
Finding DU-Paths for Testing of Multi-Tasking Real-Time Systems

using WCET Analysis

Daniel Sundmark, Anders Pettersson, Christer Sandberg, Andreas Ermedahl, and Henrik Thane

Department of Computer Science and Electronics, Mälardalen University

Box 883, S-721 23 Väster̊as, Sweden

{daniel.sundmark,anders.pettersson,christer.sandberg,andreas.ermedahl,henrik.thane}@mdh.se

Abstract

Memory corruption is one of the most common
software failures. For sequential software and multi-
tasking software with synchronized data accesses, it has
been shown that program faults causing memory cor-
ruption can be detected by analyzing the relations be-
tween defines and uses of variables (DU-based testing).
However, such methods are insufficient in preemptive
systems, since they lack the ability to detect inter-task
shared variable dependencies. In this paper, we propose
the use of a system level shared variable DU analy-
sis of preemptive multi-tasking real-time software. By
deriving temporal attributes of each access to shared
data using WCET analysis, and combining this infor-
mation with the real-time schedule information, our
method also detects inter-task shared variable depen-
dencies. The paper also describes how we extended the
SWEET tool to derive these temporal attributes.

1 Introduction

Software complexity, and especially that of embed-
ded real-time systems, is rapidly increasing. Conse-
quently, the task of finding faults is getting more dif-
ficult. Among the most common software failures is
memory corruption, e.g., out-of-bound writes, pointer
failures, and usage of uninitialized variables. For
multi-tasking systems, failures also encompass non-
synchronized reads and writes, and non-reentrance fail-
ures. There exist several methods that address these
problems, typically in terms of static define and use
analysis (DU analysis), or DU-based testing methods.
However, the majority of these methods only address
systems with a single thread of non-preemptive execu-
tion [7, 9, 8], or multi-tasking systems with task inter-
ference restricted to synchronous interference [3, 4].

In our previous work we have addressed testing of
multi-tasking real-time systems where input and out-

1. a:=b+4

2. if expression is true then

3. result:=a+1

4. else then

5. result:=a*2

Figure 1. Example of defs and uses.

put from a task is given and produced at the beginning
and at the end of the task’s execution respectively [15].
We relaxed the model to encompass systems where task
communication could be performed within semaphore
guarded critical sections [14], and later also by non-
synchronized shared variables anywhere in the execu-
tion of the tasks [13]. In this paper, we extend previ-
ous results and show how to derive all DU-paths from
a preemptive real-time system using WCET analysis.

2 Background

Classic data-flow unit testing, for single thread exe-
cution programs, tests read and write accesses to pro-
gram variables [12]. Data-flow is identified in terms of
definitions and uses of data, where a definition is an
assignment of a value to a variable. A use is an action
of reading a variable or container. One classic DU rela-
tion is the DU-path. A definition d (write) and a use u
(read) of variable x constitutes a DU-path (d,u) if and
only if there exists a control-flow path p from d to u,
such that p contains no other definitions of x. E.g., in
Figure 1, uses are enclosed in a selection statement,
yielding the following DU-paths: {(a1, a3), (a1, a5)}.
Here, a is the identity of the variable and the index
corresponds to the line number in the code.

When testing using the all-DU-path coverage crite-
rion [17], DU-paths define test items that should be
covered. Hence, should the software contain any unin-
tended, and erroneous, DU-paths, these will be discov-
ered by a full all-DU-path coverage testing. Coverage
(i.e., the ratio between identified test items and exer-

1
ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1191



a:=b+4
…P

 R
 I 

O
 R

 I 
T

 Y

T I M E

B

a:=0

…
result:=a+1

A

a:=b+4
result:=a+1P

 R
 I 

O
 R

 I 
T

 Y

T I M E

B

a:=0A

b)

result:=1

a)

result:=b+5

Figure 2. Shared variable communication (as-
suming that the conditional expression is
true in task B).

cised test items) is the state-of-the-practice metric for
test thoroughness. A 100% coverage describes a fully
tested software with respect to a certain test criterion
(e.g., branch, path, or DU-path coverage).

When moving from unit-level DU-based testing to
system level testing of preemptive real-time systems,
a whole new dimension of complexity is added - con-
current access to shared resources. Figure 2 shows an
example execution of two concurrently executing tasks,
A and B. B consists of the code from Figure 1. A has
a higher priority than B, and contains a definition of
variable a. In B there is a definition (a:=b+4) and
two uses (result:=a+1 and result:=a*2) of the same
variable a. Hence, at task level, A only has a defi-
nition and no DU-paths. B has the following set of
DU-paths: {(aB1, aB3), (aB1, aB5)}, here indexed with
the task identity and line number. Assume that, for
correct intended behavior, B shall always complete the
definition and the use in a sequence, i.e., A is not al-
lowed to preempt B in between the definition and the
use. Figure 2a illustrates the case without preemp-
tion and in-between definition of a. In Figure 2b, A

preempts B and redefines the variable, thus corrupting
the value. Using the task level DU-path sets for testing
on system level will leave out scenarios as in Figure 2b
where more paths evidently exist. In order to cap-
ture system level DU-paths, it is necessary to consider
all scenarios (i.e., where the definition in A executes
strictly before, strictly after, and where it preempts
the definition and use in B). The resulting DU-paths
are: {(aB1, aB3), (aB1, aB5), (aA, aB3), (aA, aB5)}. In
Figure 3, the scenarios from Figure 2 are revisited, but
here, the focus is on the exact times when the accesses
are executed. E.g., in Figure 3a definition a:=b+4 is
executed at def 1 and overwritten at rd1. In Figure 3b,

P
 R

 I 
O

 R
 I 

T
 Y

T I M E

B

A

a)

result:=b+5

result:=a+1

a:=0

a:=b+4
def1 rd1

def3 rd3

use2

P
 R

 I 
O

 R
 I 

T
 Y

T I M E

B

A

b)

result:=1

result:=a+1

a:=0

a:=b+4
def4 rd4

def6 rd6

use5

Figure 3. Shared variable access attributes.

a:=b+4 is executed at def 4 and overwritten at rd4.
Generally, for each access x, there is an interval with
extremal values x.min and x.max within which x can
be executed. Furthermore, for each definition d, there
is a point in time d.rdMax , where d is safely overwrit-
ten. Hence, to derive feasible shared variable DU-paths
on system level, we require (1) task-level information
of when shared variables may be accessed by each task
in the system, and (2) system-level information of how
these tasks are scheduled and temporally interfere.

In this paper, we derive all system-level shared vari-
able DU-paths by extending the method presented
in [13]. The contributions of this article are:

• An extension to the SWEET WCET tool [6], able
to derive task-level shared variable access times.

• The use of task-level shared variable access times for
deriving system-level shared variable DU-paths.

• An experimental evaluation of the effectiveness of
the approach.

We assume a uni-processor real-time system S.
The operating system and application software (im-
plemented as a set of tasks WS) operates to control
an external environment (e.g., a vehicular or industrial
mechatronic control system). We assume strictly peri-
odic tasks that follow the single shot semantics [2]. The
tasks are scheduled using the fixed priority scheduling
policy [1], and each task is assigned a unique priority.

In this paper, we represent a task as a 7-tuple,
〈 T, O, P, D,ET ,D,U 〉, where T is the periodicity of
the task. The task’s release time for each period is cal-
culated by adding the offset O to T . The scheduling

2



...

A. i := 1;

B. p := INIT;

C. do {

D. i := i + 1;

E. if(i <= MIN)

F. g := g + INCR;

G. p := p * g;

H. } while(i < MAX)

I. return;

i := i + 1

while(i < MAX)

return

exit

#C <= 10

p := p * g

g := g + INCR

if(i <= MIN)

i := 1

p := INIT

t
A

=1

t
B

=1

t
C

=2

t
12

=3

t
E

=2

t
F
=5

t
G

=2

t
H

=8

A

B

C

D

E

F

G

H

i := i + 1

while(i < MAX)

return

exit

p := p * g

g := g + INCR

if(i <= MIN)

i := 1

p := INIT

A

B

C

D

E

F

G

H

#C <= 10

#H = 0

i := i + 1

while(i < MAX)

return

exit

p := p * g

g := g + INCR

if(i <= MIN)

i := 1

p := INIT

A

B

C

D

E

F

G

H

#H = 0

#C <= 10

(a) Code example (b) CFG with flow (c) CFG for g use (d) CFG for p rdMax
and timing info timing analysis timing analysis

Figure 4. Example of timing analysis for defs and uses.

mechanism determines which released task will execute
based on the task’s priority, P . The task’s latest com-
pletion time is determined by its deadline, D. Further,
a task encompass information regarding the best- and
worst-case execution time of the task, ET , as well as
two sets of shared data accesses, defined in terms of de-
finitions (D) and uses (U) of the data. For each least
common multiple of the tasks’ period times (LCM ),
the system schedule performs a recurring pattern of
task instance releases (jobs). In each LCM, each task
can spawn one or more jobs. The release time R and
deadline D of a job are calculated using the task T , O,
and D properties respectively.

3 System-Level DU Analysis

In this section, we show how to derive information
of when shared variables may be accessed by each task
in the system (Section 3.1), and how to combine this
information with the real-time schedule in order to de-
rive all system-level DU-paths (Section 3.2).

3.1 Task-Level Analysis

The task-level analysis derives the temporal proper-
ties for each shared variable access (definition or use)
in each task w ∈ WS . Three properties (min, max ,
and rdMax ) are derived for each definition, and two
properties (min and max ) are derived for each use. As
min and max are analogous for definitions and uses,
we will focus on the definition properties. Assuming a
definition d that defines a variable x, the d .min prop-
erty describes the shortest possible time from the start
of the task to the statement containing d. The d .max
property describes the longest possible time from the
start of the task to the statement containing d. The
d .rdMax property describes the longest possible time

for a path p, starting at task start s and ending at a
statement e, such that d is on p, e contains a state-
ment that redefines x, and no other redefinitions of x

are made between d and e. Intuitively, this property
describes the time (relative to the start of a task) where
a definition d is safely overwritten.

The SWEET tool (SWEdish Execution time
Tool) [5] is a research prototype WCET tool devel-
oped at Mälardalen University [10]. SWEET consists
of three distinguished phases: a flow analysis where
bounds on the number of times different entities in the
code can be executed is derived, a low-level analysis
where bounds of the execution times for instructions
are derived, (taking into account the effects of pipelines
and potentially instruction caches), and a final calcu-
lation phase where the flow and timing information is
combined to yield a WCET estimate.

We have modified SWEET to, except the “normal”
program WCET and BCET estimates, also produce
estimates upon the above mentioned min , max , and
rdMax values. Initially, we perform the flow- and low-
level analysis of the program, but not the calculation.
The result can be seen as a control-flow graph (CFG)
containing both flow- and timing bounds and with two
extra start and exit nodes. Figure 4(a) depicts an
example code with two globals g and p. Figure 4(b)
illustrates the CFG for the code. The flow analysis
has derived a loop bound of 10, expressed as an upper
bound on the number of times node C could be exe-
cuted. Each node is also given a timing bound by the
low-level analysis, valid each time the node is executed.

Secondly, we perform a reaching definition (RD)
analysis for global variables [11]. The analysis derives,
for each global variable, where in the program it may
be used and defined as well as how far each definition
may reach. Since pointers could be used to update
globals, the RD takes the input of a pointer analysis.

3



We derive the different estimates using IPET calcu-
lation [5]. In IPET each node and/or edge in the CFG
is given a time (tentity), and a count variable (xentity),
the latter denoting the number of times that block or
edge is executed. The WCET is found by maximis-
ing the sum

∑
i∈entities

xi ∗ ti, subject to constraints
reflecting the structure of the program and possible
flows. There are, e.g., constraints specifying that the
start and exit nodes each must be taken exactly once,
and constraints specifying that that each node must be
entered the same number of times as it is exited. The
estimate is normally derived using integer linear pro-
gramming (ILP). The BCET is found by minimizing
the same sum, subject to the same constraints.

Our analyses start from the above mentioned graph.
Depending on what timing values to derive, we modify
the graph by adding extra edges and flow contraints.
E.g., the graph for deriving min, max for a use u is con-
structed by adding en extra edge from the node holding
u to the exit node. Additionally, for all other edges go-
ing to the exit node we add a flow constraint specifying
that its source node cannot be taken. Thus, we force
the IPET calculation to exit through our newly created
exit-edge, thereby deriving the best-case and worst-
case estimates for u, instead of the “normal” BCET
and WCET. Figure 4(c) shows the CFG for calculat-
ing min and max for the use of g in node F. For each
global use and def derived in the RD analysis, we con-
struct a corresponding graph. The resulting graphs are
given as input to SWEET to derive the corresponding
min and max values.

To derive rdMax for a def d we first use the RD
analysis to derive the set of nodes which d may reach.
From these nodes we add an extra edge to the exit
node. Additionally, for all other exit-edges going from
a node which d cannot reach, we add a flow constraint
specifying that its source node cannot be taken. Thus,
we force the IPET calculation to exit through one of
the nodes d may reach. The rdMax value is derived
by a WCET calculation upon the resulting graph. Fig-
ure 4(d) shows the graph for calculating the rdMax
value of the p := INIT definition in node B.

3.2 System-Level Analysis

The algorithm for deriving system-level DU-paths
is based on the algorithm deriving Execution Order
Graphs (defined 1999 by Thane and Hansson [15] as
directed reachability graphs of all possible execution
orderings from a scheduled set of task instances dur-
ing a periodically repeated FPS schedule). Basically,
the EOG algorithm simulates the behaviour of a real-
time FPS scheduler, considering all interleaving pat-
tern alternatives caused by task execution time varia-

tions. As an example, Figure 2 displays two different
execution orderings of the same system caused by ex-
ecution time variations in task B. In our analysis, we
modify the EOG algorithm such that it given our ex-
tended task model (with D and U properties) instead
generates all possible DU-paths of the system. The al-
gorithm simulates the behaviour of the system by ex-
haustively searching all task interleaving patterns, and
acting upon shared variable accesses in the tasks at var-
ious times. Throughout the analysis, each access holds
a certain state (dead, active or live). An active access
has been executed, or can be executed at any time until
it has become live or dead. A live access has safely been
executed, and not been safely overwritten by another
access. A dead access is neither active nor live (i.e.,
the access has safely not yet been executed, is safely
overwritten, or has safely passed the time where it can
affect the result of the analysis). The rules for making
the transitions between these access states constitute
the foundation of the system-level analysis:
Definition rules:

1. At d.min , d makes a transition from dead → active .

2. At d.max , d makes a transition from active → live .

3. At d.rdMax , d makes a transition from live → dead .

Use rules:

1. At u.min, u makes a transition from dead → active .

2. At u.max , u makes a transition from active → dead .

DU-path rules:

1. At d.min , all DU-paths (d, u), such that u.var =
d.var and u is currently active, are derived.

2. At u.min, all DU-paths (d, u), such that u.var =
d.var and d is currently live or active, are derived.

These seven rules are implemented in the DuA-

nalysis algorithm. This algorithm (Figure 5) is a
slight variation1 of the original EOG algorithm [16],
built upon the manipulation of two data structures.
Throughout the analysis, an abstract state of type
State propagates through the execution of the sys-
tem. For each execution of a job, the abstract state
is changed according to the Transition created by ex-
ecuting the job. State represents the current abstract
state of the execution, and contains information of cur-
rently live definitions, active definitions, active uses,
and encountered DU-paths:

State : {liveDefs , activeDefs , activeUses , duPaths}

Transition represents a change of state incurred by
the execution of a (partial) job. Thus, Transition
contains new active definitions, killed live definitions,
killed active definitions, killed active uses, and the

1Changes to the original algorithm are blackened in Figure 5.

4



DuAnalysis (state, transition, rdy, RI , SI )
{

// When is the next job(s) released?
1. t =NextRelease(SI )
2. if rdy = ∅
3. rdy = MakeReady(t, rdy)
4. if rdy 6= ∅
5. DuAnalysis(state, transition, rdy, RI , (t, SI .r])

6. else state = SwitchTask(transition, state, RI )

7. else
// Extract the highest priority job in rdy.

8. J = Dispatch(rdy)
9. [α, β) = [max(J.R, RI.l), max(J.R, RI.l) + J.WCET)

10. a′ = α + J.BCET

11. b′ = β

12. state = SwitchTask(transition, state, RI )

13. transition = Execute(state, J, [α, β), RI)

// Add all lower prio jobs released before J’s termination,
// or before a high priority job is preempting J.

14. while((t < β) ∧ (Prio(t) < J.P ))
15. rdy = MakeReady(t, rdy)
16. t = NextRelease((t, SI.r])

// Does the next scheduled job preempt J?
17. if ((t < β) ∧ (Prio(t) > J.P))

// Can J complete prior to the release of the next job at t?

18. if t > a′

19. DuAnalysis(state, transition, rdy, [a′, t), [t, SI .r])
20. if rdy = ∅
21. DuAnalysis(state, transition, MakeReady(t, rdy), [t, t), (t, SI .r])

22. else if t = a′

23. DuAnalysis(state, transition, MakeReady(t, rdy), [t, t), (t, SI .r])

// Add all jobs that are released at time t.
24. rdy = MakeReady(t, rdy)

// Best and worst case execution time prior to preemption?
25. J.BCET = max(J.BCET − (t − (max(J.R, RI.l)), 0)
26. J.WCET = max(J.WCET − (t − (max(J.R, RI.r)), 0)

27. Preempt(J, (t − (max(J.R, RI.l)), (t − (max(J.R, RI.r)))

28. DuAnalysis(state, transition, rdy ∪ {J}, [t, t], (t, SI.r])

// No preemption.
29. else if t = ∞ // Have we come to the end of the analysis?

30. DuAnalysis(state, transition, rdy, [a′, b′), [∞, ∞]) // Yes

31. else // More jobs to execute.
// Is there a possibility for a high priority job to succeed
// immediately, while low priority jobs are ready?

32. if (rdy 6= ∅ ∧ t = β)
33. DuAnalysis(state, transition, MakeReady(t, rdy), [t, t), (t, SI .r])

34. if a′ 6= b′ // And one branch for the low priority job.
// The regular succession of the next job

35. DuAnalysis(state, transition, rdy, [a′, b′), [t, SI .r))
}

Figure 5. The DuAnalysis algorithm.

WCET of the executed job:

Transition : {newActiveDefs , killedLiveDefs,

killedActiveDefs , killedActiveUses ,

wcet}

Intuitively, the combination of a State a1 and a Tran-
sition a′

1
yields a new State a2, representing the orig-

inal state affected by the changes in a′

1. E.g., if a1

contains a set of liveDefs {d1, d2, d3}, and a′

1
contains

a set of killedLiveDefs {d2}, then a2’s set of liveDefs
will look as follows: {d1, d3}. In the algorithm, this
process is formalized by the functions Execute and
SwitchTask, where

Execute : State × Job × Ivl × Ivl → Transition

SwitchTask : Transition× State × Ivl → State

In essence, the Execute function produces a change
of abstract state (Transition) incurred on original ab-
stract state by executing a certain job. The Switch-

Task function produces a new abstract state (State),

based on the original abstract state and the changes de-
scribed by Transition. The implementation of these
functions are directly based on the Definition, Use, and
DU-path rules shown above. Two more structures (Ivl
and Job) are used in the analysis. Ivl defines a time
interval by its extremal values l and r. Job represents
a task instance and contains definitions, uses, job pri-
ority, release time, BCET and WCET:

Job : {D,U ,P ,R,BCET ,WCET }

Roughly, the DuAnalysis algorithm starts with an
empty State at time 0 by scheduling the highest pri-
oritized ready job j. Using the Execute function,
j’s Transition is derived. Next, if j is always finished
before the next higher priority job is released, Switch-

Task combines the Transition with the old State to
a new State. The algorithm increments the time and
schedules the next job. Else, if j is certainly preempted
by a higher priority job, SwitchTask combines the
Transition with the old State to a new State - but
only regards the events that predate the preemption,
stores the remainder of j, increments the time, and
schedules the higher prioritized job. Else, if j might
be preempted, the algorithm splits into two recursive
branches, one of which considers the case with a pre-
emption, and the other considers the case with no pre-
emption. This behaviour is repeated until all jobs in
the LCM are analysed. In order to derive the Transi-
tion created by executing a job j, the Execute func-
tion works through all shared variable accesses in j in
a chronological order. Each access is treated according
to its corresponding definition or use rule. Switch-

Task creates a new State by adding the changes in
j’s Transition to the State prior to the execution of
j. If j is not preempted, all changes in Transition are
considered when creating the new State. Otherwise,
only those changes prior to the preemption time are
considered.

4 Evaluation

As an experimental evaluation of our method,
we provide analysis results from five different multi-
tasking real-time systems (S1-S5), each scheduled in
three different ways (Cfg1-3). All systems comprise
control-oriented code (e.g., calculation of planet orbits
(S1), a control system for a forklift able to solve the
Towers Of Hanoi problem (S2), etc.), and include inter-
task communication via shared variables. In Table 1,
Ts and GVar refer to the number of tasks and global
variables respectively. CDU refers to the number of
combinatorially feasible DU-paths (i.e., each definition
d and use u of the same shared variable may naively

5



Sys Ts GVar CDU Cfg1 Cfg2 Cfg3

FDU FDU / CDU rt(ms) FDU FDU / CDU rt(ms) FDU FDU / CDU rt(ms)

S1 4 18 216 155 71.6% 4282 147 68.1% 676 134 62.0% 19
S2 4 27 183 N/A N/A N/A 176 96.2% 3750 163 89.1% 30
S3 4 22 34 32 94.1% 217 32 94.1% 107 27 79.4% 4
S4 3 7 44 34 77.3% 137 37 84.1% 24 24 54.5% 1
S5 2 4 236 204 86.4% 422 196 83.1% 248 180 76.3% 12

Table 1. Evaluation Results.

form a DU-path (d, u)). FDU refers to the number
of DU-paths found feasible by the DuAnalysis algo-
rithm, and rt refers to the analysis time (in millisec-
onds). Hence, 1 - (FDU / CDU ) describes the percent-
age of DU-paths that safely do not have to be consid-
ered during testing. As for the configurations, Cfg3
completely separates all tasks in time and suffer no
preemptions. In contrast, Cfg1 maximizes the number
of task preemptions. Cfg2 is an in-between configura-
tion of Cfg1 and Cfg3. Generally, with a less complex
scheduling, more DU-paths are found infeasible (except
for Cfg1 and Cfg2 of S4). Note also that the system-
level analysis of Cfg1 of S2 proved too complex to ex-
ecute. Since all other configurations finished within a
few seconds, we will investigate this problem further.

5 Conclusion

For multi-tasking real-time systems, failures at sys-
tem level caused by concurrently executing tasks can-
not be revealed by tests at task level. In this pa-
per, we have presented and evaluated a method that
derives all possible DU-paths, enabling system-level
testing of task inter-dependency failures. Our system
model is restricted to a model suitable for small em-
bedded real-time systems. In our future work we plan
to show how our method can be used on a more re-
laxed system model, e.g., a system model based on
transactions of tasks instead of strictly periodic tasks.
Our method however requires a finite (periodically or
non-periodically) repeated system behaviour. Further,
semaphores and critical sections for shared variable ac-
cess protection can be added to our method without
major efforts as described in [14].

References

[1] N. C. Audsley, A. Burns, R. I. Davis, and K. W. Tindell.
Fixed priority pre-emptive scheduling: A historical perspec-
tive. In Real-Time Systems journal, volume 8(2/3). Kluwer
A.P., March/May 1995.

[2] T. Baker. Stack-based scheduling of real-time processes.
In Real-Time Systems Journal, volume 3(1), pages 67–99,
1991.

[3] R. H. Carver and K.-C. Tai. Replay and testing for con-
current programs. In IEEE Software, volume 8(2), pages
66–74, 1991.

[4] S. Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and B. S. Lee.
Testing of concurrent programs based on message sequence
charts. In Proceedings IEEE International Symposium on
Software Engineering for Parallel and Distributed Systems,
pages 72–82, Vol., Iss., 1999.

[5] A. Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
Dept. of Information Technology, Uppsala University, Swe-
den, June 2003.

[6] J. Gustafsson, A. Ermedahl, and B. Lisper. Algo-
rithms for Infeasible Path Calculation. In Sixth Interna-
tional Workshop on Worst-Case Execution Time Analysis,
(WCET’2006), Dresden, Germany, July 2006.

[7] M. Harrold and M. Sofia. Interprocedural Data Flow Test-
ing. In Proceedings of the 3rd Symposium on Software Test-
ing, Analysis, and Verification, pages 158–167, 1989.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slic-
ing using dependence graphs. In PLDI ’88: Proceedings of
the ACM SIGPLAN 1988 conference on Programming Lan-
guage design and Implementation, pages 35–46, New York,
NY, USA, 1988. ACM Press.

[9] J. Laski and B. Korel. A Data Flow Oriented Program
Testing Strategy. In IEEE Transactions on Software Engi-
neering, volume 9(5), pages 347–354, May 1983.

[10] Mälardalen University. WCET project homepage, 2007.
www.mrtc.mdh.se/projects/wcet.

[11] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis, 2nd edition. Springer, 2005. ISBN 3-
540-65410-0.

[12] I. S. G. of Software: Engineering Terminology. IEEE Stan-
dards Collection, IEEE Std 610.12-1990. September 1990.

[13] A. Pettersson, D. Sundmark, H. Thane, and D. Nyström.
Shared Data Analysis for Multi-Tasking Real-Time System
Testing. In Proceedings of Second Symposium of Industrial
Embedded Systems, July 2007.

[14] A. Pettersson and H. Thane. Testing of Multi-Tasking
Real-Time Systems with Critical Sections. In Proceedings
of Ninth International Conference on Real-Time and Em-
bedded Computing Systems amd Applications, Tainan City,
Taiwan, R.O.C, 18-20 February 2003.

[15] H. Thane and H. Hansson. Towards Systematic Testing of
Distributed Real-Time Systems. In Proceedings of The 20th
IEEE Real-Time Systems Symposium, pages 360–369, 1999.

[16] H. Thane and H. Hansson. Testing Distributed Real-Time
Systems. In Journal of Microprocessors and Microsystems,
pages 463–478. Elsevier, 2001.

[17] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Computing Surveys (CSUR),
29(4):366–427, 1997.

6


