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Abstract. The optimal track allocation problem (OPTRA) is to find,
in a given railway network, a conflict free set of train routes of maximum
value. We study two types of integer programming formulations for this
problem: a standard formulation that models block conflicts in terms of
packing constraints, and a novel formulation of the ‘extended’ type that
is based on additional ‘configuration’ variables. The packing constraints
in the standard formulation stem from an interval graph and can there-
fore be separated in polynomial time. It follows that the LP-relaxation
of a strong version of this model, including all clique inequalities from
block conflicts, can be solved in polynomial time. We prove that the
LP-relaxation of the extended formulation can also be solved in poly-
nomial time, and that it produces the same LP-bound. Albeit the two
formulations are in this sense equivalent, the extended formulation has
advantages from a computational point of view. It features a constant
number of rows and is amenable to standard column generation tech-
niques. Results of an empirical model comparison on mesoscopic data
for the Hanover-Fulda-Kassel region of the German long distance rail-
way network involving up to 570 trains are reported.

Key words: track allocation, train timetabling, integer programming, column
generation

1 Introduction

Routing trains in a conflict-free way through a network of tracks is one of the
basic and at the same time most difficult questions in railway scheduling. The
need to coordinate the use of shared infrastructure and the complex operation of
this infrastructure using switches and signals impose a great variety of technical
constraints, that give rise to a complex problem in which many factors have to
be considered simultaneously, see Huisman et al. [2005] and Caprara et al. [2007]
for comprehensive surveys.

We consider in this paper the track allocation problem to simultaneously
determine a set of routes for individual trains through a network. These routes
have to be conflict-free in the sense that the headway between two trains on the
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same track must be large enough for safety reasons. Degrees of freedom include
the implementation or omission of a route, the choice of a path through the
network, and adjustments of departure and arrival times. The goal is to maximize
a sum of proceedings associated with each scheduled route. The problem comes
up in an auctiong approach to railway track capacity, see Borndörfer et al. [2006].

The track allocation problem is equivalent to the train timetabling problem,
see Brännlund et al. [1998], Caprara et al. [2001], and Caprara et al. [2002]. The
solution of a track allocation problem defines a timetable, which, however, is in
general not periodic. This is a big difference to timetabling by periodic event
scheduling, see the thesis of Liebchen [2006] for an extensive survey.

The track allocation problem is further related to the train platforming prob-
lem, which also deals with conflict-free routings in stations, but adds parking
in sidings, see Kroon et al. [2007]. This problem is usually studied at a much
finer level of detail with respect to the infrastructure than the track allocation
problem, which is generally considered on macroscopic networks.

Among the earliest theoretical optimization approaches to track allocation
problems are integer programming formulations that model train routes as paths
in appropriate networks. As early as 1956, Charnes & Miller [1956] propose a
set covering formulation, in which ‘crew and engine packages’ are assigned to
circular routes in a railway network; the model is solved with what we would
call today a column generation procedure.

Set packing versions of this formulation, which can rule out block conflicts
between train routes, have been proposed and studied by a number of authors
including Brännlund et al. [1998], Caprara et al. [2001], Caprara et al. [2002],
Borndörfer et al. [2006], Cacchiani et al. [2007] and Cacchiani [2007]. The main
difficulty with this type of formulation is that it contains a very large number of
constraints which makes these models computationally hard, if not intractable,
beyond a certain size.

We propose in this article a novel formulation for train routing in an at-
tempt to resolve this difficulty. Our formulation is of the ‘extended’ type; it
rules out conflicts between trains using additional ‘configuration’ variables. It
can be shown that such a model is equivalent to a strong version of the standard
packing model (including all clique constraints from conflicts) with respect to
both quality and computational complexity of the LP-bound. From a practical
point of view, the extended model has the advantage that it is amenable to stan-
dard column generation techniques and therefore well suited to solve large-scale
problems.

The article is organized as follows. Section 2 gives a formal statement of
the optimal track allocation problem. For the sake of clarity of exposition, we
concentrate here on a basic version that considers a very simple type of conflicts
between trains that we call ‘block conflicts’. Packing IP-formulations for the
track allocation problem are studied in Section 3.1. We show that block conflicts
arise from an interval graph, that cliques from block conflicts can be separated
in polynomial time, and that the LP-relaxation of a packing model including all
such clique constraints can be solved in polynomial time. Section 3.2 introduces
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our extended formulation. We show that the pricing problem for configuration
variables can be solved by computing a longest path in an appropriately defined
acyclic digraph, and that the LP-relaxation of the extended model can also be
solved in polynomial time. Section 3.3 compares both models analytically; it
turns out that they produce the same LP-bound. The final Section 4 contains a
computational model comparison on data for the Hanover-Kassel-Fulda part of
the long distance network of the German railway company Deutsche Bahn AG
with up to 570 trains.

2 The Optimal Track Allocation Problem

The optimal track allocation problem, also known as the train routing problem or
the train timetabling problem, can be formally described as follows. We are given
a set I of requests to route trains in a train routing digraph D = (V, A); we allow
that D contains multiple arcs between two nodes. D is based on an infrastructure
digraph G = (S, J), whose nodes and arcs model stations and tracks, respectively.
The train routing digraph is a time expansion of the infrastructure digraph, i.e.,
the nodes of D model possible departures and arrivals of trains at stations
at certain points in time, the arcs possible timetabled trips of specific trains.
Formally, we associate with each node v ∈ V a station s(v) ∈ S and a discrete
time t(v) ∈ Z. An arc uv ∈ A models a trip on track s(u)s(v) ∈ J for a
train i(uv) ∈ I, which departs at time t(u) and arrives at time t(v); we assume
t(u) < t(v) for all trips uv ∈ A such that D is acyclic. We associate with train
i ∈ I the trips Ai := {a ∈ A : i(a) = i} ⊆ A that this train can run and the
individual train routing digraph Di := (V, Ai) ⊆ D, which we assume to contain
two special (if need be artificially constructed) nodes si and ti, called source and
sink, that represent the departure and the arrival of train i; we therefore assume
δ−i (si) = δ+

i (ti) = ∅ (where δ−(v) denotes the set of arcs entering v ∈ V , δ+(v)
the set of arcs leaving v ∈ V , and δ±i (U) := δ±(U) ∩ Ai, ∀U ⊆ V ), and denote
Ui := V \ {si, ti}. A route for train i is an siti-path in Di. Denote the set of
all routes for train i by Pi, and the set of all possible routes by P (let P be
the disjoint union of the sets Pi, i.e., we distinguish identical routes for different
trains). Figure 1 illustrates this construction.

We say that an arc uv ∈ A occupies or blocks its associated track s(u)s(v) for
the time interval [t(u), t(v)−1], and that there is a block conflict between two arcs
u1v1 and u2v2 on the same track if their track occupation time intervals overlap,

symbol description symbol description

S stations G = (S, J) infrastructure digraph
J tracks D = (V,A) train routing digraph
I trains Di = (V,Ai) individual routing digraph
w arc weights si, ti source, sink of train i

Table 1: Notation for the optimal track allocation problem (OPTRA).
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Fig. 1: Infrastructure network (left), and train routing digraph (right); individual train
routing digraphs bear different colors.

i.e., if s(u1)s(v1) = s(u2)s(v2) and [t(u1), t(v1)−1]∩[t(u2), t(v2)−1] 6= ∅. There is
a block conflict between two train routes if any of their arcs have a block conflict.
A timetable or schedule is a set X ⊆ P of conflict-free routes, at most one for
each train request, i.e., |X ∩ Pi| ≤ 1, i ∈ I. Assigning weights wuv ∈ Z to the
arcs uv ∈ A (modeling ‘profits’ for individual trips), the weight of route p ∈ P is
wp :=

∑
a∈p wa, and the weight of a schedule X ⊆ P is w(X) :=

∑
p∈X wp. The

optimal track allocation problem (OPTRA) is to find a schedule of maximum
weight.

Caprara et al. [2002] have shown that the stable set problem can be reduced
to OPTRA, such that the problem is NP-hard. Indeed, OPTRA can be seen as
a problem to find a maximum weight packing (with respect to block conflicts)
of train routes in a time-expanded digraph. This framework is fairly general, see
the articles of Caprara et al. [2001], Caprara et al. [2002], Cacchiani et al. [2007],
Cacchiani [2007] and Borndörfer et al. [2006] for comprehensive discussions how
such a model can be used to deal with various kinds of technical constraints.

There is, however, one point where our exposition resorts to a genuine simpli-
fication, namely, by considering only block conflicts arising from time overlaps.
Such a model obviously ignores important aspects such as different block occu-
pation times for the head and the tail of a train, safety margins to open and
close a block after a train has left a track and before it can enter, different
driving times of trains (a fast train following a slow train needs a larger safety
margin than a slow train following a fast train) etc. Such considerations give
rise to headway constraints that guarantee a minimal safety distance in time
between two trains on the same track. Such constraints produce more compli-
cated arc conflicts. Namely the ordered pair of arcs u1v1 and u2v2 on the same
track are in conflict, if they fall short of some minimal headway τu1v1,u2v2

, i.e.,
t(u2) − t(u1) < τu1v1,u2v2

, see Lukac [2004] for a discussion of such a model
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involving ‘quadrangle-linear headway matrices’. One can show that most of the
results of the following sections carry over to more general situations of this type.
We do, however, not give the details here, because they would result in a more
technical and complicated discussion.

3 Integer Programming Models

3.1 Packing Models

The standard formulation for the track allocation problem models train routes
as a multi-commodity flow and rules out block conflicts using additional packing
constraints. We need the following additional terminology. Let B = {{a, b} ∈
2A : a 6= b have a block conflict} be the set of all block conflicts between any two
arcs, H = (A, B) the associated (undirected) (block) conflict graph (note that the
nodes of H are the arcs of the train routing digraph D), and C = C(H) be the
set of all (inclusion) maximal cliques in H; Figure 2 illustrates the construction
of a block conflict graph for a single track.

Fig. 2: Block conflicts on a single track: trips for a slow (blue) and a fast (red) train
(left), a conflict-free configuration of four trips on this track (middle), and the block
conflict graph associated with the track (right).
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The packing model comes in two versions, one with 0/1 arc variables xa,
a ∈ A, for the use of trip a in a route, and the other with 0/1 path variables
xp, p ∈ P , for the use of route p. The resulting formulations, we call them arc
packing problem (APP) and path packing problem (PPP), read as follows:

(APP)max
∑

a∈A

waxa

(i)
∑

a∈δ
+

i
(v)

xa −
∑

a∈δ
−

i
(v)

xa = 0 ∀i ∈ I, v ∈ Wi

(ii)
∑

a∈δ
+

i
(si)

xa ≤ 1 ∀i ∈ I

(iii)
∑

a∈c

xa ≤ 1 ∀c ∈ C

(iv) xa ≥ 0 ∀a ∈ A

(v) xa ∈ Z ∀a ∈ A

(PPP)max
∑

p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1 ∀i ∈ I

(iii)
∑

p∩c6=∅

xp ≤ 1 ∀c ∈ C

(iv) xp ≥ 0 ∀p ∈ P

(v) xp ∈ Z ∀p ∈ P.

Equalities (APP) (i) are flow conservation constraints ; they route train i on
siti-paths; note that Di is acyclic such that no cycles can come up. Constraints
(APP)/(PPP) (ii) ensure a train is routed at most once. The clique inequalities
(APP)/(PPP) (iii) rule out block conflicts. Finally, (APP)/(PPP) (iv) and (v)
are the nonnegativity and the integrality constraints. Note that all constraints
together imply that all variables are 0/1.

The formulations (APP) and (PPP) are strong in the sense that they include
all clique constraints from block conflicts. The literature usually considers models
that replace (APP)/(PPP) (iii) by weaker constraints

(iii′) xa + xb ≤ 1 ∀ab ∈ B (iii′)
∑

p∩{a,b}6=∅

xp ≤ 1 ∀ab ∈ B

that rule out block conflicts on pairs of arcs; let us denote these variants by
(APP

′) and (PPP
′). Here are some basic properties of the packing models. By

definition:

Observation 1 The block conflict graph H = (A, B) that is associated with an
optimal track allocation problem is an interval graph.

The cliques in the conflict graph are collections of compact real intervals. By
Helly’s Theorem, see Helly [1923], the intervals of each such clique c ∈ C contains
a common point t(c), and it is easy to see that we can assume t(c) ∈ t(V ) =
{t(v) : v ∈ V }. It follows that the block conflict graph H has O(V ) inclusion
maximal cliques, which can be enumerated in polynomial time, and that the
packing formulations of the optimal track allocation problem have the sizes listed
in Table 2; here, O(I ×V ) + O(I)+ O(C) = O(A), and we write O(A) = O(|A|)
etc.

The LP-relaxation of (APP) can then be solved in polynomial time. To
obtain the same result for (PPP), consider a column generation approach. Note
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formulation variables non-trivial constraints

APP O(A) O(A)
PPP O(P ) O(V )

APP
′ O(A) O(A2)

PPP
′ O(P ) O(A2)

Table 2: Sizes of packing formulation for the track allocation problem.

that no two arcs in a route are in conflict, i.e., p ∩ c ≤ 1 for all routes p ∈ P

and all cliques c ∈ C. Introducing dual variables γi, i ∈ I, for the constraints
(PPP) (ii), and ηc, c ∈ C, for the constraints (PPP) (iii), the pricing problem
for a route p ∈ Pi, for some train i ∈ I, is

∃ p ∈ Pi : γi +
∑

p∩c6=∅

ηc < wp ⇐⇒
∑

a∈p

(wa −
∑

c∋a

ηc) > γi.

This is a longest siti-path problem in the acyclic digraph Di = (V, Ai) w.r.t. arc
weights wa −

∑
a∈c ηc; this problem can be solved in polynomial time (in fact, in

linear time). By the polynomial equivalence of separation and optimization, see
Grötschel et al. [1988], here applied to the dual of (PPP), i.e., the polynomial
equivalence of pricing and optimization, we obtain the desired result.

Theorem 2. The LP-relaxations associated with the strong arc packing formu-
lation APP and the strong path packing formulation PPP of the optimal track
allocation problem can be solved in polynomial time.

3.2 Extended Models

We propose in this section an alternative formulation for the optimal track allo-
cation problem that guarantees a conflict free routing by allowing only feasible
route combinations, and not by excluding conflicts. The formulation is based on
the concept of feasible arc configurations, i.e., sets of arcs on a track without
block conflicts. Formally, we define a configuration for some track j = xy ∈ J as
a set of arcs q ⊆ Aj := {uv ∈ A : s(u)s(v) = xy} such that

|q ∩ c| ≤ 1 ∀c ∈ C.

Denote by Qj the set of all such configurations for track j, j ∈ J , and by Q the
set of all such configurations. The idea of the extended model is to introduce
0/1 variables yq for choosing a configuration on each track and to force a conflict
free routing of trains through these configurations by means of inequalities

∑

p∋a

xp ≤
∑

q∋a

yq ∀a ∈ A.

Instead of directly writing down a corresponding model, however, we propose
a version that will model configurations as paths in a certain acyclic routing
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digraph. The advantages of such a formulation will become clear in a minute.
The construction extends the routing digraph D = (V, A) to a larger digraph
D = (V , A) by adding nodes and arcs as illustrated in Figure 3. The details are as
follows. Consider a track xy ∈ J and the trips Axy = {uv ∈ A : s(u)s(v) = xy}

Fig. 3: Configuration routing digraph for a single track: train routing digraph (left), con-
figuration (half-left), configuration routing digraph (half-right), and the corresponding
path (right).

on this track. Denote by Lxy := {u : uv ∈ Axy} and Rxy := {v : uv ∈ Axy}
the associated set of departure and arrival nodes. Construct two new, additional
nodes sxy and txy by setting s(sxy) = y, t(sxy) := min t(Rxy)−1, and s(txy) = x,
t(txy) := max t(Rxy) + 1, i.e., sxy marks an artificial source node at station y

before the departure of the earliest trip on xy, and txy marks an artificial sink
node at station x after the arrival of the latest trip on xy. Let Lxy := Lxy∪{txy}
and Rxy := Rxy ∪ {sxy}; note that all arcs in Axy go from Lxy to Rxy (actually
from Lxy to Rxy). Now let Axy := {vu : t(v) ≤ t(u), v ∈ Rst, u ∈ Lst} be a set of
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‘return’ arcs that go in the opposite direction; they connect the arrival of a trip on
xy (or node sxy) with all possible follow-on trips (or node txy) on that track. It is
easy to see that the configuration routing digraph Dxy := (Lxy ∪Rxy, Axy ∪Axy)
is bipartite and acyclic, and that sxytxy-paths a1, a1, . . . , ak−1, ak in Dxy and
configurations a1, . . . , ak in Qst are in 1-1 correspondence. Let us formally denote
this isomorphism by a mapping

·̄ : Qj → Qj , q 7→ q, j ∈ J,

where Qj denotes the set of all sjtj-paths in Dj ; however, we will henceforth

identify paths q ∈ Qj and configurations q ∈ Qj . Let us also denote by Uj :=

Lj ∪ Rj the structural nodes of Dj , and by D := (V , A) := (V ∪ {sj , tj : j ∈
J}, A∪

⋃
j∈J Aj) =

⋃
j∈J Dj the extended train routing digraph, i.e., the routing

digraph D extended by the artificial nodes and return arcs described above, and
δ±j (W ) := δ±(W ) ∩ Aj ∪ Aj , ∀W ⊆ V .

The extended model also comes in two versions, one using new 0/1 arc vari-
ables ya, a ∈ A, for the use of arc a in a configuration-path, and the other with
0/1 path variables yq, q ∈ Q, for the use of configuration-path q ∈ Q. The re-
sulting formulations, which we call arc configuration problem (ACP) and path
configuration problem (PCP), read as follows:

(ACP) max
∑

a∈A

waxa

(i)
∑

a∈δ
+

i
(v)

xa −
∑

a∈δ
−

i
(v)

xa = 0 ∀i ∈ I, v ∈ Wi

(ii)
∑

a∈δ
+

i
(si)

xa ≤ 1 ∀i ∈ I

(iii)
∑

a∈δ
+

j
(v)

ya −
∑

a∈δ
−

j
(v)

ya = 0 ∀j ∈ J, v ∈ Uj

(iv)
∑

a∈δ
+

j
(sj)

ya ≤ 1 ∀j ∈ J

(v) xa − ya ≤ 0 ∀a ∈ A

(vi) xa ≥ 0 ∀a ∈ A

(vii) ya ≥ 0 ∀a ∈ A

(viii) xa ∈ Z ∀a ∈ A

(ix) ya ∈ Z ∀a ∈ A

(PCP) max
∑

p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1 ∀i ∈ I

(iv)
∑

q∈Qj

yq ≤ 1 ∀j ∈ J

(v)
∑

p∋a

xp −
∑

q∋a

yq ≤ 0 ∀a ∈ A

(vi) xp ≥ 0 ∀p ∈ P

(vii) yq ≥ 0 ∀q ∈ Q

(viii) xp ∈ Z ∀p ∈ P

(ix) yq ∈ Z ∀q ∈ Q.

Equalities (ACP) (i) and (iii) are flow conservation constraints ; they route
trains i on siti-paths and configurations j on sjtj-paths; note that both Di and
Dj are acyclic such that no cycles can come up. Constraints (ACP)/(PCP) (ii)
and (iv) ensure a train is routed at most once and that at most one configura-
tion can be chosen for each track. The coupling constraints (ACP)/(PCP) (v)
synchronize routes and configurations. Finally, (APP)/(PPP) (iv) and (v) are
the nonnegativity and the integrality constraints. Note that, again, all variables
are implicitly 0/1.
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formulation variables non-trivial constraints

ACP O(A) O(A)
PCP O(P ) + O(Q) O(I) + O(J)

Table 3: Sizes of packing formulation for the track allocation problem.

The extended models have the sizes listed in Table 3. Then the LP-relaxation
of (ACP) can be solved in polynomial time. For (PCP), consider the pricing
problems for routes and configurations. With dual variables γi, i ∈ I, πj , j ∈ J ,
and λa, a ∈ A, for constraints (PCP) (ii), (iv), and (v), respectively, the pricing
problem for a route p ∈ Pi for train i ∈ I is

∃ p ∈ Pi : γi +
∑

a∈p

λa < wp ⇐⇒
∑

a∈p

(wa − λa) > γi.

This is the same as finding a longest siti-path in Di w.r.t. arc weights wa−λa;
as Di is acyclic, this problem can be solved in polynomial time. The pricing
problem for a configuration q ∈ Qj for track j ∈ J is

∃ q ∈ Qj : πj −
∑

a∈q

λa < 0 ⇐⇒
∑

a∈q

λa > πj .

Using arc weights λa, a ∈ Aj , and 0, a ∈ Aj , pricing configurations in
Qj is the same as finding longest sjtj-paths in the acyclic digraph Dj . This is
polynomial. We conclude:

Theorem 3. The LP-relaxations associated with the arc configuration formu-
lation ACP and the path configuration formulation PCP of the optimal track
allocation problem can be solved in polynomial time.

Let us quickly state in this pricing context a simple bound on the LP-value
of the path configuration formulation PCP that is useful in practice to overcome
tailing-off effects in a column generation procedure. Namely, computing the path
lengths maxp∈Pi

∑
a∈p(wa − λa) and maxq∈Qj

∑
a∈q λa yield the following LP-

bound β = β(γ, π, λ).

Lemma 1. Let γ, π, λ ≥ 0 be dual variables1 for PCP and vLP(PCP) the opti-
mum objective value of the LP-relaxation of PCP. Define

ηi := max
p∈Pi

∑

a∈p

(wa − λa) − γi, ∀i ∈ I,

θj := max
q∈Qj

∑

a∈q

λa − πj , ∀j ∈ J,

β(γ, π, λ) :=
∑

i∈I

max{γi + ηi, 0} +
∑

j∈J

max{πj + θj , 0}.

1Note that these will be infeasible during a column generation.
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Then

vLP(PCP) ≤ β(γ, π, λ).

Proof.

• γi + ηi ≥
∑

a∈p

(wa − λa)⇒ γi + ηi +
∑

a∈p

λa ≥ wp ∀i ∈ I, p ∈ Pi.

• πj + θj ≥
∑

a∈q

λa ⇒πj + θj −
∑

a∈q

λa ≥ 0 ∀j ∈ J, q ∈ Qj .

• (max{γ + η, 0}, max{π + θ, 0}, λ) (the maximum taken component-wise) is
dual feasible for the LP-relaxation of PCP.

3.3 Model Comparison

We finally compare the two types of models that we have stated. Starting points
are the LP-relaxations of the configuration formulations and those of the packing
formulations. As the LP-relaxations of APP and PPP, and of ACP and PCP

are obviously equivalent via flow decomposition into paths, it suffices to compare,
say, APP and ACP.

Lemma 2. Let

PLP(APP) := {x ∈ RA : (APP) (i)–(iv)}

PLP(ACP) := {(x, y) ∈ RA×A : (ACP) (i)–(vii)}

πx : RA×A → RA, (x, y) 7→ x

be the polyhedra associated with the LP-relaxations of APP and ACP, respec-
tively, and a mapping that produces a projection onto the coordinates of the train
routing variables. Then

π(PLP(ACP)) = PLP(APP).

Proof. Let Cj := {c ∈ C : c ⊆ Aj}, j ∈ J , be the set of block conflict cliques
associated with track j. Consider the polyhedra

P := {x ∈ RA : (APP) (i), (ii), (vi)},

P j := {x ∈ RAj

+ :
∑

a∈c

xa ≤ 1 ∀c ∈ Cj}, j ∈ J,

Qj := {y ∈ RAj×Aj

+ :
∑

a∈δ
+

j
(v)

ya =
∑

a∈δ
−

j
(v)

ya, ∀v ∈ Uj ,
∑

a∈δ
+

j
(sj)

ya ≤ 1}, j ∈ J,

Rj := {x ∈ RAj

+ : ∃y ∈ Qj : x ≤ y}, j ∈ J.

P j is integer, because Cj is the family of all maximal cliques of an interval
graph, which is perfect; Qj is integer, because it is the path polytope associated
with an acyclic digraph; finally, Rj is integer, because it is the anti-dominant of
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an integer polytope. Consider integer points, it is easy to see that P j and Rj

coincide, i.e., P j = Rj , j ∈ J . It follows

PLP(APP) = P ∩
⋂

j∈J

P j = P ∩
⋂

j∈J

Rj = π(PLP(ACP)).

This immediately implies our main Theorem.

Theorem 4. Denote by v(P ) and vLP(P ) the optimal value of problem P and
its LP-relaxation, respectively, P ∈ {APP,PPP,ACP,PCP}. Then:

• vLP(APP) = vLP(PPP) = vLP(ACP) = vLP(PCP).
• v(APP) = v(PPP) = v(ACP) = v(PCP).

4 Computational Results

We have implemented model generators for the static formulations APP
′ and

ACP, and a column generation algorithm for model PCP. This choice is mo-
tivated as follows. APP

′ is the dominant model in the literature, which we
want to benchmark. APP and ACP are equivalent models that improve APP

′,
both arc-based. ACP is easy to implement. We didn’t implement the strong
packing model APP, and also not PPP, because these models are not robust
w.r.t. changes in the problem structure, namely, their simplicity depends on
the particular clique structure of interval graphs. If more complex constraints
are considered, these models can become hard to adapt. In fact, the instances
that we are going to consider involve headway matrices that give rise to more
numerous and more complex clique structures, such that an implementation of
suitably extended models APP and PPP would have been much more difficult
than an implementation of the basic versions that we have considered in the
theoretical part of this paper. On the other hand, headway constraints are easy
to implement in a configuration model, because they specify possible follow-on
trips on a track, which is precisely what a configuration does. Formulation PCP

is in this sense robust. It is also well suited for column generation to deal with
large instances. In our experiments, we consider the Hanover-Kassel-Fulda area
of the German long-distance railway network. All our instances are based on
the mesoscopic infrastructure network that is illustrated in Figure 1. It includes
data for 37 stations, 120 tracks and 6 different train types (ICE, IC, RE, RB,
S, ICG). Because of various possible turnover and driving times for each train
type, this produces an infrastructure digraph with 146 nodes, 1480 arcs, and
4320 headway constraints.

Based on the 2002 timetable of Deutsche Bahn AG, we constructed three
scenarios that we denote by 146, 285, and 570. The name of the instance gives
the number of train requests, which consist of long distance trains (IC, ICE),
synchronized regional and suburban passenger trains (S, RE, RB), and freight
trains (ICG). The main objective is to maximize the total number of trains in
the schedule; on a secondary level, we slightly penalize deviations from certain
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desired departure and arrival times. Flexibility to reroute trains is controlled by
departure and arrival time windows of length at most τ , where τ is a parameter.
Increasing τ from 0 to 30 minutes in steps of 2 minutes increases flexibility, but
also produces larger train routing digraphs and IPs. After some preprocessing
(eliminating arcs and nodes which cannot be part of a feasible train route), the
resulting 48 instances have the sizes listed in Table 4. In this table, column τ

gives the length of the departure and arrival time, columns #nodes and #arcs

give the sizes |V | and |A| of the preprocessed train routing digraph D associated
with the respective instance.

These 48 instances were solved as follows. The root LP-relaxations of the
static models APP

′ and ACP were solved with the dual simplex method of
CPLEX 10.0, see CPLEX [2006]. Then, CPLEXMIP was called for a maximum
of at most 1h of running time or 10.000 nodes2. Model PCP is solved by col-
umn generation, with a limit of at most 100 iterations. The reduced master-LPs
were solved with the barrier or the dual simplex method of CPLEX 10.0, de-
pending on the column generation progress. Then, a heuristic integer solution
is constructed, namely, by simply computing an optimal integer solution to the
last reduced master-LP, again using CPLEXMIP. All computations were made
single threaded on a Dell Precision 650 PC with 2GB of main memory and a
dual Intel Xeon 3.8 GHz CPU running SUSE Linux 10.1.

Figures 4, 5, and 6 summarize our results on the three scenarios 146, 285,
and 570, increasing the flexibility from 0 to 30 minutes per train in steps of 2
minutes. It turns out that, in fact, model APP

′ produces a noticeably weaker
LP-bound (upper bound) than the bounds from the other two models, which are
more or less identical. This shows that it is possible to solve the LP-relaxation of
model PCP by column generation almost to proven optimality. Figure 7 provides
a closer look at the master-LP associated with model PCP. Indeed, the upper
bound β(γ, π, λ) and the value v(RPLP) of the reduced master-LP converge in
the column generation process.

With increasing flexibility the models become larger, and at some point the
LPs could not be solved any more, because we ran out of memory; the vertical
bars in Figures 4, 5, and 6 indicate the largest scenarios that could be solved.
O(A2) constraints kill model APP

′ early. Model ACP reaches somewhat farther.
However, the dynamic model PCP is the one that is able to solve the largest
scenarios. It is, in our opinion, also the model that offers the biggest potential
for further algorithmic improvements to deal with even larger instances; we are
currently working in this direction.

The best integral solutions for our instances were always provided by model
ACP. This is no surprise, because this model outperforms APP

′ in terms of
the LP-bound, while the simple IP heuristic that we have applied to PCP is
obviously improvable. Tables 5 and 6 list the details for the largest scenario 570
for models APP

′ and ACP. In addition to the size of the respective LPs we

2That means that we do not always report optimal integer solutions; however, we
remark that all instances of scenario 146, of scenario 285 up to τ = 24, and of scenario
570 up to τ = 4 can be solved to proven optimality by running CPLEX long enough.
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Fig. 4: Solving scenario 146 with models
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Fig. 5: Solving scenario 285 with models
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Fig. 7: Generating columns in model PCP

for scenario 146.

report the LP and IP values, the overall time t∑, and the time tIP spent on

finding integral solutions, both in seconds. The dashes in the tables indicate the
inability to compute a solution due to an out of memory error. Table 7 gives
similar results for model PCP. Here, the LP sizes refer to the final restricted
master-LP, and instead of LP and IP values, we list the lower and upper LP-
bounds v(RPLP); instead of IP time, we give the number #CGiter of column
generation iterations. Again, the dashes in the tables report out of memory er-
rors. Altogether, Tables 5, 6, and 7 give an impression of the current performance
and the limits of our implementations.
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Table 4: Test scenarios.

146 285 570
τ #nodes #arcs #nodes #arcs #nodes #arcs

0 2877 3297 362 422 1284 1412
2 4953 6414 1501 1846 5858 6894
4 7428 10131 3262 4284 10912 13334
6 9766 13673 5243 7140 19484 25220
8 12143 17300 8070 11289 28038 37128

10 15617 22476 11126 15840 38380 51944
12 19574 28632 15226 22014 50768 70160
14 24142 35886 19970 29325 65056 91648
16 28877 43673 26201 38985 80376 115212
18 33694 51799 32599 49137 97954 142780
20 38953 60707 39854 60920 116886 173516
22 44072 69636 47486 73473 138512 209040
24 50287 80556 56502 88475 161590 247072
26 56156 91019 65579 103979 186458 289266
28 62035 101581 75820 121840 212722 334878
30 69813 115838 87883 143374 241224 383914

Table 5: Solving model APP
′ for scenario 570.

τ #rows #cols vLP vIP tP tIP

0 1441 1412 56264.17 53676.00 290.27 0.10
2 8760 6894 152778.29 134190.00 400.88 19.97
4 19369 13334 210479.74 184636.00 658.59 42.14
6 44272 25220 254676.53 221725.00 401.15 103.54
8 81313 37128 284689.94 255870.00 538.52 213.84

10 143917 51944 306437.88 267569.00 1210.23 415.15
12 252530 70160 324781.31 - 1761.22 1360.30
14 413828 91648 - - - -
16 637237 115212 - - - -
18 965427 142780 - - - -
20 1436049 173516 - - - -
22 2094272 209040 - - - -
24 2895176 247072 - - - -
26 3999163 289266 - - - -
28 5422512 334878 - - - -
30 7048470 383914 - - - -
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Table 6: Solving model ACP for scenario 570.

τ #rows #cols vLP vIP tP tIP

0 2332 3875 53968.00 53676.00 216.51 0.21
2 11106 19926 136944.50 134311.00 540.97 6.44
4 21772 39967 189997.08 186467.00 622.68 22.60
6 41498 79234 240622.38 234535.00 1495.82 931.92
8 60390 120957 270900.38 260063.00 2170.88 1401.25

10 83398 170277 295798.29 277073.00 4203.54 3488.38
12 111270 231613 313179.33 296917.00 4760.91 3819.11
14 143270 303302 333515.08 314348.00 4361.18 3943.13
16 177622 377312 - - - -
18 215888 461844 - - - -
20 257378 549535 - - - -
22 304326 649176 - - - -
24 354762 754888 - - - -
26 409556 869796 - - - -
28 467950 985555 - - - -
30 529518 1107237 - - - -

Table 7: Solving model PCP for scenario 570.

τ #rows #cols β v(RPLP) gap tP #CGiter

in %

0 1248 11715 54727.00 53767.00 1.78 468.11 51
2 3314 66012 137376.07 135729.48 1.21 5883.12 100
4 6160 166133 197333.08 188757.73 4.54 13687.55 100
6 11300 238837 248480.85 239768.92 3.63 28258.23 82
8 16414 272565 276867.11 270234.28 2.45 43199.62 82

10 22846 168492 299070.52 295415.44 1.24 73891.21 100
12 30770 214259 314654.48 312960.40 0.54 183123.49 100
14 40696 355918 335061.01 332970.27 0.63 336374.07 57
16 51562 346564 345445.44 343802.93 0.48 198590.48 100
18 63998 266214 366323.70 351502.63 4.22 463379.15 46
20 78478 - - - - -
22 94994 - - - - -
24 112816 - - - - -
26 132826 - - - - -
28 154706 - - - - -
30 177914 - - - - -
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