defined by the variation on the
arrival and departure time specified in the timetable.

In this general version, we are given a set B of platforms, a set T of trains
to be routed to a platform, and, for each train t ∈ T , a collection Pt of possible
patterns. For convenience, let T 2 := (T × T ) \ {(t, t) : t ∈ T} denote the set of
pairs of distinct trains.

Operational constraints forbid the assignment of patterns to trains if this
implies occupying the same platform at the same time, or also using routes
that intersect at the same time or too close in time. In the general version,
this is represented by defining a pattern-incompatibility graph with one node
for each train-pattern pair (t, P ), with P ∈ Pt, and an edge joining each pair
(t1, P1), (t2, P2) of incompatible patterns.

TPP requires the assignment of a pattern P ∈ Pt to each train t ∈ T so that
no two incompatible patterns are assigned and the quadratic objective function
defined by the following coefficients is minimized. There are a cost cb for each
platform b ∈ B that is used in the solution, a cost ct,P associated with the
assignment of pattern P ∈ Pt to train t ∈ T , and a cost ct1,P1,t2,P2

associated
with the assignment of pattern P1 ∈ Pt1 and the assignment of pattern P2 ∈ Pt2

to train t2 for (t1, t2) ∈ T 2.
A key issue of our approach is to avoid, in the model formulation, the canoni-

cal approaches to linearize the objective function, e.g., by introducing additional
binary variables to represent the product of the original binary variables — the
number of these variables would be very large and the resulting LP relaxation
fairly weak. This will be illustrated in detail in the following.

For the applications we are aware of, including our case study, the overall
number of patterns

∑

t∈T |Pt| allows us to handle explicitly all of them. The
model that we will present is valid even if this is not the case. As to the solution
approach, we will illustrate it assuming the explicit list of patterns is given. If
this is not the case, the applicability of the method strongly depends on the
specific way in which patterns are described implicitly, indeed in the column
generation phase we would need to solve a pricing porblem whose nature is
directly connected to the description of the patterns.

1.3 The Italian Case

The instances in our benchmark come from Rete Ferroviaria Italiana, the Italian
Infrastructure Manager. The resulting problem is the special case of TPP with
the following characteristics.

It is important to notice that time is discretized considering the minutes in
a day, thus time instants are always integer values in the range [1,1440].

The set B of platforms includes regular platforms, corresponding to platforms
that one foresees to use, and dummy platforms, corresponding to platforms that
one would like not to use but that may be necessary to find a feasible solution.
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Besides sets T and B, we also have a set D of directions for train arrivals
and departures and a collection R of routes, called paths, connecting directions
to platforms. Some of these directions are associated with shunting areas for
the trains that begin/end at the station. For each direction d ∈ D, we have a
travel time gd for all paths connecting d to any platform (independent of the
specific path, platform, and train). Moreover, for each ordered pair (d1, d2) ∈
D×D corresponding to arrival direction d1 and departure direction d2, the input
specifies a preference list Ld1,d2

⊆ B of preferred platforms for all trains that
arrive from direction d1 and depart to direction d2.

For each direction d ∈ D and platform b ∈ B, we have a (possibly empty)
set Rd,b ⊆ R of paths linking direction d to platform b. Specifically, we have
Rd,b = Ra

d,b ∪Rd
d,b, where the paths in Ra

d,b are arrival paths to get from d to b

and Rd
d,b are departure paths to get from b to d. Note that we may have two-way

paths in case Ra
d,b ∩Rd

d,b 6= ∅. For each path R ∈ R, we are given a list IR ⊆ R
of incompatible paths, these are paths crossing each other at one or more points.
(In particular, a path R is always incompatible with itself.)

Each train t ∈ T has an associated ideal arrival time ua
t at a platform, along

with a maximum arrival shift sa
t , and an associated ideal departure time ud

t

from the platform, along with a maximum departure shift sd
t , meaning that the

train must arrive to a platform in the interval [ua
t − sa

t , u
a
t + sa

t ] and depart in
the interval [ud

t − sd
t , ud

t + sd
t ]. Moreover, each t ∈ T has an associated arrival

direction da
t ∈ D, a departure direction dd

t ∈ D and a set Ct ⊆ B of candidate
platforms where it may stop, corresponding to the platforms for which there
exist at least two paths linking respectively the arrival and departure directions
of t to the given platform. I.e., Ct = {b ∈ B : Ra

da
t
,b 6= ∅,Rd

dd
t
,b
6= ∅}.

A pattern P ∈ Pt is defined by a platform b ∈ Ct, an arrival path Ra ∈ Ra
da

t
,b,

a departure path Rd ∈ Rd
dd

t
,b
, and the corresponding actual arrival time va

t ∈

[ua
t −sa

t , u
a
t +sa

t ] and actual departure time vd
t ∈ [ud

t −sd
t , ud

t +sd
t ]. Conventionally,

the pattern occupies platform b for the interval [va
t − h, vd

t + h], where h is a
buffer time called headway introduced for safety reasons. Moreover, the pattern
occupies arrival path Ra for the interval [va

t − gda
t
, va

t ] and the departure path

Rd for the interval [vd
t , vd

t + gdd
t

], recalling the travel times defined above.

As we have just pointed out the arrival and departure times are always ex-
pressed in (an integer number of) minutes, which strongly limits the total number
of patterns. Moreover, the problem is periodic with period 1440 minutes (one
day), and therefore all times should be considered modulo this period. Neverthe-
less, given that all occupation times are much smaller than 1440, it is easier for
the reader to imagine a linear time window, for which everything is equivalent
(except when it comes to the usual boring implementation details).

Two patterns P1 ∈ Pt1 and P2 ∈ Pt2 are incompatible if either their platform
occupation intervals overlap for a time window of duration > 0 or if they occupy
incompatible paths for a time window of duration > π, where π is a so-called
threshold. Note that there may be two disjoint time windows in which P1 and P2

occupy incompatible paths (e.g., one time window associated with incompatible
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arrival paths and one associated with incompatible departure paths), and in this
case P1 and P2 are incompatible if and only if the largest duration between the
two time windows is > π.

For each dummy platform b, we have infinite two-way paths for each direction
d ∈ D, all of which are compatible with each other, meaning that the only
incompatibilities between trains stopping at b are related with the occupation of
platform b itself (still associated with headway h), as the trains can always use
compatible arrival and departure paths.

The objective function is computed by using the following coefficients, for
which we also report the numerical values to give an idea of their relative im-
portance: α1 = 1000, α2 = 100000, α3 = 1, α4 = 100, α5 = 10000, α6 = 5.

Each platform cost is given by cb = α1 if b is a regular platform, and cb = α2

if b is a dummy platform (in other words the cost for using a dummy platform
is two orders of magnitude larger than the cost for using a regular platform).

Each coefficient ct,P is given by α3 · pt · sP , where pt is a train priority value
given in input and sP is the total shift of pattern P (counting both the arrival
and departure shifts), plus α4 if pattern P stops at a regular platform not in the
preference list Lda

t
,dd

t

, plus α5 if, instead, the pattern stops at a dummy platform.
Finally, each coefficient ct1,P1,t2,P2

is given by α6 · pt1 · pt2 · wP1,P2
, where pt

is again the train priority and wP1,P2
is the sum of the durations of the (up to

two, see above) time windows in which P1 and P2 occupy incompatible paths.

2 An ILP Formulation

In this section we present an ILP model for the general version of TTP that we
consider. The model is mostly standard, but the quadratic term in the objective
function is modelled in a non-standard (although fairly simple) way that makes
it possible to handle the large-size instances that we encountered in our case
study.

The most straightforward 0-1 quadratic programming formulation of the
problem, using a binary variable yb for each b ∈ B, indicating whether plat-
form b is used, and a binary variable xt,P for each t ∈ T and P ∈ Pt, indicating
whether train t is assigned pattern P , is the following:

min
∑

b∈B

cbyb +
∑

t∈T

∑

P∈Pt

ct,P xt,P +
∑

(t1,t2)∈T 2

∑

P1∈Pt1

∑

P2∈Pt2

ct1,P1,t2,P2
xt1,P1

xt2,P2

(1)
subject to

∑

P∈Pt

xt,P = 1, t ∈ T, (2)

∑

(t,P )∈K

xt,P ≤ yb, K ∈ Kb, (3)

∑

(t,P )∈K

xt,P ≤ 1, K ∈ K, (4)
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yb, xt,P ∈ {0, 1}, b ∈ B, t ∈ T, P ∈ Pt, (5)

where Kb is the collection of cliques in the pattern-incompatibility graph asso-
ciated with sets of patterns that use platform b at the same time, and K is the
whole collection of cliques in the pattern-incompatibility graph. Constraints (2)
guarantee that each train is assigned a pattern, constraints (3) impose that at
most one train at a time occupies a given platform b, and if this ever happens
that variable yb takes the value 1, and constraints (4) forbid the assignment of
patterns that are pairwise incompatible.

2.1 A Convenient Version of the Clique Inequalities

We first discuss how to modify constraints (3) and (4), whose number is expo-
nential in the number of patterns, so that they can be handled in practice. First
of all, each clique in Kb corresponds to a set of intervals (associated with the
platform occupation) that intersect pairwise. It is well known from the basic the-
ory of interval graphs that each maximal clique is defined by an interval starting
at point j together with all the intervals [l, k] with l ≤ j and k > j. Therefore,
the number of maximal cliques cannot be larger than the number of intervals. In
our case, letting Jb denote the set of instants associated with the beginning of
the occupation of platform b by a pattern, and K(b, j) ⊆ K the set of patterns
that occupy platform b for an interval [l, k] with l ≤ j and k > j, we have the
following alternative version of constraints (3):

∑

(t,P )∈K(b,j)

xt,P ≤ yb, b ∈ B, j ∈ Jb, (6)

whose number is
∑

b∈B |Jb| and thus can be easily enumerated.
As to constraints (4), they are in general hard to separate. However, if we

restrict attention to cliques in K containing patterns of two trains only, we
get a family of relaxed constraints that are still strong enough to be useful in
practice (besides sufficing to define a model) and can be separated efficiently
(provided the explicit list of all patterns is known), as explained in the next
section. Given two trains t1 and t2, we let K(t1, t2) ⊆ K denote the collection
of cliques containing only incompatible patterns in Pt1 ∪ Pt2 and define the
following alternative version of constraints (4):

∑

(t1,P1)∈K

xt1,P1
+

∑

(t2,P2)∈K

xt2,P2
≤ 1, (t1, t2) ∈ T 2, K ∈ K(t1, t2). (7)

2.2 Linearizing the Objective Function

We finally illustrate how we linearize the quadratic term in the objective function
(1). The textbook approach to linearization amounts to introducing additional
binary variables zt1,P1,t2,P2

that are forced, by linear constraints, to be one if
xt1,P1

= xt2,P2
= 1. The number of z variables is in this case very large and
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the resulting LP relaxation fairly weak. On the other hand, the following lin-
earization method requires a much smaller number of variables and leads to
provably stronger linear programming relaxations. We introduce the

(

|T |
2

)

addi-
tional continuous variables wt1,t2 for (t1, t2) ∈ T 2, each representing the term
∑

P1∈Pt1

∑

P2∈Pt2

ct1,P1,t2,P2
xt1,P1

xt2,P2
. This leads to the linear objective func-

tion:

min
∑

b∈B

cb yb +
∑

t∈T

∑

P∈Pt

ct,P xt,P +
∑

(t1,t2)∈T 2

wt1,t2 . (8)

We now show how to link the new w variables with the old ones, by first
discussing how to do it in general and then illustrating it through an example,
to which the reader may refer while reading the general description.

An elementary link between the x and the w variables could be expressed by
the linear constraints:

wt1,t2 ≥ ct1,P1,t2,P2
(xt1,P1

+ xt2,P2
− 1), (t1, t2) ∈ T 2, P1 ∈ Pt1 , P2 ∈ Pt2 ,

(9)
which would however lead to a model equivalent to the textbook one with the z

variables mentioned above. Instead, we can define the following stronger inequal-
ities to bound the w variables from below. Taking into account the assignment
constraints (2) and observing that there are up to |Pt1 ||Pt2 | possible values for
wt1,t2 , we can consider the simple polyhedron in R

|Pt1
|+|Pt2

|+1 corresponding to
the convex hull of the |P

1
||Pt2 | possible values taken at the same time by vectors

(xt1,P1
)P1∈Pt1

, (xt2,P2
)P2∈Pt2

and by variable wt1,t2 in a solution:

Qt1,t2 := conv{(eP1
, eP2

, ct1,P1,t2,P2
) : P1 ∈ Pt1 , P2 ∈ Pt2}, (10)

where, with a slight abuse of notation, for i = 1, 2, we let ePi
denote the binary

vector in R
|Pi| with the Pi-th component equal to 1 and all other components

equal to 0.
Among the valid inequalities for Qt1,t2 , we are interested in those of the form

wt1,t2 ≥
∑

P1∈Pt1

αP1
xt1,P1

+
∑

P2∈Pt2

βP2
xt2,P2

− γ. (11)

We let Ft1,t2 ⊆ R
|P

1
|+|Pt2

|+1 be the collection of vectors (α, β, γ) such that
inequality (11) is valid for Qt1,t2 and not dominated by other valid inequalities.

Example 1. Consider the very simple case in which Pt1 = {P1, P3}, Pt2 =
{P2, P4}, ct1,P1,t2,P2

= 5, ct1,P1,t2,P4
= 3, ct1,P3,t2,P2

= 2, ct1,P3,t2,P4
= 6. In

this case, the “weak” inequalities (9) have the form:

wt1,t2 ≥ 5xt1,P1
+ 5xt2,P2

− 5,

wt1,t2 ≥ 3xt1,P1
+ 3xt2,P4

− 3,

wt1,t2 ≥ 2xt1,P3
+ 2xt2,P2

− 2,

wt1,t2 ≥ 6xt1,P3
+ 6xt2,P4

− 6.
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We have

Qt1,t2 = conv{(1, 0, 1, 0, 5), (1, 0, 0, 1, 3), (0, 1, 1, 0, 2), (0, 1, 0, 1, 6)}

and the “strong” non-dominated inequalities (11), found by enumerating the
facets of Qt1,t2 , read:

wt1,t2 ≥ 5xt1,P1
+ 2xt1,P3

+ 5xt2,P2
+ 3xt2,P4

− 5,

wt1,t2 ≥ 3xt1,P1
+ 3xt1,P3

+ 2xt2,P2
+ 3xt2,P4

− 3,

wt1,t2 ≥ 3xt1,P1
+ 2xt1,P3

+ 3xt2,P2
+ 3xt2,P4

− 3,

wt1,t2 ≥ 2xt1,P1
+ 2xt1,P3

+ 2xt2,P2
+ 2xt2,P4

− 2,

wt1,t2 ≥ 3xt1,P1
+ 6xt1,P3

+ 2xt2,P2
+ 6xt2,P4

− 6,

meaning Ft1,t2 = {(5, 2, 5, 3, 5), (3, 3, 2, 3, 3), (3, 2, 3, 3, 3), (2, 2, 2, 2, 2), (3, 6, 2, 6, 6)}.

2.3 The Final ILP Model

To summarize, the ILP formulation that we use has objective function (8) and
constraints (2), (5), (6), (7), and:

wt1,t2 ≥
∑

P1∈Pt1

αP1
xt1,P1

+
∑

P2∈Pt2

βP2
xt2,P2

−γ, (t1, t2) ∈ T 2, (α, β, γ) ∈ Ft1,t2 .

(12)

3 Solution of the LP Relaxation

As is often the case for the ILP formulations whose LP relaxations yield strong
bounds on the optimal integer value, the ILP formulation of the previous section
has a large number of variables and constraints. We adopt a canonical approach
in which we work with a reduced current LP with all the y and w variables and
a subset of the x variables, and all constraints (2) and (6) and only a subset
of constraints (7) and (12). Variables and constraints are added dynamically as
follows, taking into account the fact that in our case study (as well as in the
other TPP case studies we are aware of) all patterns can be listed explicitly,

3.1 Variable Pricing

We check if there are negative-reduced-cost x variables to be added to the cur-
rent LP by explicitly computing all the reduced costs. This is conceptually easy
but not entirely trivial since the constraints that are present in the current LP
are defined only with respect to the x variables that are present. Consequently,
computation of the reduced cost of a variable xt,P requires determining the co-
efficients of this variable for the constraints in the current LP. This is immediate
for constraints (2), the coefficient being 1 for the constraint associated with train
t, and (6), the coefficient being 1 for all constraints associated with the platform
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b at which pattern P stops and with instants j ∈ Jb ∩ [l, k], where [l, k] is the
platform occupation interval of pattern P .

As to constraints (7) and (12), there are several (in general, exponentially
many) ways to extend them to include also the x variables that are not in the
current LP. For the purpose of pricing, it is easy to check that one can consider,
for each variable xt,P and for each of these constraints, the maximum possible
coefficient for the variable in an extension of the constraint.

Specifically, for each constraint (7), the maximum possible coefficient of vari-
able xt,P is 1 if and only if t1 = t and (t, P ) is incompatible with all (t2, P2) ∈ K

or t2 = t and (t, P ) is incompatible with all (t1, P1) ∈ K. Otherwise, the coeffi-
cient is necessarily 0.

Moreover, for each constraint (12), the coefficient of variable xt,P can clearly
be positive only if t1 = t or t2 = t. Assuming t = t1, and letting P ′

t2
be the

set of patterns associated with variables xt2,P2
in the current LP, the maximum

possible coefficient for xt,P in the constraint is given by

min
P2∈P′

t2

ct,P,t2,P2
+ γ − βP2

.

3.2 Separation of Constraints (7)

Given that all patterns associated with the same train are pairwise incompatible
due to constraints (2), the pattern-incompatibility graph with nodes correspond-
ing to the patterns in Pt1 ∪ Pt2 turns out to be the complement of a bipartite

graph, with the two sides of the bipartition (of the complement) corresponding
to the patterns in Pt1 and those in Pt2 , respectively.

Therefore, separation of constraints (7) calls for the separation of clique in-
equalities on the complement of a bipartite graph, or, equivalently, to the sep-
aration of stable set inequalities on a bipartite graph. This in turn corresponds
to the determination of a maximum-weight stable set in a bipartite graph (with
weight x∗

ti,P
for each node (ti, P ), i = 1, 2, where y∗, x∗, w∗ is the current LP

solution), which is well-known to be a minimum s, t-cut problem on a directed
network with source s, terminal t, and the other nodes corresponding to the
nodes in the bipartite graph.

3.3 Separation of Constraints (12)

The separation of constraints (12) is done by a sort of “polyhedral brute force”,
given that, for each pair of trains t1, t2, the number of vertices in Qt1,t2 is
“small”. Specifically, Qt1,t2 has |Pt1 ||Pt2 | vertices and lies in R

|Pt1
|+|Pt2

|+1, we
can separate over it by solving the following LP with |Pt1 ||Pt2 | variables and
|Pt1 | + |Pt2 | + 1 constraints.

Recall the form of the vertices of Qt1,t2 given in its definition (10). Let
y∗, x∗, w∗ be the current LP solution. We have that the vector ((x∗

t1,P1
)P1∈Pt1

,

(x∗
t2,P2

)P2∈Pt2
, wt1,t2) belongs to Qt1,t2 if and only if it can be expressed as a con-

vex combination of its vertices, i.e., letting λP1,P2
be the multiplier associated
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with vertex (eP1
, eP2

, ct1,P1,t2,P2
), there exists a solution to the linear system:

x∗
t1,P1

=
∑

P2∈Pt2

λP1,P2
, P1 ∈ Pt1 , (13)

x∗
t2,P2

=
∑

P1∈Pt1

λP1,P2
, P2 ∈ Pt2 , (14)

1 =
∑

P1∈Pt1

∑

P2∈Pt2

λP1,P2
, (15)

w∗
t1,t2

=
∑

P1∈Pt1

∑

P2∈Pt2

ct1,P1,t2,P2
λP1,P2

, (16)

λP1,P2
≥ 0, P1 ∈ Pt1 , P2 ∈ Pt2 . (17)

Applying Farkas’ Lemma, and letting αP1
, βP2

, γ′ and ε be the dual variables
associated with constraints (13), (14), (15) and (16), respectively, we have that
the linear system (13)–(17) has a solution if and only if the optimal value of the
following LP is zero:

max
∑

P1∈Pt1

αP1
x∗

t1,P1
+

∑

P2∈Pt2

βP2
x∗

t2,P + γ′ + ε w∗
t1,t2

(18)

subject to

αP1
+ βP2

+ γ′ + ε ct1,P1,t2,P2
≤ 0, P1 ∈ Pt1 , P2 ∈ Pt2 . (19)

In other words, the vector does not belong to Qt1,t2 if and only if the optimal
value of LP (18)–(19) is positive (in fact, infinity). Given that we are interested
in separating constraints of the form (12), it is easy to check that we can replace
“=” by “≥” in constraints (15) and (16), leading to γ′, ε ≤ 0, and then add the
normalization condition ε = −1 and replace γ′ by γ := −γ′ — in this way the
objective function (18) calls exactly for the determination of the constraint (12)
that is violated by the largest amount. Then, for each (t1, t2) ∈ T 2, we separate
constraints (12) by solving LP (18)–(19) after the small changes above.

4 Overall Method and Experimental Results

In this section we describe our solution approach TPP, whose main component
is the solution of the LP relaxation of the ILP model of Sect. 2 by the method
in Sect. 3. Moreover, we illustrate the results obtained for our case study.
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4.1 A Branch-and-Bound Method

Our overall method is a branch-and-bound method in which branching is aimed
at quickly finding a “good” heuristic solution. This makes it essentially a canon-
ical diving heuristic that, rather than terminating at the end of the “dive”,
continues as a regular branch-and-bound method until optimality is proved (or
the time limit is reached).

Specifically, given the optimal LP solution y∗, x∗, w∗, if x∗ is integer this is
also the optimal ILP solution of the current branch-and-bound problem (defined
as the original ILP with the addition of the branching constraints, see below).
Otherwise, we select the variable xt,P which is not fixed by branching constraints
and whose value x∗

t,P is closest to 1 (possibly it is 1). We generate two problems
by imposing, respectively, the branching constraints xt,P = 1 and xt,P = 0, and
explore the first problem generated before the second, in a depth-first fashion.
(Note that, if x∗

t,P = 1, there is no need to solve again the LP relaxation of
the first problem.) The first backtracking occurs when the we have an integer
solution for a problem for which the branching constraints have fixed xt,P = 1
for the x components with largest LP value encountered. Until this backtracking,
the method is a basic textbook diving heuristic.

The solution of the LP relaxation in the problems after the original root

one is still carried out by pricing and separation, which makes the method a
branch-and-cut-and-price one.

4.2 Implementation Details

Our method was implemented in ANSI C and tested on a PC Pentium 4, 3.2
GHz, with a 2 GB RAM.

For the root problem, we initialize the current LP with the x variables corre-
sponding to the |T | patterns selected by an elementary greedy heuristic, which
considers the trains by decreasing values of the train priority (defined for our
case study, see Sect. 1.3) and, for each train, chooses the pattern that is com-
patible with the patterns already chosen and leads to the smallest increase in
the objective function.

The solution of the current LPs is done by using ILOG CPLEX 9.0. Given
the solution of each current LP, we perform pricing by finding, for each train,
the pattern with most negative reduced cost. If any patterns are found, we add
them to the current LP and solve it by primal simplex. Otherwise, i.e., if there
is no pattern with negative reduced cost, we separate constraints (7) by solving
the minimum s, t-cut problem by an implementation of the method of [5], for
each pair (t1, t2) ∈ T 2. If any violated constraints (7) are found, we add them to
the current LP and solve it by dual simplex. Otherwise, we separate constraints
(12) by solving the LP defined in Sect. 3.3, again for each pair (t1, t2) ∈ T 2 and
by using ILOG CPLEX 9.0. If any violated constraints (12) are found, we add
them to the current LP and solve it by dual simplex. Otherwise, the LP for the
current branch-and-bound problem is solved.
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4.3 Experimental Results for the Case Study

Table 1. Instance characteristics

instance station name |T | |B| |D| |R| # inc. gmax

d

PA C.LE. Palermo Centrale 204 11 4 64 1182 3
GE P.PR. Genova Piazza Principe 127 10 4 174 7154 4
BA C.LE. Bari Centrale 237 14 5 89 1996 4

Table 1 summarizes the characteristics of the instances used in our case
study, reporting the instance name, the full name of the corresponding station,
the numbers of trains (|T |), platforms (|B|), directions (|D|), and paths (|R|),
the number of pairs of incompatible paths (# inc.), and the maximum travel
time (gmax

d := maxd∈D gd).

Table 2. Results

instance π HEUR LP BEST time

PA C.LE. 0 749012 334038 449044 200
PA C.LE. 1 410139 10159 120155 230
PA C.LE. 2 380182 10159 10172 339

GE P.PR. 0 745000 306020 306020* 115
GE P.PR. 1 705005 147069 147079 281
GE P.PR. 2 458065 8116 8116* 4617
GE P.PR. 3 336340 8116 8116* 13647

BA C.LE. 0 1576300 653264 808255 350
BA C.LE. 1 1398330 373486 438685 262
BA C.LE. 2 1197485 128896 148867 359
BA C.LE. 3 838235 8885 8924 270

In Table 2 we compare the solution obtained by a (computationally very
fast) greedy randomized heuristic algorithm currently used by Rete Ferroviaria
Italiana with the the best integer solution produced by our approch with a time
limit of 24 hours. For the instances considered, we tested various values of the
dynamic threshold π, whose meaning is illustrated in Sect. 1.3. In the table, we
report the value of π, the solution value found by the heuristic currently used
(HEUR), the optimal value of the LP relaxation at the root problem (LP), the
best heuristic solution value found by our method (BEST) — a “*” means that
the solution is optimal, and the computing time in seconds at which this solution
was found (time).

The table shows that in all cases our approach was able to improve signifi-
cantly over the heuristic solution, in most cases finding the best solution after
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a fairly small running time (some minutes). In 3 out of 11 cases the solution is
provably optimal, in other 3 cases the relative gap between the solution value
found and the LP lower bound is less than 1%, whereas in the remaining 5 cases
the gap is not negligible, ranging from about 15% to the huge gap for PA C.LE.
with π = 1, for which we do not know if the dummy platform that is used by
the best solution found is really necessary.

The main practical impact of our approach, if applied in place of the simple
heuristic currently in use, is to extend the current “capacity” of the stations
considered, using a smaller number of platforms for the current trains and then
allowing new trains to stop at the station (if the capacity along the lines associ-
ated with the directions allows this.)

Future experiments will be devoted to testing our method on the largest
stations of the Italian railway network, such as Milano Centrale.
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