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Abstract
We consider succinct data structures for representing a set of n horizontal line segments in the
plane given in rank space to support segment access, segment selection, and segment rank queries.
A segment access query finds the segment (x1, x2, y) given its y-coordinate (y-coordinates of the
segments are distinct), a segment selection query finds the jth smallest segment (the segment with the
jth smallest y-coordinate) among the segments crossing the vertical line for a given x-coordinate, and
a segment rank query finds the number of segments crossing the vertical line through x-coordinate i

with y-coordinate at most y, for a given x and y. This problem is a central component in compressed
data structures for persistent strings supporting random access.

Our main result is a data structure using 2n lg n+O(n lg n/ lg lg n) bits of space and O(lg n/ lg lg n)
query time for all operations. We show that this space bound is optimal up to lower-order terms.
We will also show that the query time for segment rank is optimal. The query time for segment
selection is also optimal by a previous bound.

To obtain our results, we present a novel segment wavelet tree data structure of independent
interest. This structure is inspired by and extends the classic wavelet tree for sequences. This leads
to a simple, succinct solution with O(log n) query times. We then extend this solution to obtain
optimal query time. Our space lower bound follows from a simple counting argument, and our lower
bound for segment rank is obtained by a reduction from 2-dimensional counting.
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1 Introduction

Let L be a set of n horizontal line segments in rank space, that is, the line segments are in
the plane [1, 2n] × [1, n] such that there is exactly one endpoint on each x-coordinate and
one segment on each y-coordinate. The segment representation problem is to preprocess L to
support the operations:

segment-access(y): return the segment with y-coordinate y.
segment-select(i, j): return the y-coordinate of the jth smallest segment (the segment
with the jth smallest y-coordinate) among the segments crossing the vertical line through
x-coordinate i.
segment-rank(i, y): return the number of segments crossing the vertical line through
x-coordinate i with y-coordinate at most y.
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27:2 Succinct Data Structures for Segments

Here, we consider a segment (xl, xr, y) to be crossing the vertical line through x-coordinate i

iff xl ≤ i < xr. The segment representation problem in which the endpoints are real numbers
can be reduced to the rank space variant using standard techniques [7]. Bille and Gørtz [2]
considered representing segments to support segment selection queries in connection with
compressed data structures for persistent strings. Here, the problem is supporting random
access on a set of strings represented by a version tree, where each edge represents a replace,
insert, or delete operation on the string represented by the parent node. They showed
that this problem can be reduced to answering segment selection queries on horizontal line
segments. They gave a data structure supporting segment selection queries using O(n lg n)
bits of space and O(lg n/ lg lg n) query time1. Furthermore, they showed that Ω(lg n/ lg lg n)
time is required to answer segment selection queries for any static data structure using
n lgO(1) n bits of space.

1.1 Results
This paper considers succinct data structures for the segment representation problem. We
show the following main result on a standard unit cost word RAM model with logarithmic
word size.

▶ Theorem 1. Given a set of n horizontal line segments, we can solve the segment repres-
entation problem using 2n lg n + O(n lg n/ lg lg n) bits of space and O(lg n/ lg lg n) time for
all queries.

Compared to previous results of Bille and Gørtz [2], Theorem 1 improves the space bounds
from O(n lg n) to 2n lg n + O(n lg n/ lg lg n). At the same time, we obtain the optimal
O(lg n/ lg lg n) query time for segment selection and implement the segment rank query in
the same time. Furthermore, we show that the space bound of Theorem 1 is optimal up to
lower order terms.

▶ Theorem 2. Any data structure representing n horizontal line segments requires at least
2n lg n − O(n) bits.

Finally, we show that the query time for segment rank is also optimal.

▶ Theorem 3. Any static data structure on n horizontal line segments that uses n lgO(1) n

bits of space needs Ω( lg n
lg lg n ) time to support segment rank queries.

1.2 Techniques
We obtain our results by first considering a novel and simple structure, the segment wavelet
tree, which may be of independent interest. The segment wavelet tree is inspired by the
classical wavelet tree structure of Grossi et al. [9], and builds on the observation that the
number of segments crossing a vertical line is the difference between the number of left
and right endpoints occurring before said line. In the same manner, as the wavelet tree
recursively splits the alphabet in its lower and upper half, the segment wavelet tree recursively
splits the segments in the lower and upper half of the plane. Because of this, the segment
wavelet tree can be used to search for the jth segment crossing a vertical line. The segment
wavelet tree, however, only achieves O(lg n) query time since it only splits the plane into 2
horizontal bands. In order to speed up the query to O(lg n/ lg lg n) we generalize the segment

1 We denote lg n = log2 n.
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wavelet tree to the ∆-ary segment wavelet tree, which splits the plane into ∆ horizontal
bands called slabs, leading to Theorem 1. Next, we prove the information-theoretical lower
bound of representing horizontal line segments by showing that in rank space, we need at
least 2n lg n − O(n) bits of space to represent n horizontal line segments. Finally, we prove a
matching lower bound for the segment rank query on horizontal line segments by showing
that any static solution using n lgO(1) n bits of space needs Ω(lg n/ lg lg n) query time. To do
so, we show a reduction from 2-dimensional dominance counting [19].

1.3 Related Work
Queries on Intervals. There exists a related problem called the stabbing-semigroup problem.
The stabbing-semigroup problem is to preprocess a set of n intervals where each interval has
an associated weight, such that given an integer x, we can compute the sum of weights of
the intervals containing x. Agarwal et al. [1] showed how to solve the stabbing-semigroup
problem in O(n lg n) bits of space and O(lg n) query time. They also showed how to make
the structure dynamic, allowing adding and removing intervals in O(lg n) time and how
it can be adapted to work in external memory. Another related query on intervals is the
stabbing-max, which is the problem of finding the interval of maximum weight containing x.
Nekrich [18] described a dynamic data structure that answers one-dimensional stabbing-max
queries in optimal time O(lg n/ lg lg n) using O(n lg n) bits and allows insertions and deletions
of intervals in O(lg n) time. To the best of our knowledge, neither of these problems has
been considered in a succinct setting.

Succinct Data Structures. Many geometric queries on two-dimensional points have been
considered in a succinct setting, including orthogonal range reporting and counting [5, 14, 16],
point location [3, 11] and data-analysis queries [17] (see also the survey by He [10]). We
extend this line of research by considering horizontal line segments in a succinct setting.

2-Dimensional Dominance Counting. The 2-dimensional dominance counting problem
is to preprocess n points, such that given a point (x, y), we can compute the number of
points (x′, y′) where x′ ≤ x and y′ ≤ y. The segment-rank(i, y) can also be viewed as two
2-dimensional dominance counting queries by observing that the number of segments crossing
the vertical line through x-coordinate i with y-coordinate at most y is the difference in the
number of left and right endpoints dominating (i, y). Bose et al. [4] showed that we can answer
2-dimensional dominance counting queries in O(lg n/ lg lg n) time using n lg n+o(n lg n) space,
when the points are in rank space. Thus, we can achieve the same results for segment rank
queries as in Theorem 1 using two 2-dimensional dominance counting structures. However,
this leaves out how to answer segment access and selection queries.

Range Selection. The range selection problem is to preprocess an array A of n unique
integers, such that given a query (i, j, k), one can report the kth smallest integer in the
subarray A[i], A[i + 1], . . . , A[j]. A slight variation of the range selection problem is the prefix
selection problem, which fixates i = 1 in the query. Due to Jørgensen and Larsen [15], the
prefix selection problem can be solved in O(n lg n) bits and O(lg n/ lg lg n) query time with
matching lower bounds. Bille and Gørtz [2] showed the similarity between prefix selection
and segment selection by proving that Ω(lg n/ lg lg n) time is required to answer segment
selection queries for any static data structure using n lgO(1) n space, by reduction from prefix
selection.

CPM 2025
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1.4 Outline
We present the required preliminaries for our solution in Section 2, and then we describe a
simple structure in Section 3 and how we can answer segment rank and select queries with
this structure. We then show our structure in Section 4 and how we answer rank and select
queries succinctly in O(lg n/ lg lg n) time leading to Theorem 1. Finally, we prove the space
lower bounds for representing segments in rank space leading to Theorem 2 and prove the
lower bounds for segment rank queries leading to Theorem 3 in Section 5.

2 Preliminaries

For a given problem P with |U| instances, we need ⌈lg |U|⌉ bits to distinguish between each
instance in the worst case. We say a data structure representing P is compact if it uses
O(⌈lg |U|⌉) bits of space and is succinct if it uses ⌈lg |U|⌉ + o(lg |U|) bits of space [13].

2.1 Succinct Representations of Strings
Let S[1, n] be a string of n characters from an alphabet Σ = {1, 2, . . . , σ} and define the
following operations.

access(S, i) : return S[i].
rank(S, α, i) : return the number of occurrences of character α in S[1, i].
select(S, α, i) : return the position in S of the ith occurrence of character α.

For binary strings, we use the following well-known result:

▶ Lemma 4 ([12]). We can represent a bit string of length n using n + o(n) bits and support
access, rank, and select queries in constant time.

Wavelet Tree. A wavelet tree [9] for a string S is a complete balanced binary tree T with σ

leaves. Each node v in T represents the characters in Σ(v) = [a, b] ⊆ Σ. The root represents
the full alphabet Σ and for any non-leaf node v with alphabet Σ(v) = [a, b] the left child
v0 represents the lower half of Σ(v), i.e., Σ(v0) = [a, a + ⌊(b − a)/2⌋], and the right child
v1 the upper half of Σ(v), i.e., Σ(v1) = [a + ⌊(b − a)/2⌋ + 1, b]. Furthermore, for any leaf
node v, we have Σ(v) = [c, c]. For a node v let S(v) be S restricted to the characters Σ(v).
Each internal node v with left child v0 and right child v1 stores a bitstring B(v) such that
B(v)[i] = 0 if S(v)[i] ∈ Σ(v0) and B(v)[i] = 1 otherwise (S(v)[i] ∈ Σ(v1)).

With the bit string B(v) we can track which child of v will contain each element S(v)[i],
by observing that child vb, where b ∈ [0, 1], will contain element S(v)[i] iff B(v)[i] = b. If
B(v)[i] = b then S(v)[i] will be stored at S(vb)[j] where index j is the number of occurrences
of b in B(v)[1, i] since each occurrence of b is an element in S(v) that would also be in S(vb)
and would be in the same order as they appear in S(v). This is exactly the rank operation
on bit strings, thus S(v)[i] = S(vb)[rank(B(v), b, i)]. With this property, we can navigate
downwards in the wavelet tree. We can also use the bit string B(v) together with select
to navigate upwards in the wavelet tree. Let vb be a child of v. Then the index i that the
symbol S(vb)[j] occurs in S(v) is the index of the jth b in B(v) which is i = select(B(v), b, j).
The following lemma captures these properties:

▶ Lemma 5. Let v be a non-leaf node in a wavelet tree. Given an index i ∈ [1, |B(v)|]
then j = rank(B(v), b, i) is the greatest index in the bit string of the child vb such that
select(B(v), b, j) ≤ i. In particular, if B(v)[i] = b then select(B(v), b, j) = i.
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This follows from the duality of rank and select and the observations made above. Using
Lemma 4 to represent the bit strings of each node one can implement a wavelet tree for a
sequence S[1, n] over the alphabet Σ using n⌈lg σ⌉ + o(n lg σ) bits of space and O(lg σ) query
time for rank, select, and access [16]. A more recent result shows the following:

▶ Lemma 6 ([8]). The wavelet tree for a sequence S[1, n] over the alphabet Σ = {1, 2, . . . , σ}
uses n⌈lg σ⌉ + o(n) bits of space and O(lg σ) query time for rank, select, and access.

3 Segment Wavelet Tree

Here, we present a simple succinct solution to the segment representation problem with the
following bounds.

▶ Theorem 7. Given a set of n horizontal line segments in the plane [1, 2n] × [1, n], we can
solve the segment representation problem succinctly in 2n lg n + O(n) bits and O(lg n) time
for all queries.

We will begin by describing the content of our data structure and then show how we can
answer queries using this structure.

3.1 Data Structure
Let L be a set of n horizontal line segments in rank space. We define the segment wavelet
tree as a recursive decomposition of the line segments in L similar to the wavelet tree. For
simplicity, we assume that n is a power of 2. Define L[a, b] ⊆ L to be the segments with
y-coordinate in [a, b]. The segment wavelet tree T for L is a complete balanced binary tree
on n leaves. Each node v represents a set of segments L(v) = L[a, b]. The root r represents
L(r) = L[1, n] = L. Let v be an internal node representing the segments L(v) = L[a, b], and
let v0 and v1 be the left and right child of v, respectively. Then v0 represents the segments
L(v0) = L[a, ⌊(b − a)/2⌋] and v1 represents the segments L(v1) = L[⌊(b − a)/2⌋ + 1, b]. A
leaf node v represents a single segment L(v) = L[a, a].

We store the segment wavelet tree succinctly as follows. Each internal node v stores two
bitstrings BL(v) and BR(v) of length |L(v)|.

BL(v)[i] =
{

0 if the ith segment in L(v) ordered by left endpoint is in L(v0)
1 otherwise

BR(v)[i] =
{

0 if the ith segment in L(v) ordered by right endpoint is in L(v0)
1 otherwise

Furthermore, we store a bitstring E[1, 2n] where

E[i] =
{

0 there is a left endpoint with x-coordinate i in L
1 otherwise

See Figure 1 for an example.
Alternatively, one can also view the segment wavelet tree as two superimposed wavelet

trees of the strings Y L[1, n] and Y R[1, n], where Y L[1, n] and Y R[1, n] are the strings of
y-coordinates of the left and right endpoints, respectively, ordered by increasing x-coordinate.

To achieve the desired space bounds, we store BL and BR as their superimposed wavelet
trees Y L and Y R according to Lemma 6 and the bitstring E according to Lemma 4.

CPM 2025
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Analysis. The total length of Y L and Y R is 2n and the length of E is 2n. By Lemmas 4
and 6 the total space is 2n⌈lg n⌉ + o(n) + 2n + o(n) = 2n lg n + O(n) bits.
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L = {(27, 32, 1), (19, 29, 2), (3, 16, 3), (2, 7, 4), (23, 28, 5), (8, 12, 6), (1, 25, 7), (4, 9, 8), (10, 14, 9),
(15, 22, 10), (24, 26, 11), (11, 31, 12), (5, 21, 13), (17, 18, 14), (20, 30, 15), (6, 13, 16)}

Figure 1 The top 3 levels of the segment wavelet tree of the segments L and the computed local
variables for the query segment-select(7, 2), where v is root of the segment wavelet tree. For some of
the nodes, the corresponding subproblem is visualized as a 2D plane, where empty columns have
been removed. The bitvectors BL and BR of each node is horizontally spaced such that each bit
vertically aligns with the endpoint it represents. The visited nodes in the query segment-select(7, 2)
are marked with a red arrow together with the local variables. Furthermore, in the 2D plane of the
visited nodes, the vertical line with x-coordinate 7 is highlighted, and the prefix of the bitvectors
BL and BR that correspond to the endpoints with x-coordinate at most 7 are also highlighted.

3.2 Segment Access Queries

We now show how to answer segment-access queries in O(lg n) time. To answer a
segment-access(y) query, we do a bottom-up traversal of the segment wavelet tree T starting
at the yth leaf in the left-to-right order. Let s = (xl, xr, y) denote the segment we are
searching for. At each node v in the traversal we maintain the following local variables:
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lv = the number of segments in L(v) whose left endpoint has x-coordinate at most xl.
rv = the number of segments in L(v) whose right endpoint has x-coordinate at most xr.

We perform the traversal as follows. Initially, v is the yth leaf and lv = rv = 1. Consider a
non-root node v with parent vp and let b = 0 if v is the left child of vp and b = 1 otherwise. We
compute lvp = select(BL(vp), b, lv) and rvp = select(BR(vp), b, rv). When we reach the root
u we compute xl = select(E, 0, lu) and xr = select(E, 1, ru). Finally, we return (xl, xr, y).

Analysis. We use constant time at each node, and we visit one node at each level of the
segment wavelet tree. Since the height of T is O(lg n), the total time is O(lg n).

Correctness. Let s = (xl, xr, y) be the segment with y-coordinate y. We show inductively
that lv and rv are computed correctly for each v on the path in the bottom-up traversal. When
v is the yth leaf we have L(v) = {s} and thus lv = 1 and rv = 1. Consider an internal non-root
node v. Assume s ∈ L(v) and lv and rv are correct. Let vp be the parent of v and b = 0 if v is
the left child of vp and b = 1 otherwise. The bitstrings BL(vp) and BR(vp) are b in every index
corresponding to a segment in L(v). Thus lvp = select(BL(vp), b, lv) is the number of segments
in L(vp) whose left endpoint has x-coordinate at most xl, and rvp

= select(BR(vp), b, rv) is
the number of segments in L(vp) whose right endpoint has x-coordinate at most xr. Let u

be the root. Since E are 0 and 1 in every index corresponding to a left and right segment
endpoint, respectively, we have xl = select(E, 0, lu) and xr = select(E, 1, ru).

3.3 Segment Select Queries
We now show how to answer segment-select queries in O(lg n) time. To answer a
segment-select(i, j) query, we do a top-down traversal in the segment wavelet tree T starting
at the root and ending in the leaf containing the jth crossing segment of the vertical line at
time i.

At each node v with L(v) = L[a, b] in the traversal we maintain the following local
variables:

lv = the number of segments in L(v) whose left endpoint has x-coordinate at most i.
rv = the number of segments in L(v) whose right endpoint has x-coordinate at most i.
j̄v = the number of segments in L[1, a − 1] crossing the vertical line at i.
jv = j − j̄v, such that the jvth segment in L(v) crossing the vertical line at i

is the jth segment in L crossing the vertical line at i.

We perform the traversal as follows. Initially, v is the root and we have rv = rank(E, 1, i),
lv = i − rv, j̄v = 0 and jv = j. Consider an internal node v with children v0 and v1 and
suppose we have computed lv, rv, j̄v, and jv. We first compute the number of segments k in
L(v0) crossing the vertical line at i as

k = rank(BL(v), 0, lv) − rank(BR(v), 0, rv) .

That is, k is computed as the number of left endpoints of segments in L(v0) with x-coordinate
at most i subtracted by the number of right endpoints in L(v0) with x-coordinate at most i.

We continue the traversal in child vb, where b = 0 if jv ≤ k and b = 1 otherwise.

CPM 2025



27:8 Succinct Data Structures for Segments

We then compute the local variables for the child vb as

lvb
= rank(BL(v), b, lv)

rvb
= rank(BR(v), b, rv)

j̄vb
=

{
j̄v if b = 0
j̄v + k otherwise

jvb
= j − j̄vb

When v is a leaf and L(v) = L[a, a] we return a.

Analysis. We use constant time at each node and visit one node at each level of the segment
wavelet tree. Since the height of T is O(lg n), the total time is O(lg n).

Correctness. Let s be the jth smallest segment crossing the vertical line at i. We show
inductively, that s ∈ L(v) and lv, rv, j̄v, and jv are computed correctly for each v on the
path in the top-down traversal.

When v is the root we have s ∈ L(v) = L and j̄v = 0 and jv = j. By definition, we have
rv = rank(E, 1, i) is the number of segments in L whose right endpoint has x-coordinate at
most i. Then, lv = i − rv = rank(E, 0, i) is the number of segments in L whose left endpoint
has x-coordinate at most i.

Consider an internal non-root node v. Assume s ∈ L(v) and that lv, rv, j̄v, and jv are
correct. Let vb be the child of v computed by the algorithm. The bitstrings BL(v) and BR(v)
are 0 in every index corresponding to a segment in L(v0). Thus k = rank(BL(v), 0, lv) −
rank(BR(v), 0, rv) is the number of segments crossing the vertical line at i in L(v0). The set
L(v0) contains the lower half of the segments in L(v). Thus if jv ≤ k then s ∈ L(v0), j̄v0 = j̄v

and jv0 = jv = j − j̄v0 . Otherwise, s ∈ L(v1), j̄v1 = j̄v + k and jv1 = jv − k = j − j̄v1 . It
follows that we continue the traversal in the correct child vb. By definition of BL(v) and
BR(v) it follows that lvb

, and rvb
are computed correctly.

3.4 Segment Rank Queries

We now show how to answer segment-rank queries in O(lg n) time. To answer a
segment-rank(i, y) we perform a top-down traversal in the segment wavelet tree T start-
ing at the root and ending in the leaf v such that L(v) = L[y, y]. At each node v in the
traversal we compute the local variables lv, rv and j̄v in the same manner as in Section 3.3.
We perform the traversal as follows. Consider an internal node v with L(v) = L[a, b] and
children v0 and v1, we continue the traversal in child vb, where b = 0 if y ≤ ⌊(b − a)/2⌋ and
b = 1 otherwise. When v is a leaf we return j̄v + (lv − rv).

Analysis. We use constant time at each node, and we visit one node at each level of the
segment wavelet tree. Since the height of T is O(lg n), the total time is O(lg n).

Correctness. The correctness follows immediately from the correctness argument in Sec-
tion 3.3 and the definition of lv, rv and j̄v.

In summary, we have shown Theorem 7.
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4 Generalized Segment Wavelet Tree

Here, we generalize the solution in Section 3 to a tree of out-degree ∆ = ⌈lgϵ n⌉, where
0 < ϵ < 1. To increase the out-degree to ∆, we first consider the required data structure to
partition the segments into ∆ horizontal bands called slabs. Afterward, we will describe the
content of our data structure and show how we can answer queries using this structure.

4.1 Succinct Slab Representation
Let L be a set of n horizontal line segments partitioned into ∆ = ⌈lgϵ n⌉ slabs of approximately
equal size, where 0 < ϵ < 1. The slab representation problem is to preprocess L to support
the operations:

slab-select(v, i, j): return the slab k containing the jth segment in L(v) according to
increasing y-coordinate among the segments crossing the vertical line through x-coordinate
i.
slab-rank(v, i, j): return the number of segments in L(v) crossing the vertical line through
x-coordinate i in slabs [1, j].
endpoint-select(v, k, i): return the x-coordinate of the ith endpoint in L(v) in the kth
slab according to increasing x-coordinate among the segments.
endpoint-rank(v, k, i): return the number of endpoints in L(v) in the kth slab who has a
x-coordinate of at most i.

In [2] they show that slab-select and slab-rank can be done in O(n lg lgϵ n) space and
constant query time using O(n) preprocessing time. We show how to modify this result and
the analysis to achieve 2n lg lgϵ n + O(n) bits of space while maintaining constant query time.

▶ Lemma 8. Given a set of n horizontal line segments, partitioned into ∆ = ⌈lgϵ n⌉ horizontal
slabs for 0 < ϵ < 1, we can solve the slab representation problem in 2n lg lgϵ n + O(n) bits of
space and O(1) time for all queries.

Proof. In [2] they partition the sequence of segment endpoints into blocks, which are further
partitioned into cells. Their data structure consists of the following components.
1. A predecessor data structure for each block.
2. The first column of each cell.
3. The sequence of slab indices each endpoint belongs to, ordered by increasing x-coordinate.
4. A global table for tabulating queries inside the cells.
We modify the block width to be ⌈lgλ n⌉⌈lg n⌉ instead of ⌈lgϵ n⌉⌈lg n⌉, for another parameter
ϵ < λ < 1. This also sets the cell width to ⌈lgλ n⌉. Plugging into their analysis, this implies
the following space bounds.
1. The predecessor structure uses O(lgϵ n lg n) space for each block. The number of blocks

is 2n
⌈lgλ n⌉⌈lg n⌉ , hence the space required is O(2n lgϵ n

lgλ n
) = o(n).

2. Each entry of the first column of a cell can be encoded in O(lg lgϵ n). The combined
height of all cells is 2n ⌈lgϵ n⌉

⌈lgλ n⌉ and thus the combined space is 2n ⌈lgϵ n⌉
⌈lgλ n⌉ · O(lg lgϵ n) = o(n).

3. The sequence contains 2n endpoints, and each endpoint can be encoded in lg lgϵ n + O(1)
bits, thus the entire sequence uses 2n lg lgϵ n + O(n) space.

4. The global table has size 2O((lgλ n+lgϵ n)·lg lg n) · O(lg lgϵ n) = 2O((lgλ n+lgϵ n)·lg lg n) = o(n).
In total, the data structure uses 2n lg lgϵ n + O(n) space and the same O(n) preprocessing
time. Using standard techniques [6], we can also support select and rank on the sequence
of endpoints in constant time using O(n) extra space. Since the sequence of endpoints is
ordered by increasing x-coordinate select and rank are equivalent with endpoint-select and
endpoint-rank, respectively. ◀
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4.2 Data Structure
Let L be a set of n horizontal line segments in rank space. We define the ∆-ary segment
wavelet tree as a recursive decomposition of the line segments in L similar to the ∆-ary
wavelet tree. For simplicity, we assume that n is a power of ∆. Define L[a, b] ⊆ L to be the
segments with y-coordinate in [a, b]. The ∆-ary segment wavelet tree T for L is a complete
balanced ∆ = ⌈lgϵ n⌉ tree on n leaves. Each node v represents a set of segments L(v) = L[a, b].
The root r represents L(r) = L[1, n] = L. Let v be an internal node representing the segments
L(v) = L[a, b], and let v0, . . . , v∆−1 be the children of v. Then vi represents the segments
L(vi) = L[a + ⌊(1 + b − a)/∆ · i⌋, a + ⌊(1 + b − a)/∆ · (i + 1)⌋ − 1]. A leaf node v represents a
single segment L(v) = L[a, a]. We store the ∆-ary segment wavelet tree succinctly as follows.
Intuitively, each internal node v stores the structure of Lemma 8, but to achieve the desired
space complexity, we instead, for each level in the ∆-ary segment wavelet tree, concatenate
the segments of the nodes on that level into one single structure of Lemma 8, as in [16].
Since there is exactly one segment of each y coordinate, we can easily maintain the indices
into the single structure corresponding to each node. When n is not a power of ∆, we pack
the segments such that all levels in T are complete except possibly the lowest, which is filled
from the left. We then store the path along with indices to the rightmost leaf on the lowest
level. This allows us to compute the indices into the single structure of each level.

Analysis. Each level of the tree contains all the segments and thus uses 2n lg lgϵ n + O(n)
bits of space by Lemma 8. Since the height of this tree is log∆ n = lg n/ lg lgϵ n the entire
data structure uses 2n lg n + O(n lg n/ lg lg n) = 2n lg n + O(n lg n/ lg lg n) bits of space and
O(n lg n/ lg lg n) preprocessing time.

4.3 Segment Access Queries
We now show how to answer segment-access queries in O(lg n/ lg lg n) time. To answer a
segment-access(y) query, we first compute the path to the yth leaf in the left-to-right order.
We can trivially compute the path by performing a top-down traversal of the ∆-ary segment
wavelet tree T starting at the root and ending in the yth leaf. We then do a bottom-up
traversal of the ∆-ary segment wavelet tree T starting at the yth leaf. Let s = (xl, xr, y)
denote the segment we are searching for. At each node v in the traversal we maintain the
following local variables:

lv = the number of endpoints in L(v) who has x-coordinate at most xl.
rv = the number of endpoints in L(v) who has x-coordinate at most xr.

We perform the traversal as follows. Initially, v is the yth leaf and lv = 1 and rv = 2.
Consider a non-root node v with parent vp and let v be the kth child of vp. We compute
lvp = endpoint-select(vp, k, lv) and rvp = endpoint-select(vp, k, rv). When we reach the root u

we return (lu, ru, y).

Analysis. We use constant time at each node and visit one node at each level of the ∆-ary
segment wavelet tree. Since the height of T is O(lg∆ n) = O(lg n/ lg lg n), the total time is
O(lg n/ lg lg n).

Correctness. Let s = (xl, xr, y) be the segment with y-coordinate y. We show inductively
that lv and rv are computed correctly for each v on the path in the bottom-up traversal.
When v is the yth leaf we have L(v) = {s} and thus lv = 1 and rv = 2. Consider an internal
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non-root node v. Assume s ∈ L(v) and lv and rv are correct. Let vp be the parent of v and
let v be the ith child of vp. The segments in L(v) are in slab i of vp. Thus by the definition
of endpoint-select lvp

= endpoint-select(vp, b, lv) is the number of endpoints in L(vp) who has
x-coordinate at most xl and rvp = endpoint-select(vp, b, rv) is the number of endpoints in
L(vp) who has x-coordinate at most xr. When we arrive at the root u we have xl = lu and
xr = ru.

4.4 Segment Select Queries
We now show how to answer segment-select queries in O(lg n/ lg lg n) time. To answer a
segment-select(i, j) query, we do a top-down traversal in the ∆-ary segment wavelet tree T

starting at the root and ending in the leaf containing the jth crossing segment of the vertical
line at time i.

At each node v with L(v) = L[a, b] in the traversal we maintain the following local
variables:

iv =the number of endpoints in L(v) who has x-coordinate at most i.
j̄v =the number of segments in L[1, a − 1] crossing the vertical line at i.
jv =j − j̄v, such that the jvth segment in L(v) crossing the vertical line at i

is the jth segment in L crossing the vertical line at i.

We perform the traversal as follows. Initially, v is the root and we have iv = i, j̄v = 0
and jv = j. Consider an internal node v with children v0, . . . , v∆−1 and suppose we have
computed lv, j̄v, and jv. We compute the child vk containing the jvth segment crossing the
vertical line at iv as

k = slab-select(v, iv, jv)

We then compute the local variables for the child vk as

ivk
= endpoint-rank(v, k, iv)

j̄vk
= slab-rank(v, iv, k − 1) + j̄v

jvk
= j − j̄vk

When v is a leaf and L(v) = L[a, a] we return a.

Analysis. We use constant time at each node and visit one node at each level of the ∆-ary
segment wavelet tree. Since the height of T is O(lg n/ lg lg n), the total time is O(lg n/ lg lg n).

Correctness. Let s be the jth smallest segment crossing the vertical line at i. We show
inductively that s ∈ L(v) and iv, j̄v, and jv are computed correctly for each v on the path in
the top-down traversal.

When v is the root we have s ∈ L(v) = L and j̄v = 0 and jv = j. By definition, we have
iv = i is the number of endpoints in L with x-coordinate at most i.

Consider an internal non-root node v. Assume s ∈ L(v) and that iv, j̄v, and jv are
correct. Let vk be the child of v computed by the algorithm. The segments in L(vk)
are in slab k of v. By the definition of slab-select the jvth segment crossing the vertical
line at iv is k = slab-rank(v, iv, k − 1). Furthermore by the definition slab-rank(v, iv, k − 1)
is the number of segments crossing the vertical line at i in L(v0) ∪ . . . ∪ L(vk−1) and
endpoint-rank(v, k, iv) is the number of endpoints in L(vk) who has x-coordinate at most i.
Hence ivk

= endpoint-rank(v, k, iv) and j̄vk
= slab-rank(v, iv, k − 1) + j̄v.
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4.5 Segment Rank Queries
We now show how to answer segment-rank queries in O(lg n/ lg n lg n) time. To answer a
segment-rank(i, y), we perform a top-down traversal in the segment wavelet tree T starting at
the root and ending in the leaf v such that L(v) = L[y, y]. At each node v with L(v) = L[a, b]
in the traversal, we compute the local variables iv, and j̄v in the same manner as in Section 4.4.
We perform the traversal as follows. Consider an internal node v with L(v) = L[a, b] and
children v0, . . . , v∆−1. we continue the traversal in child vk, where k = ⌊(y−a)/((1+b−a)/∆)⌋.
When v is a leaf we return j̄v + 1 if iv = 1 and j̄v otherwise.

Analysis. We use constant time at each node and visit one node at each level of the segment
wavelet tree. Since the height of T is O(lg n/ lg lg n), the total time is O(lg n/ lg lg n).

Correctness. The correctness follows immediately from the correctness argument in Sec-
tion 4.4 and the definition of iv, j̄v and slab-rank.

In summary, we achieve Theorem 1.

5 Lower Bounds

5.1 Horizontal Line Segments in Rank Space
Here, we show Theorem 2. Let L be a set of n horizontal line segments in rank space on the
plane [1, 2n] × [1, n] such that there is exactly one endpoint on each x-coordinate and one
segment on each y-coordinate. If we only consider the x-coordinates of the left and right
endpoint of each segment, then the number of ways to arrange n pairs of endpoints is the
number of ways that we can pair 2n elements.

n∏
i=1

(2i − 1) = (2n)!
2nn!

Since each segment has a unique y-coordinate, the number of ways the segments can
be arranged on the y-axis is n!. Thus, the number of ways to arrange n segments in
rank space [1, 2n] × [1, n] is (2n)!

2n . Thus to distinguish between each instance we need⌈
lg (2n)!

2n

⌉
= 2n lg n − O(n) bits. In summary, we have shown Theorem 2.

5.2 Segment Rank in Rank Space
Here, we show Theorem 3. We reduce from 2-dimensional dominance counting. The 2-
dimensional dominance counting problem is to preprocess n points (x1, y1), . . . , (xn, yn) from
rank space, such that given a point (x, y) compute the number of points (xi, yi) such that
xi ≤ x and yi ≤ y.

▶ Lemma 9 ([19]). Any static data structure on n points that uses n lgO(1) n bits of space
requires Ω( lg n

lg lg n ) time to support dominance counting queries.

Given n points (x1, y1), . . . , (xn, yn) to the 2-dimensional dominance counting problem, we
construct an instance of the segment representation problem. We assume wlog. that these n

points are in rank space on the plane [1, n] × [1, n] such that there is exactly one point on
each x and y coordinate. To see why this assumption is acceptable to establish the lower
bound, we refer to the discussion by Pătras,cu [19]. We construct the n segments L as follows:
For each point (xi, yi) we construct the corresponding segment such that the left endpoint
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is (xi, yi) and the right endpoint is (n + xi, yi) for 1 ≤ i ≤ n. For a given query point
(x, y), we count the number of points (xi, yi) such that xi ≤ x and yi ≤ y by performing
the query segment-rank(x, y). Since no segment ends before x-coordinate n, the number of
segments crossing the vertical line through x-coordinate x with y-coordinate in [1, y] are the
segments with left endpoints (xi, yi) such that xi ≤ x and yi ≤ y. In summary, we have
shown Theorem 3.
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