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Abstract

To date, measurement-based WCET analysis and
static analysis have largely been seen as being at
odds with each other. We argue that instead they
should be considered complementary, and that the
combination of both represents a promising ap-
proach that provides benefits over either individ-
ual approach. In this paper we discuss in some
detail how we aim to improve on our probabilis-
tic measurement-based technique by adding static
cache analysis. Specifically we are planning to
make use of recent advances within the functional
languages research community. The objective of
this paper is not to present finished or almost fin-
ished work. Instead we hope to trigger discussion
and solicit feedback from the community in order
to avoid pitfalls experienced by others and to help
focus our research.

1 Introduction

Embedded systems are becoming more pervasive
by the day, and many of these embedded systems
are subject to critical temporal requirements. While
many of these systems may not be life critical, miss-
ing deadlines may nevertheless be a costly excersise
if experienced as degraded functionality or quality
of service by millions of end users.

The analysis of worst-case execution times
(WCET) is a fundamental building block of any
form of real-time analysis. Most of the work
to date has been based either on static analy-
sis or on measurements. The research commu-
nity has predominantly focussed on static analysis,
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but measurement-based techniques have gained in-
creased significance over the last ten years.

These two principal approaches have largely been
seen as mutually exclusive, and proponents of either
approach tend to be quite critical of the other. Com-
mon concerns voiced about measurement-based
analysis are that:
1. it is unsafe, as there are no guarantees that the

worst case has been observed and
2. measurements are too expensive if sufficient

coverage is to be achieved.
On the other hand, critics of the static-analysis

approaches claim that static analysis:
1. is unsafe, as modern architectures are highly

complex and thus modelling them is an error
prone process, not least due to lack of documen-
tation,

2. raises substantial challenges in terms of portabil-
ity, and

3. does not support the more creative features used
to improve performance in today’s architectures.

We believe that ultimately a combination of the
two paradigms is required to overcome the issues in
both. Specifically, we propose to use measurements
to obtain realistic, accurate results and static analy-
sis to back the findings of the measurement phase by
establishing that major contributors to the variabil-
ity of the execution time have been adequately cov-
ered. Besides variations in program path, which are
usually covered in the computation phase of WCET
analysis approaches, caches contribute most sub-
stantially to variations in the execution times of soft-
ware. Establishing whether all cache misses as pre-
dicted by static analysis have been observed in the
measurements is of substantial help to ensure con-
fidence in results obtained by measurements. Fo-
cussing on caches allows for easy verification that
the model used is actually correct and provides a
high degree of portability of the analysis.

Furthermore, the results of the static analysis of
caching behaviour can be used to reduce the over-
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estimation produced when analysing the measure-
ments of small untis independently and when con-
servatively covering any possible dependency be-
tween the units.

2 Related Work

The integration of cache analysis into WCET analy-
sis was pioneered by Mueller [1] and Lim et al. [2].
The latter represented a holistic WCET and schedu-
lability analysis that was subject to considerable
complexity and was eventually abandoned as a line
of research. Mueller’s work has been refined over
the years [3]. However, the main drawback of
the approach is the loss of information inherent to
the abstraction processs., Specifically information
is lost when the predefined join function is used to
merge abstract cache states at points in the program
where two control flows of a program merge (e.g.
after an if-then-else construct. Further, abstract
analysis, the tool of choice for static program anal-
ysers, has proven notoriously resilient to all non-
trivial attempts to apply it to programs that manip-
ulate dynamic data structures such as linked lists or
those in which pointers to functions cannot be re-
solved statically. While it can be argued that both
features are rarely found in real-time programs, they
are nevertheless common in certain critical parts of
the system such as dynamic schedulers and page ta-
bles.

Ferdinand and Wilhelm [4] have extended
Mueller’s work by introducing the must and may
analysis, effectively reducing the amount of infor-
mation lost by the join function and proving that the
resulting abstract domain is optimal. Nevertheless,
even with these improvements, the analysis still
loses some information at junctions of control-flow
paths introduced by any chosen program represen-
tation. Further, the must and may analysis suffers
from the same limitations as the earlier approaches
when applied to code manipulating dynamic data
structures.

Attacking the WCET problem from a different
angle, Kirner et al. [5] deployed static analysis to
identify a set of input data, which would enforce
any possible path combination to be executed, ef-
fectively doing a full path enumeration. This set
is then fed into the program and measured on real
hardware. In order to manage complexity, the pro-
gram under test is divided into program segments
which are tested and measured independently. The

approach did not support caches and thus is not ap-
plicable to our work.

Yamamoto et al. [6] approached the problem of
ensuring measurement coverage of cache states by
measuring each basic block in isolation in a best
case scenario; in other words, all referenced mem-
ory locations are preloaded into the caches. A sep-
arate cache analysis provides a worst-case cache-
miss scenario for the given basic block and enables
the addition of the cost of these cache misses in the
computation stage of the analysis process. The ex-
act cache simulator used is not described in their
paper, however, the analysed programs in their eval-
uation are sufficiently small to allow a brute force
computation of the cache states.

3 Potoroo

A brief introduction to the overall framework is
necessary to set the proposed approach into con-
text. The Potoroo project aims to analyse the ker-
nel primitives of the L4 microkernel API [7] for
their WCET to enable real-time systems to be built
ontop of the kernel. So far, we have developed a
toolset which allows the measurement-based analy-
sis of the kernel. In terms of the general approach it
follows the paradigm used in [8].

The executable code of the program under test is
analysed to extract the control-flow graph (CFG).
By using the executable code, all compiler optimi-
sations and preprocessor modifications are consid-
ered. The analysis tries to be minimal by focussing
mainly on control-flow changing instructions. How-
ever, this implies that register-indirect branches are
particularly hard to resolve. Instead of a full analy-
sis of the code, we have chosen to use a source code
parser developed in the Goanna project at NICTA
[9] and use debugging information in the executable
to find corresponding parts in the source code.

Traces may be generated either by software in-
strumentation, hardware support, or using cycle-
accurate simulators. Software instrumentation is
subject to overhead and may quickly become too
high a burden in a running system. Cycle-accurate
simulators, however, raise the question of accuracy
of the model in the simulator — “mostly right” is
not good enough. Hardware supported tracing usu-
ally makes use of debugging ports implemented on
the processor die, like the ETM macrocell in some
ARM processors. Traces are taken usually on a ba-
sic block level, where the time stamp of the first in-

2



 1e-04

 0.001

 0.01

 0.1

 1

 0  200  400  600  800  1000  1200

P
ro

ba
bi

lit
y

Execution Time [ns]

Figure 1: Sample ETP

struction of each basic block is stored alongside a
basic block identifier. All the execution time mea-
surements for a basic block are interpreted as a
probability distribution called execution time pro-
file (ETP). While basic blocks exhibit their WCET
easily compared to entire programs, there are no
guarantees that a given block has been completely
represented in the ETP.
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Figure 2: Toolset Overview

The traces are translated into ETPs, an example
of which is depicted in Figure 1. This is performed
using the control-flow graph previously established.
Besides the work of actually producing the traces,
this is the most computationally-expensive part of
the approach.

The CFG is also translated into a tree, which di-
rects the combination of ETPs to form ETPs de-
scribing larger code constructs. Using the tree en-
sures that any possible path combinations are con-
sidered.

For this paper the combination of sequential code
constructs is of particular relevance. The toolset
employs the supremal convolution [10, 11] for this.
The supremal convolution combines two distribu-

tions in such a way that any possible dependency
between the two distributions is conservatively cov-
ered in the result, thus ensuring a safe combination
of two ETPs. However, a major drawback of supre-
mal convolutions is that they are very conservative
and tend towards a yes/no decision instead of a pro-
file when many ETPs are combined [12].

4 Basic Idea

In the previous section we have identified two fun-
damental challenges to the approach we are taking
in analysing the kernel.
1. Ensuring sufficient test coverage on basic block

level.
2. Avoiding the overly-conservative nature of

the supremal convolution without jeopardising
safety.

Looking at the variability of the execution time in
Figure 1 we can see that the ETP is clustered. These
clusters can be attributed to cache misses, which are
dominating the execution time of a given piece of
code. Guaranteeing that the code has actually ex-
perienced its worst case of cache misses during the
execution would go a long way to guaranteeing suf-
ficient measurement coverage.

Cycles

p(x)

Cache misses

Measurements
expected

Measurement results

Static Analysis Prediction

Figure 3: Coverage

In order to tackle this, we aim to establish for
each ETP the different cache-miss scenarios ex-
pected and compare that to the measured ETP as de-
picted in Figure 3. While the creation of a complete
and accurate model of a system including processor
core, caches and peripherial devices is non-trivial
and raises the issue of portability, caches themselves
are only subject to a few parameters which can be
easily established and verified for a given system
[13]. In order to be able to make the connection
between cache misses predicted and the measured
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ETP, it is necessary to reason about the cache-miss
penalty actually imposed on a given cache miss.

While caches are used to mitigate the effect of
long memory access latencies, modern processors
try in various ways to mitigate the effect of cache-
miss penalties. Critical-word-first loads by caches
avoids the overhead of loading data which is not im-
mediatly required, if the request does not hit the first
word in a cache line. Out-of-order execution en-
ables the program to progress on instructions which
are not dependent on the memory location being
loaded. A side effect of out-of-order execution is
that instructions independent of the cache miss are
executed. Thus a cache miss at a given point in the
program reduces the entropy of states the CPU may
be in during the execution of subsequent instruc-
tions after the data has been fetched from memory.

Load/store architectures tend to tag registers
waiting for outstanding memory requests, to enable
continued execution until the register is actually
used. This enables a smart compiler to make use of
instruction scheduling to preload registers as early
as possible to avoid as much of the maximum cache
miss penalty as possible. Contrary to out-of-order
execution, the pipeline is usually drained of instruc-
tions preceding the cache-miss causing instruction.
Some architectures such as the ARM9EJ-S proces-
sor core allow for only a single outstanding memory
transaction. However, other processors such as the
XScale processor family allow for several outstand-
ing requests, by implementing fill buffers and pend
buffers.

Applying the above discussion to the environ-
ment we are performing our analysis in, we make
the following observations:

1. The ARM9EJ-S is only subject to a single out-
standing memory transaction, forcing a stall on
subsequent loads.

2. The ARM-gcc compiler typically uses loaded
registers within three instructions thereby mak-
ing little or no use of the reduced penalty of a
delayed load.

Any approach performing coverage analysis
should inherently have information about depen-
dencies between the cache misses of subsequent ba-
sic blocks (and possibly even beyond that). Exploit-
ing these dependencies as depicted in Figure 4 al-
lows, on the one hand, more realistic bounding of
ETPs, and on the other hand, the reduction of the
overall WCET.

Cache missesCache misses

Block 2
Measurement

Measurement
Block 2

Known
Impossible

Combination

Dependency Structure RestrictedDependency Structure Unknown

Figure 4: Dependency Analysis

5 Static Analysis Approach

Static analysis is well-established as a powerful tool
for computing the WCET of a program. In par-
ticular, abstract interpretation, the tool of choice
for static program analysers, is an attractive tech-
nique for WCET analysis, as it provides a method
for a formally-provable derivation of concrete pro-
gram properties such as cache misses or even actual
bounds on the execution time. Unfortunately, in the
past, all applications of static analysis in the area
have been hampered by the limitations, described
in section 2, inherent to the abstract interpretation
technique.

5.1 Motivation

In our work, we observe that the problem of deriv-
ing the WCET of a given program using static anal-
ysis can be viewed as a search for a proof of a de-
sired program property. In particular, abstract inter-
pretation can be viewed as a way of deriving a con-
structive proof of the desired property by computing
that property directly from the structure of the pro-
gram. However, if we knew the property in the first
place (for example, through empirical measurement
of program’s behaviour) we could, in principle, con-
struct an indirect proof of the same result. In partic-
ular, we can attempt to prove the result by showing
that no possible execution scenario can result in an
answer different from the assumed one. Conversely,
we can disprove our hypothesis by searching for a
suitable counter-example during program analysis.
In the remainder of this section, we argue that the
indirect approach is particularly well suited to the
problem of computing the number of cache misses
experienced during execution of a program.
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5.2 The Basic Approach

We take the set of cache miss counts observed dur-
ing measurement of the program as a hypothesis,
which we subsequently attempt to prove or disprove
through static analysis of the program. The problem
is simpler than attempting to compute the cache be-
haviour “from scratch” since the measured answer
provides finite bounds on the amount of computa-
tion performed during analysis, independent of the
bounds imposed by the particular abstract domain
and the associated join function. This gives us more
leeway in the design of the abstract domain, and in
fact permits us to perform the static analysis of the
program with virtually no loss of information at all.
In particular, observe that:
1. Since the measured set of cache miss counts is fi-

nite, it can always be obtained after a finite num-
ber of steps during abstract analysis, provided
that we take some simple precautions in the de-
sign of our algorithm to avoid divergent chains
of computation.

2. If due care is taken during design of the anal-
ysis algorithm, the above observation is suffi-
cient to guarantee that the analysis is performed
in a “reasonable” amount of time. However,
this does not prevent us from taking additional
measures to avoid the exponential complexity
of complete control path enumeration by com-
bining analysis for sections of the program that
are common to two or more potential execution
paths. In our approach, we will avoid exponen-
tial complexity by binding execution time of our
analysis to the number of cache miss counts ob-
served during measurement.

In other words, we can safely “run” the analyser
until it has either constrained the set of cache miss
counts to a subset of the measured one, or else until
it has detected a counter-example to our hypothesis.
In the later case, the state of the analyser at the time
when the counter-example has been detected pro-
vides invaluable clues permitting the user to extend
the measurement suite to cover the omitted execu-
tion scenarios.

Note that this approach is strictly limited to
analysing those programs for which a “perfect”
measurement suite can actually be constructed from
a finite number of test cases. This excludes, among
others, non-terminating programs. Fortunately, this
is precisely the class of programs suitable for use
in real-time applications and accordingly, covers all
programs that we are concerned with.

The remaining subsection outline our implemen-
tation of this technique.

5.3 Source Program Preparation

First, we translate the input binary program into
a purely-functional representation using the tech-
nique pioneered by Chakravarty, et al. [14]. We
choose a normal form of the continuation-passing
style of lambda calculus as our program repre-
sentation for its similarity to the low-level treat-
ment of control flow on typical processor architec-
tures. In the purely-functional form, all basic blocks
are translated into functions with loops represented
by recursion. Further, all global variables are re-
placed by additional function arguments “threaded”
throughout the control-flow path of the program.
This step is necessary for pragmatic reasons, since
the subsequent program transformations would be-
come prohibitively-expensive without the detailed
data-flow information explicit in purely-functional
programs.

Note that, in this paper, we use the term “func-
tion” in the declarative programming sense of the
word, rather than to refer to the procedures of the
input program. Every function in our analysis cor-
responds loosely to a basic block of the input pro-
gram.

5.4 Cache Analysis

Next, we transform the input program into a new
analyser program that dynamically computes the
cache miss counts of the original program. This
step is very similar to a conventional abstract analy-
sis, and uses the same form of an abstract domain to
represent the cache miss counts. However, since the
solution we seek is computed dynamically during
execution of the analyser program rather than stati-
cally in the course of analysis, we never have to join
abstract values in the analyser program as described
in section 2. During any given actual execution of
the analyser, only one of all possible control flow
paths can be followed. In other words, the anal-
yser program provides a compact, finite represen-
tation of the large (and potentially infinite) number
of all possible control flow paths that would have
to be followed to obtain precise cache miss counts
for every possible execution scenario, just like the
original program provided a compact finite repre-
sentation of all control flow paths of the original
program. Note that the resulting program encodes
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the precise cache miss count for every possible con-
trol flow path without any loss of information. Also
note that such translation of an input program into
an analyser program is performed implicitly by ev-
ery abstract analysis algorithm, although the result-
ing program is rarely “materialised” into an actual
data structure, and typically remains encoded im-
plicitly in the state of the static analyser. Further,
during conventional abstract analysis, the control
structure of the translated program is simplified at
the expense of precision to ensure termination of the
analyser.

Besides this translation, we also perform a
number of standard optimising transformations of
the generated programs, including constant fold-
ing, copy propagation and dead code elimination.
Since the typical calculations involved in computing
cache miss counts are relatively straight-forward in
comparison to the work done by the original input
program, we expect these simple transformations to
result in a dramatic reduction to the size of the anal-
yser program. In particular, large chunks of code
that do not affect cache behaviour should disappear
from the program, thus substantially reducing the
cost of the subsequent stages of the whole process.
We also perform an induction variable analysis to
reduce many common loop patterns such as those
used to obtain a sum of an arithmetic series into a
simple scalar expression.

5.5 Coverage Analysis

Finally, we analyse the transformed program to ver-
ify that it can only return values from the set of
cache miss counts observed during measurement.
In other words, we seek to find the maximal set of
input arguments for which the analyser program re-
turns an answer within the range specified by the
measured set. Our solution first constructs an in-
verse of each function f in the program (in other
words, a function f−1 such that f−1(x) = Y iff,
for all y in the set Y, f(y) = x.) It is a remark-
able fact that such inversion can be performed rel-
atively easily for all functions that may be encoun-
tered in an analyser program. This is because we
are seeking total inversion only, rather than partial
inversion (where some of the input arguments to the
original functions remain fixed) which is a harder
problem. While the ranges of the inverted functions
grow quickly with the number of original function
parameters, as will be shown shortly, this is not a
problem in our application because the size of those

ranges is used to bind the depth of our analysis and
facilitate early termination of our algorithm. The
true exponential growth is therefore never reached
and the overall complexity of the algorithm is a lo-
gistic function of the size of the measured set and
the number of basic blocks in the input program.
The term logistic function relates to an intial expo-
nential growth of the function which subsequently
slows and finally stops.

The analysis maintains a work list of inverted
functions annotated with a set of their input argu-
ments. Initially, the work list contains only those
functions that correspond to the leaves of the call
graph of the original program, each annotated with
the set of cache miss counts obtained through mea-
surement. The algorithm proceeds by extracting
each item from the work list in turn, and terminates
when the work list becomes empty.

A single work list entry is analysed by applying
the given input value set to the corresponding in-
verted function, thus obtaining the maximal set of
corresponding program inputs. We recognise two
scenarios:
1. If the resulting set of values is unconstrained

(as will often happen by the nature of function
inversion), we have determined that the mea-
surements have been exhaustive along the corre-
sponding control-flow path in the original pro-
gram. Accordingly, the function is removed
from the work list.

2. Otherwise, we determine the set of callers of
the function under consideration in the original
(non-inverted) program, and add the correspond-
ing inverted functions to the work list. If no such
functions exist, we have just examined the entry
block of the original program, and accordingly
report the resulting set of constraints to the user.

All constraints reported to the user as a result of the
second point above represent constraints on the in-
put of the original program that must be satisfied in
order for the program’s cache behaviour to remain
within the measured set of cache miss counts. Ac-
cordingly, all input values outside of the constraint
set represent counter-examples to our hypothesis.

5.6 Algorithmic Complexity

In the worst case, the algorithm may analyse all
individual control-flow paths through the program.
However, in practice the worst case is incredibly
difficult to achieve, as the execution of our algo-
rithm is bounded by the size of the constraint set,
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which itself grows exponentially during the func-
tion inversion process. This means that the actual
complexity of the program is a logistic, rather than
an exponential function. In fact, we believe that the
amortised complexity of our algorithm for all termi-
nating input programs is polynomial (quadratic) in
the number of functions (basic blocks) in the pro-
gram. More research is needed to substantiate this
result.

6 Conclusions

In this paper we have outlined our approach to sup-
porting probabilistic measurement-based WCET
analysis with static analysis. The static analysis is
based on a functional representation of the code in-
vestigated and an abstract interpretation of repre-
sentation. The goal is to establish sufficient mea-
surement coverage, and to reduce overestimation
of conservative combination of ETPs by conserva-
tively covering any possible dependencies between
them. Future work will largely center on finishing
the implementation of the plan presented and per-
forming the subsequent evaluation.
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