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Abstract
The Burrows-Wheeler transform (BWT) is a string transformation that enhances string indexing and
compressibility. Cotumaccio and Prezza [SODA ’21] extended this transformation to nondeterministic
finite automata (NFAs) through co-lexicographic partial orders, i.e., by sorting the states of an NFA
according to the co-lexicographic order of the strings reaching them. As the BWT of an NFA shares
many properties with its original string variant, the transformation can be used to implement indices
for locating specific patterns on the NFA itself. The efficiency of the resulting index is influenced
by the width of the partial order on the states: the smaller the width, the faster the index. The
most efficient index for arbitrary NFAs currently known in the literature is based on the coarsest
forward-stable co-lex (CFS) order of Becker et al. [SPIRE ’24]. In this paper, we prove that this CFS
order can be encoded within linear space in the number of states in the automaton. The importance
of this result stems from the fact that encoding such an order in linear space represents a big first
step in the direction of building the index based on this order in near-linear time – the biggest open
research question in this context. The currently most efficient known algorithm for this task run in
quadratic time in the number of transitions in the NFA and are thus infeasible to run on very large
graphs (e.g., pangenome graphs). At this point, a near-linear time algorithm is solely known for the
simpler case of deterministic automata [Becker et al., ESA ’23] and, in fact, this algorithmic result
was enabled by a linear space encoding for deterministic automata [Kim et al., CPM ’23].
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1 Introduction

The Burrows-Wheeler transform (BWT) [4] is a renowned reversible string transformation
that rearranges a string’s characters to improve compressibility, while at the same time
allowing the implementation of efficient indices. Although the original BWT was designed
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15:2 Encoding Co-Lex Orders in Linear Space

for strings, Gagie et al. extended this transformation to a particular class of nondeterministic
finite automata (NFAs), which they termed Wheeler NFAs [11]. Subsequently, Cotumaccio
et al. [10, 8] managed to extend the transformation to arbitrary NFAs through the concept
of co-lexicographic orders (abbreviated to co-lex orders), yielding a natural extension of the
BWT to NFAs. More precisely, co-lex orders are particular partial orders ≤ on an NFA’s
states such that, if u ≤ v, with u, v being two states, then the strings reaching u and not
reaching v are smaller than or equal to the strings reaching v and not reaching u. Such
co-lex orders exist for every NFA and can be used to implement indices on the recognized
regular language. The efficiency of the index depends on the width of the used co-lex order
(a parameter being equal to 1 on Wheeler NFAs and always upper-bounded by the number
of states). Specifically, the smaller the width of the co-lex order, the faster and smaller
the resulting index. Computing the co-lex order of minimal width is however an NP-hard
problem [12]. This issue has been addressed by Becker et al. [2, 3], who introduced coarsest
forward-stable co-lex (CFS) orders, a new category of partial preorders that are as useful
as co-lex orders for indexing purposes. Such CFS orders are guaranteed to exist for every
NFA and, furthermore, are unique and can be computed in polynomial time. Moreover, the
width of the CFS order is never larger than that of any co-lex order and, in some cases, is
asymptotically smaller than the minimum-width co-lex order. As a result, CFS orders enable
the implementation of indices in polynomial time, which are never slower than those based
on co-lex orders, and that in some cases are asymptotically faster and smaller. However, the
state-of-the-art algorithm for computing such CFS orders has quadratic time complexity
with respect to the number of transitions in the automaton [3, Corollary 1]. This quadratic
time complexity makes the application of such CFS orders infeasible in practice, e.g., in
bioinformatics, where pangenome graphs (i.e., graphs encoding the DNA of a population)
are used more and more frequently [16]. Such pangenome graphs fall within the category
of big data for which only near-linear time algorithms can be considered feasible [15]. For
this reason, the current main open research problem in this realm is to find an efficient, i.e.,
near-linear time, algorithm for computing co-lex orders of small width for arbitrary NFAs.
For the special case of deterministic finite automata such a near-linear time algorithm is
known [2, Algorithm 2] and its discovery was preceded by an encoding of this order that
takes linear space with respect to the number of states of the automaton [13]. A similar
linear space representation for the general case of nondeterministic finite automata is however
not known for any of the candidate co-lex orders in the literature. In this paper, we resolve
this main problem that hinders us to find an efficient algorithm for computing co-lex orders
for arbitrary NFAs. We do so by giving an efficient data structure for the following problem.

▶ Problem 1. Given a forward-stable NFA, find a data structure for its maximum co-lex
order ≤F S that supports queries of the form: given two states u and v, determine if u ≤F S v.

Here a forward-stable NFA is an NFA for which the coarsest forward stable partition [14] is
equal to the partition consisting of all singleton sets. The CFS order on an arbitrary NFA [3,
Definition 6] is defined as the maximum co-lex order on the corresponding forward-stable
NFA. The forward stable NFA is a quotient automaton of the original automaton (thus its
size is at most the size of the original automaton). As a result, a data structure for Problem 1
permits to represent the CFS order of an arbitrary NFA and is thus general enough to
represent a co-lex order for an arbitrary NFA.

Contribution and Main Techniques. In this article we give a data structure for Problem 1
stated above. More precisely, we prove the following theorem. In what follows, we denote
with n the number of states and with m the number of transitions of the NFA at hand.
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▶ Theorem 2. Given a forward-stable NFA with n states, there exists a data structure for
Problem 1 taking O(n) space and supporting queries in O(n) time.

Here space is measured in RAM words of Θ(log n) bits. In order to better put our result
into context we observe that there are two trivial solutions to Problem 1. (1) Explicitly
storing the n2 pairs of the co-lex order yields a data structure for Problem 1 that takes O(n2)
bits and supports queries in O(1) time. (2) Storing the input NFA takes O(m) space and
the NFA inherently represents its maximum co-lex order ≤F S . It is however unclear how to
support queries efficiently in this case. Both of these approaches require Ω(n2) bits to be
stored in the worst-case as the number of transitions may be Θ(n2).

Our data structure that satisfies the properties in Theorem 2 relies on three main
techniques. (i) We assume to have computed a co-lex extension ≤, i.e., a total order that is
a superset of the maximum co-lex order of a forward-stable NFA (see Definition 11 for the
formal definition). Such a co-lex extension can be obtained by running the ordered partition
refinement algorithm of Becker et al. [2]. (ii) For each state, we store a left-minimal infimum
walk P inf

u and a right-maximal supremum walk P sup
u to u. An infimum (supremum) walk to

a state u is a walk encoding the lexicographic smallest (largest) string reaching u from the
initial state. An infimum (supremum) walk Pu to a state u is left-minimal (right-maximal)
if, whenever it intersects with another infimum (supremum) walk P ′

u, then the predecessor in
Pu is smaller (larger) than or equal to the predecessor in P ′

u according to the co-lex extension.
We study this type of walks in Sections 3 and 6. (iii) For each state u, we furthermore store
two integers ϕ(u, P inf

u ) and γ(u, P sup
u ) that we use in order to encode the deepest states on

the infimum walk P inf
u (supremum walk P sup

u ) that is in infimum (supremum) conflict with
P inf

u (P sup
u ). We introduce this concept of infimum and supremum conflicts in Section 4.

Intuitively, a state ū in P inf
u is in infimum conflict with P inf

u if there exists a state û that is
incomparable with ū according to the maximum co-lex order and both ū and û can reach u

with the same string α.
Figure 1 shows the decision tree used by our data structure in order to determine

comparability with respect to the CFS order ≤F S between two states u and v based on the
above three concepts. Let u and v be two states. If u = v, then u ≤F S v holds by reflexivity,
case (a) in Figure 1. Otherwise, if v < u (here < means v ≤ u with respect to the co-lex
extension and v ≠ u), we can conclude ¬(u ≤F S v), case (b) in Figure 1. Otherwise, let
P sup

u be the right-maximal supremum walk to u and let P inf
v be the left-minimal infimum

walk to v. Imagine traversing the two walks from u and v backwards yielding a sequence of
pairs (ui, vi)i≥1. While traversing the walks we can construct the strings sup Iu and inf Iv.
If sup Iu ≤ inf Iv, we know that u ≤F S v, case (c) in Figure 1. Otherwise, when comparing
the pairs ui, vi with respect to the co-lex extension ≤, we are guaranteed to find a pair uj , vj

such that vj < uj . We distinguish two cases, if for each i ∈ [j − 1], we have ui < vi as in
case (d) of Figure 1, then ¬(u ≤F S v). Otherwise, there exists a minimal integer j′ ≤ j

such that uj′ = vj′ . In this case, the comparability of u and v can be decided using the
infimum/supremum conflicts. Consider the maximum integer h such that either uh is in sup
conflict with P sup

u or vh is in inf conflict with P inf
v . If h ≥ j′ (case (e) in Figure 1), we know

¬(u ≤F S v). In fact, the opposite would imply that either P sup
u is not right-maximal or P inf

u

is not left-minimal. Finally, if h < j′ (case (f) in Figure 1), we conclude that u ≤F S v. The
details of the data structure are presented in Section 5. We remark that the existence of our
left-minimal infimum and right-maximal supremum walks is actually proved independently
of the labels in the graph through an unlabeled analogue that we call leftmost/rightmost
walks. These walks represent a combinatorial object in unlabeled directed graphs that may
be of independent interest. As a central ingredient of our proof, we show constructively (i.e.,

CPM 2025



15:4 Encoding Co-Lex Orders in Linear Space

through an algorithm) that such leftmost/rightmost walks are guaranteed to exist for any
(unlabeled) directed graph and can be represented by a linear space function that encodes
the predecessor of each node in their leftmost/rightmost walk. This is shown in Section 6.

u = v

u ≤F S v
Definition 6

(a)

v < u

¬(u ≤F S v)
Corollary 10,

Lemma 12
(b)

sup Iu ≤ inf Iv

u ≤F S v
Lemma 14

(c)

∀i ∈ [j − 1], ui < vi max{γj′
(u, P sup

u ), ϕj′
(v, P inf

v )} ≥ j′

¬(u ≤F S v)
Lemma 15

(d)

¬(u ≤F S v)
Lemma 24

(e)

u ≤F S v
Lemma 24

(f)

yes

no

yes

no no no

yes yes yes no

Figure 1 Let ≤F S and ≤ be the maximum co-lex order (see Definition 6) and a co-lex extension
(see Definition 11) of a forward-stable NFA A, respectively. Let u and v be any two states in A.
Denote with P sup

u = (ui)i≥1 a supremum right-maximal walk to the state u and with P inf
v = (vi)i≥1

an infimum left-minimal walk to v (see Definitions 5 and 19). The figure shows the decision tree
representing all possible cases that may arise when determining whether u ≤F S v. Here, j is the
smallest integer such that vj < uj , while j′ is the smallest integer such that uj′ = vj′ . Functions ϕj′

and γj′
represent the deepest states in infimum/supremum conflict with the walks P sup

u and P inf
v .

2 Preliminaries

Strings and NFAs. Given an alphabet Σ, we denote by Σ∗ the set of all finite strings over
Σ, where ε ∈ Σ∗ is the empty string. Moreover, we define Σω as the set containing all strings
formed by an infinite enumerable concatenation of characters from Σ (i.e., strings of infinite
length). In particular, we consider right-infinite strings, meaning that α ∈ Σω is constructed
from ε by appending an infinite sequence of characters to its end. Therefore, the operation
of prepending a character a ∈ Σ of α ∈ Σω is well defined and yields the string aα. The
notation αω, with α ∈ Σ∗, denotes the concatenation of an infinite (enumerable) number
of copies of α. In this paper, we assume to have a fixed total order ≤ over Σ. We extend
≤ to Σ∗ ∪ Σω in order to obtain the lexicographic order on strings. For each α ∈ Σ∗ ∪ Σω,
|α| = l denotes the length of α, where l =∞ if α ∈ Σω. In addition, for each integer i with
1 ≤ i < l + 1, αi denotes the i-th character of α, starting from the left. Finally, we denote
with α[i, j], where i, j are two integers such that 1 ≤ i ≤ j < l + 1, the string of Σ∗ formed
by the concatenation of characters αi αi+1 . . . αj .

A nondeterministic finite automaton (NFA) is a 4-tuple (Q, δ, Σ, s), where Q represents
the set of the states, δ : Q×Σ→ 2Q is the automaton’s transition function, Σ is the alphabet,
and s ∈ Q is the initial state. The standard definition of NFAs also includes a set of final
states; however, we omitted them since we are not interested in distinguishing between final
states and non-final states. Given an NFA A = (Q, δ, Σ, s), a state u ∈ Q, and a character
a ∈ Σ, we may use the shortcut δa(u) for δ(u, a). We make the following assumptions on
NFAs: (i) We assume the alphabet Σ to be effective; each character of Σ labels at least one
edge of the transition function. (ii) We assume that every state is reachable from the initial
state. (iii) We assume that s has only one incoming edge, s ∈ δ(s, #), where # ∈ Σ does
not label any other edge of A. (iv) We do not require each state to have an outgoing edge
for all possible characters of Σ. (v) We assume that our NFAs are input-consistent; an NFA
is said to be input-consistent if all edges reaching the same state have the same label of Σ.
This assumption is not restrictive since any NFA can be transformed into an input-consistent
NFA by replacing each state with at most |Σ| copies of itself, without changing its regular
language. Given an NFA A =(Q, δ, Σ, s), and a state u ∈ Q, with u ̸= s, we denote with
λ(u) the (unique) character of Σ that labels the incoming edges of u, thus λ(s) = #.
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▶ Definition 3 (Forward-Stability). Given an NFA A = (Q, δ, Σ, s) and two sets of states
S, T ⊆ Q, we say that S is forward-stable with respect to T , if, for all a ∈ Σ, one of the
following conditions holds: (i) for every u ∈ S, there exists v ∈ T such that u ∈ δa(v).
(ii) For every u ∈ S and v ∈ T , it holds that u /∈ δa(v). A partition Q of A’s states is
forward-stable for A, if, for any two parts S, T ∈ Q, it holds that S is forward-stable with
respect to T .

For each NFA there exists a unique coarsest forward-stable partition, i.e., the forward-
stable partition with the lowest cardinality [2]. Henceforth, we call an NFA forward-stable if
its coarsest forward-stable partition is formed by singleton sets.

Infimum and supremum walks. Given an integer j, we denote by [j] the set {1, . . . , j}.
Given an NFA A = (Q, δ, Σ, s), and a state u ∈ Q, we say that a walk to u, denoted
as Pu = (ui)l

i=1, is a non-empty sequence of l states from Q that satisfies the following
conditions: (i) u1 = u, and (ii) for each i ∈ [l− 1], ui ∈ δa(ui+1) where a = λ(ui). Moreover,
we denote by Pu = (ui)i≥1 a walk of infinite length to u ∈ Q. We define Iu as the set of all
strings α ∈ Σω, for which there exists a walk Pu = (ui)i≥1 such that α = λ(u1)λ(u2)λ(u3) . . ..
We now provide the definition of supremum and infimum strings of an NFA’s state, which
was introduced by Conte et al. [5] and Kim et al. [13, Definition 7].

▶ Definition 4 (Infimum and supremum strings). Let A be an NFA, and let u be a state of A.
Then, the infimum string of u, denoted inf Iu, is the lexicographically smallest string in Iu.
The supremum string of u, denoted sup Iu, instead is the lexicographically largest string Iu.

It is easy to demonstrate that for each u ∈ Q, the strings inf Iu and sup Iu exist (for instance,
it follows from Observation 8 in the work of Kim et al. [13], see also [7]). We now provide
the definition of infimum and supremum walks.

▶ Definition 5 (infimum and supremum walks). Let A be an NFA, and let u be a state in A.
Consider α = inf Iu and β = sup Iu and a walk Pu = (ui)i≥1, then we say that:

Pu is an infimum walk to u, denoted as P inf
u , if for each integer i ≥ 1, λ(ui) = αi.

Pu is a supremum walk to u, denoted as P sup
u , if for each integer i ≥ 1, λ(ui) = βi.

In other words, a walk to u is an infimum (supremum) walk, if it is labeled with the infimum
(supremum) string of u.

Co-lex orders. A partial order ≤ on a set U is a reflexive, antisymmetric and transitive
relation on U . Given a partial order ≤ on a set U , for each u, v ∈ U , we write u < v if u ≤ v

and u ̸= v. We now report the formal definition of co-lex order of an NFA, which was first
introduced by Cotumaccio and Prezza [10, Definition 3.1].

▶ Definition 6 (Co-lex order). Let A be an NFA. A co-lex order of A is a partial order ≤
over Q that satisfies the following two axioms:
1. For each u, v ∈ Q, if u ≤ v, then λ(u) ≤ λ(v).
2. For each pair u ∈ δa(u′) and v ∈ δa(v′), if u < v, then u′ ≤ v′.

Note that every NFA A = (Q, δ, Σ, s) admits a co-lex order; in fact, the partial order
≤:= {(u, u) : u ∈ Q} trivially satisfies the two axioms of Definition 6. We say that a co-lex
order ≤ of an automaton A is the maximum co-lex order of A if ≤ is equal to the union of
all co-lex orders of A. Becker et al. [3, Lemma 3] showed that every forward-stable NFA
admits a maximum co-lex order. Hereafter, we will denote by ≤F S the maximum co-lex
order of an NFA.

CPM 2025



15:6 Encoding Co-Lex Orders in Linear Space

▶ Observation 7. Let A be a forward-stable NFA, and let u, v be two states of A such that
λ(u) < λ(v). Then u <F S v.

Proof. Consider the partial order ≤ defined as follows; ≤:= {(z, z) : z ∈ Q} ∪ {(u, v)}. ≤ is
a co-lex order of A, as it does not violate the axioms of Definition 6. Therefore, since ≤F S is
defined as the union of every co-lex order of A, it follows that u <F S v holds. ◀

Preceding pairs. We start with the definition of preceding pairs [6, Definition 6].

▶ Definition 8 (Preceding pairs). Let A be an NFA and let (ū, v̄), (u, v) ∈ Q×Q be pairs of
distinct states. We say that (ū, v̄) precedes (u, v), denoted by (ū, v̄) ⇒ (u, v), if there exist
two walks, Pu = (ui)l

i=1 and Pv = (vi)l
i=1, such that (i) ul = ū and vl = v̄, (ii) for each

i ∈ [l], ui ̸= vi, and (iii) for each i ∈ [l − 1], λ(ui) = λ(vi) = a, for some a ∈ Σ.

Note that if u, v ∈ Q are distinct states, then the pair (u, v) trivially precedes itself. The
following observation directly follows from Definition 8.

▶ Observation 9. The relation (ū, v̄) ⇒ (u, v) is transitive.

Preceding pairs characterize the maximum co-lex order of a forward-stable NFA as follows.

▶ Corollary 10. Let A be a forward-stable NFA and let ≤F S be its maximum co-lex order.
Then u <F S v holds for two distinct states u, v in of A if and only if, for each pair (ū, v̄)
with (ū, v̄) ⇒ (u, v), it holds that λ(ū) ≤ λ(v̄).

Proof. Let u and v be two distinct states. Following [6, Lemma 7], (u, v) is contained in the
maximum co-lex relation (see [6, Definition 4]) if and only if λ(ū) ≤ λ(v̄) for every pair (ū, v̄)
with (ū, v̄) ⇒ (u, v). The maximum co-lex order ≤F S of a forward-stable NFA A is equal to
its maximum co-lex relation according to [3, Lemma 3]. ◀

Note that for any distinct states u, v of A, the statement ¬(u <F S v) holds if and only if
there exists (ū, v̄) ⇒ (u, v) with λ(ū) > λ(v̄). We now define co-lex extensions.

▶ Definition 11 (Co-lex extension). Let A be a forward-stable NFA and Q its set of states.
Consider the maximum co-lex order ≤F S of A. Then, a total order ≤ on Q is a co-lex
extension of A, if ≤F S ⊆ ≤.

Due to Lemma 11 of the work of Becker et al. [2], it follows that the ordered partition
refinement [2, Algorithm 1] represents a feasible algorithm for computing a co-lex extension.

▶ Lemma 12. Consider a forward-stable NFA A = (Q, δ, Σ, s). Moreover, let ≤F S and ≤ be
the maximum co-lex order and a co-lex extension of A, respectively. Then, for every u, v ∈ Q

such that u < v, there exists a pair (ū, v̄) with (ū, v̄) ⇒ (u, v) such that λ(ū) < λ(v̄).

Proof. According to Definition 11 u < v implies ¬(v <F S u). Corollary 10 then yields that
there exists (ū, v̄) with (ū, v̄) ⇒ (u, v) such that λ(ū) < λ(v̄). ◀

3 Infimum and Supremum Walks

In this section we prove structural properties of infimum and supremum walks in a forward-
stable NFA A. At the end of the section, we define left-minimal infimum and right-maximal
supremum walks, the special type of infimum/supremum walks that our data structure is
based on. As before, we let ≤F S be the maximum co-lex order of A, and ≤ be a co-lex
extension of A. We further denote by n the number of states of A. The following lemma
states that infimum and supremum can be compared using their first 2n− 1 characters (see
[5, 1, 9] for similar results).



R. Becker, N. Cotumaccio, S.-H. Kim, N. Prezza, and C. Tosoni 15:7

▶ Lemma 13. Let A be an NFA with set of states Q, where |Q| = n, and let u, v ∈ Q. If
sup Iu ̸= inf Iv, then sup Iu[1, 2n− 1] ̸= inf Iv[1, 2n− 1].

Proof. Let C be the set consisting of all strings sup Iu’s and all strings inf Iu’s, and write
C = {γ1, γ2, . . . , γn′} where γ1 < γ2 < · · · < γn′ . Then, n′ ≤ 2n. Notice that for every u ∈ Q,
by the maximality of sup Iu there exist c1 ∈ Σ and u1 ∈ Q such that sup Iu = c1 sup Iu1 ,
and by the minimality of inf Iv there exist c2 ∈ Σ and u2 ∈ Q such that inf Iu = c2 inf Iu2 .
This implies that for every 2 ≤ i ≤ n′ there exist c ∈ Σ and 2 ≤ i′ ≤ n′ such that
γi = cγi′ . We define the array LCP[2, n′] such that LCP[i] = lcp(γi−1, γi), where lcp(α, β)
is the length of the longest common prefix between α and β. To prove the lemma it
is sufficient to show that LCP[i] ≤ n′ − 2 for every i with 2 ≤ i ≤ n′. To prove this
it is sufficient to show that if LCP[i] = d for some d ≥ 1 and i with 2 ≤ i ≤ n′, then
there exists j with 2 ≤ j ≤ n′ such that LCP[j] = d − 1, because then we obtain that
LCP has at least d + 1 distinct entries, so d + 1 ≤ n′ − 1, which implies d ≤ n′ − 2.
Assume that LCP[i] = d, with d ≥ 1. Let c1, c2 ∈ Σ and 2 ≤ i′, i′′ ≤ n′ be such that
γi = c1γi′ and γi−1 = c2γi′′ . Since 1 ≤ d = LCP[i] = lcp(γi−1, γi) = lcp(c1γi′ , c2γi′′),
we have c1 = c2 and from γi−1 < γi we obtain γi′′ < γi′ , which implies i′′ < i′. Then,
LCP[i] = 1+ lcp(γi′ , γi′′) = 1+mini′+1≤j≤i′′ lcp(γj−1, γj) = 1+mini′+1≤j≤i′′ LCP[j], so there
exists i′ + 1 ≤ j ≤ i′′ such that d = LCP[i] = 1 + LCP[j], which implies LCP[j] = d− 1. ◀

The following lemma treats the case in which the relation between the supremum and
infimum of two states already implies their respective order with respect to ≤F S .

▶ Lemma 14. Let u, v be two distinct states. Then, sup Iu ≤ inf Iv implies u <F S v.

Proof. We show the contrapositive. Assume that ¬(u <F S v). By Corollary 10, this
implies the existence of a pair (ū, v̄) with (ū, v̄) ⇒ (u, v) such that λ(ū) > λ(v̄). By
Definition 8, this implies that there exist two walks Pu = (ui)l

i=1 and Pv = (vi)l
i=1 with

u1 = u, v1 = v, ul = ū, vl = v̄ such that α′ = β′ where α′ := λ(u1)λ(u2) . . . λ(ul−1) and
β′ := λ(v1)λ(v2) . . . λ(vl−1). Now recall that every state is reachable from the initial state
s and s ∈ δ(s, #). Thus there exist infinite strings α′′ ∈ Iū and β′′ ∈ Iv̄. Note that
α′′ > β′′ because λ(ū) > λ(v̄). Since α = α′α′′ ∈ Iu and β = β′β′′ ∈ Iv, we obtain
sup Iu ≥ α = α′α′′ = β′α′′ > β′β′′ = β ≥ inf Iv, completing the proof. ◀

With the next lemma we show a case in which we can determine if ¬(u <F S v) holds.

▶ Lemma 15. Let u, v be two states with u < v and sup Iu > inf Iv. Furthermore, let
P sup

u = (ui)i≥1 and P inf
v = (vi)i≥1. Then there exists an integer j with 1 < j < 2n such that

vj < uj and ui ≤ vi as well as λ(ui) = λ(vi) for each i ∈ [j − 1]. In addition, if ui < vi

holds for all i ∈ [j − 1], then ¬(u <F S v).

Proof. Consider α = sup Iu and β = inf Iv. Let k be the maximal integer such that
α[1, k − 1] = β[1, k − 1]. Since α > β, it holds that λ(uk) > λ(vk). By Lemma 13, k < 2n.
Moreover, by Observation 7, λ(uk) > λ(vk) implies vk <F S uk which, by Definition 11, in
turn implies vk < uk. Therefore, if we define j > 1 as the smallest integer for which vj < uj ,
then clearly for each i ∈ [j − 1], ui ≤ vi. Moreover, since j ≤ k, and α[1, k − 1] = β[1, k − 1],
for each i ∈ [j − 1], it holds that λ(ui) = λ(vi). For the second part of the lemma, if ui < vi

(implying ui ̸= vi) for each i ∈ [j − 1], then (uj , vj) ⇒ (u, v) by definition. Since vj < uj , by
Lemma 12, there exists (ū, v̄) ⇒ (uj , vj) with λ(ū) > λ(v̄). Thus, by Observation 9 it holds
that (ū, v̄) ⇒ (u, v) which by Corollary 10 proves that ¬(u <F S v). ◀
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We summarize what we achieved so far. Given two distinct states u, v, to understand
whether or not u <F S v holds we can proceed as follows. If according to a co-lex extension
≤, the statement v < u holds, by Definition 11, we know ¬(u <F S v). If u < v, then if
sup Iu ≤ inf Iv, by Lemma 14, we know that u <F S v. Otherwise, consider a supremum walk
to u, (ui)i≥1, and an infimum walk to v, (vi)i≥1. If sup Iu > inf Iv, and there exists j such
that vj < uj and ui < vi for each i ∈ [j − 1], then by Lemma 15 ¬(u <F S v). See Figure 2
for an example. The only remaining case to address is the existence of an integer j′ ∈ [j − 1]
such that uj′ = vj′ . To study this case, we introduce left-minimal (right-maximal) walks.

Left-minimal/right-maximal walks. We proceed with the definition of left-minimal infimum
walks and right-maximal supremum walks. We first define infimum and supremum graphs.

▶ Definition 16 (Infimum and supremum graphs). The infimum (supremum) graph G = (Q, E)
of A is the directed unlabeled graph defined as follows: (i) The node set of G is identical to
the one of A. (ii) For each u, v ∈ Q, we let (u, v) ∈ E if and only if there exists an infimum
(supremum) walk (ui)i≥1 to a state u′ ∈ Q and an integer j such that uj+1 = u and uj = v.

We now prove a preliminary result concerning infimum/supremum graphs.

▶ Observation 17. Let A be an NFA and let G be its infimum (supremum) graph. Then,
every walk of infinite length in G is an infimum (supremum) walk in A.

Proof. Let u be a state of A, and let Pu = (ui)i≥1 be an arbitrary walk of infinite length.
We prove this result for infimum walks, the proof for the supremum walks is analogous.
Suppose for the sake of a contradiction that Pu is not an infimum walk. We consider the
largest integer j for which there exists an infimum walk P inf

u = (ūi)i≥1, such that, for
each i ∈ [j], ūi = ui. Thus, ūj+1 ≠ uj+1. By Definition 16, there exists a state v, an
infimum walk P inf

v = (vi)i≥1, and an integer k for which vk = uj and vk+1 = uj+1. Consider
α = λ(ū1) . . . λ(ūj), γ = λ(ūj+1)λ(ūj+2) . . . , β = λ(v1) . . . λ(vk), γ′ = λ(vk+1)λ(vk+2) . . . ,
we know inf Iu = αγ, inf Iv = βγ′. Moreover, consider the walks P ′

u = (ûi)i≥1, where for
each i ∈ [j], ûi = ūi, and for each i ≥ j, ûi = vi+k−j , and P ′

v = (v̂i)i≥1, where, for each
i ∈ [k], v̂i = vi, and, for each i ≥ k, v̂i = ūi+j−k. We know that αγ′ ∈ Iu and βγ ∈ Iv. By
Definition 5, αγ ≤ αγ′ which implies γ ≤ γ′, and βγ′ ≤ βγ which implies γ′ ≤ γ. Thus
γ = γ′. Consequently, P ′

u is an infimum walk. However, ûj = uj and ûj+1 = uj+1, a
contradiction. ◀

We now introduce leftmost/rightmost walks in directed (unlabeled) graphs.

▶ Definition 18 (Leftmost/rightmost walk). Let G = (V, E) be a directed graph, let ≤ be a
total order on V and let u ∈ V . A walk Pu = (ui)i≥1 is a leftmost (rightmost) walk to u, if
for each walk P̄u = (ūi)i≥1 and integer j > 1, uj = ūj implies uj−1 ≤ ūj−1 (ūj−1 ≤ uj−1).

We are now ready to introduce left-minimal and right-maximal walks.

▶ Definition 19 (Left-minimal and right-maximal walks). Let u be a state of A. We say that
an infimum (supremum) walk Pu = (ui)i≥1 is left-minimal (right-maximal) if Pu is a leftmost
(rightmost) walk to u in the infimum (supremum) graph of A according to ≤.

The proof of existences of left-minimal and right-maximal walks in directed graphs is given
in Theorem 25 in Section 6. The next corollary then follows together with Observation 17.

▶ Corollary 20. Let Q be the states of A. There exists p : Q→ Q, such that, for each u ∈ Q,
the sequence (pi(u))i≥0 is a left-minimal infimum (right-maximal supremum) walk to u.
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4 Inf and Sup Conflicts

We still consider A to be a fixed forward-stable NFA and ≤F S and ≤ be the maximum co-lex
order and a co-lex extension of A, respectively. We now define inf/sup conflicts.

▶ Definition 21 (inf sup conflicts). Let u be a state of A and let Pu = (ui)i≥1 be an infimum
(supremum) walk. For j > 1, we say that uj is in inf (sup) conflict with Pu, denoted as
uj ⊓ Pu (uj ⊔ Pu), if there exists P̄u = (ūi)j

i=1 satisfying: (i) For each i with 1 < i ≤ j, it
holds that ūi ̸= ui and λ(ūi) = λ(ui). (ii) It holds that ¬(uj <F S ūj) (¬(ūj <F S uj)).

At this point, we present a first result concerning inf and sup conflicts.

▶ Lemma 22. Let u be a state of A, and Pu = (ui)i≥1 be an infimum (supremum) walk. If
for some j > 1, uj ⊓Pu (uj ⊔Pu) holds, then for any integer j′ with 1 < j′ ≤ j, it holds that
uj′ ⊓ Pu (uj′ ⊔ Pu).

Proof. We prove the lemma for infimum walks and inf conflicts; the proof for supremum
walks and sup conflicts is analogous. Consider an integer j such that uj ⊓Pu and an arbitrary
integer j′ with 1 < j′ < j. Moreover, let (ūi)j

i=1 be the walk for which state uj is in inf
conflict with Pu. Clearly, (ūi)j′

i=1 satisfies condition (i) of Definition 21 for uj′ ⊓ Pu. It
remains to prove that ¬(uj′ <F S ūj′). Note that for each i with j′ ≤ i ≤ j, we have ūi ̸= ui

and λ(ūi) = λ(ui). Hence every preceding pair of (uj , ūj) is a preceding pair of (uj′ , ūj′)
and it follows from Corollary 10 that ¬(uj <F S ūj) implies ¬(uj′ <F S ūj′). This proves the
lemma. ◀

We introduce now two functions ϕ and γ which will be at the basis of our data structure.

▶ Definition 23 (Functions ϕ and γ). Let u be a state of A and let P inf
u = (ui)i≥1 and

P sup
u = (u′

i)i≥1 be an infimum walk and a supremum walk to u, respectively. We define two
functions ϕ and γ as

ϕ(u, P inf
u ) := max({i < 2n : ui⊓P inf

u }∪{1}), γ(u, P sup
u ) := max({i < 2n : u′

i⊔P sup
u }∪{1}).

Furthermore, for every integer j > 1, we define two functions ϕj and γj as

ϕj(u, P inf
u ) := max

i∈[j−1]
{ϕ(ui, P inf

ui
) + i− 1}, γj(u, P sup

u ) := max
i∈[j−1]

{γ(u′
i, P sup

u′
i

) + i− 1},

where P inf
ui

= (ui′)i′≥i and P sup
u′

i
= (u′

i′)i′≥i.

In other words, the functions ϕj(u, P inf
u ) and γj(u, P sup

u ) intuitively represent the largest
integer k for which either uk ⊓ P inf

ui
or u′

k ⊔ P sup
u′

i
holds for an integer i with i < j.

▶ Lemma 24. Let u, v be two states of A with u < v and sup Iu > inf Iv and let P sup
u = (ui)i≥1

and P inf
v = (vi)i≥1 be a right-maximal supremum walk and a left-minimal infimum walk

according to the co-lex extension ≤, respectively. Furthermore, assume there exists an integer
j > 1 such that uj = vj and ui < vi for each i ∈ [j − 1]. Then ¬(u <F S v) if and only if
max{γj(u, P sup

u ), ϕj(v, P inf
v )} ≥ j.

Proof. (⇒) By Corollary 10, ¬(u <F S v) implies the existence of a pair (ū, v̄) with (ū, v̄) ⇒
(u, v) such that λ(ū) > λ(v̄). Let (ūi)j′

i=1 and (v̄i)j′

i=1 be the walks for which (ū, v̄) ⇒ (u, v)
holds, respectively. Lemma 15 implies that λ(ui) = λ(vi) for each i ∈ [j] and j < 2n.
Furthermore, we have λ(ūi) ≤ λ(ui) and λ(vi) ≤ λ(v̄i) for each i ∈ [j′] by the properties of
supremum and infimum walks. By the properties of preceding pairs (see Definition 8), for
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each i ∈ [j], it holds that λ(ūi) = λ(v̄i) and thus λ(ūi) = λ(ui) and λ(vi) = λ(v̄i). Moreover,
since λ(ū) > λ(v̄), it follows that j′ > j. Due to the walks (ūi)j′

i=j and (ūi)j′

i=j , it holds
that (ū, v̄) ⇒ (ūj , v̄j), which by Corollary 10 and λ(ū) > λ(v̄) implies ¬(ūj <F S v̄j). Now,
define h := max{i ∈ [j − 1] : ūi = ui} and h′ := max{i ∈ [j − 1] : v̄i = vi} and consider
P sup

uh
= (ui)i≥h and P inf

vh′ = (vi)i≥h′ . In order to prove max{γj(u, P sup
u ), ϕj(v, P inf

v )} ≥ j,
since j < 2n, it is thus sufficient to prove that A := uj ⊔ P sup

uh
∨ vj ⊓ P inf

vh′ holds. Due to the
previous considerations, (ūi)j

i=h satisfies condition (i) of Definition 21 for uj ⊔ P sup
uh

, while
(v̄i)j

i=h′ satisfies condition (i) of Definition 21 for vj ⊓ P inf
vh′ . Hence, A holds if and only if

¬(ūj <F S uj) ∨ ¬(vj <F S v̄j) or equivalently ¬(ūj <F S uj ∧ vj <F S v̄j). Since uj = vj and
≤F S is transitive, the conclusion is implied by ¬(ūj <F S v̄j), which we argued above.

(⇐) Consider the case where the maximum is attained by γj(u, P sup
u ) (the other case is

analogous) and call that value h. We know h ≥ j by hypothesis. By Corollary 10, we have to
prove the existence of a pair (ū, v̄) with (ū, v̄) ⇒ (u, v) such that λ(ū) > λ(v̄). Let k ∈ [j− 1]
be such that γ(uk, P sup

uk
) + k − 1 = h. Due to Observation 17, the walk P sup

uk
= (ui)i≥k is a

supremum walk to uk. Since uh ⊔ P sup
uk

and j ≤ h, by Lemma 22 it follows that uj ⊔ P sup
uk

.
Therefore, by Definition 21 there exists a walk (ūi)j

i=k such that ūi ≠ ui and λ(ūi) = λ(ui) for
each i with k < i ≤ j as well as ¬(ūj <F S uj). Now define ūi := ui for i ∈ [k] and consider
the two walks (ūi)j

i=1 and (vi)j
i=1. Note that ūk = uk. From Definition 21 and Lemma 15

it follows that λ(ūi) = λ(vi) for each i ∈ [j]. Suppose now that ūi′ = vi′ for some i′ with
k < i′ < j. We can then define a new supremum walk (ûi)i≥1 to u as follows. We define
(i) ûi := ūi for i ∈ [i′], (ii) ûi := vi for i with i′ < i < j, and (iii) ûi := ui for i ≥ j. Since
uj = ûj and uj−1 < ûj−1, we conclude that P sup

u is not a right-maximal supremum walk to
u, a contradiction. Hence, ūi ̸= vi for all i ∈ [j] and consequently (ūj , vj) ⇒ (u, v). Note that
uj = vj holds by hypothesis. Finally, since ¬(ūj <F S uj), by Corollary 10, there exists (ū, v̄)
with (ū, v̄) ⇒ (ūj , uj) such that λ(ū) > λ(v̄). Observation 9 then implies (ū, v̄) ⇒ (u, v). ◀

5 Data Structure

In this section, we present our data structure and finally prove Theorem 2, the main theorem
of this article. Motivated by the above lemma and our previous observations, the data
structure that enjoys the properties promised in Theorem 2 can be defined as follows.
Store. For each state u of A, we store (i) a left-minimal infimum walk P inf

u to u, (ii) a
right-maximal supremum walk P sup

u to u, and (iii) the integers ϕ(u, P inf
u ) and γ(u, P sup

u ).
Furthermore, we store a co-lex extension ≤ of A. A possible co-lex extension of A can
be computed in O(m log n) time using the ordered partition refinement algorithm [2,
Algorithm 1], where n is the number of states of A, and m the number of transitions.

Query. The procedure of a query on two arbitrary states u, v is illustrated in Figure 1. If
u = v, then u ≤F S v by reflexivity. If v < u, then ¬(u <F S v) by Definition 11. If
u < v, then four possible cases may arise. (i) Let us consider sup Iu and inf Iv, which
can be reconstructed from P sup

u and P inf
v . If sup Iu ≤ inf Iv by Lemma 14 u <F S v.

(ii) Otherwise, sup Iu > inf Iv holds. We then check, if there exists j such that vj < uj

and ui < vi for all i ∈ [j− 1]. If this is the case, then ¬(u <F S v) according to Lemma 15.
Otherwise, we let j′ with 1 < j′ < j be such that uj′ = vj′ and ui < vi for all i ∈ [j′ − 1].
(iii) By Lemma 24, if h := max{γj′(u, P sup

u ), ϕj′(v, P inf
v )} < j′, we know that u <F S v,

(iv) while if h ≥ j′, we know that ¬(u <F S v).
We refer the reader to Figure 2 for an example of this data structure. The correctness of
our data structure follows immediately from the description above. In order to establish
Theorem 2, it remains to argue why the space and query time bounds hold.
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Proof of Theorem 2. By Corollary 20, we know that this information can be stored in O(n)
space. By Lemma 13, we can check sup Iu ≤ inf Iv in O(n) time, and if this is the case by
Lemma 14 u <F S v. Otherwise, by Lemma 15, we can identify in O(n) time the integer
j < 2n such that vj < uj and ui ≤ vi for all i ∈ [j − 1]. If ui < vj for all i ∈ [j − 1], then
¬(u <F S v) by Lemma 15. On the other hand, if there exists j′ with (i) j′ < j, (ii) uj′ = vj′ ,
and (iii) ui < vi for all i ∈ [j′−1], by Definition 23, since j′ < 2n, we can compute γj′(u, P sup

u )
and ϕj′(v, P inf

v ) in O(n) time. Hence the total time complexity is O(n). ◀
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u inf Iu sup Iu ϕ γ

1 #ω #ω 1 1
2 a#ω abω 1 1
3 aa#ω aabω 1 1
4 aab#ω aabω 1 1
5 ab#ω ab#ω 1 1
6 ab#ω abω 1 1
7 aab#ω abb#ω 1 1
8 b#ω b#ω 1 1
9 b#ω bω 1 1
10 baa#ω baabω 1 25
11 baab#ω babb#ω 2 1
12 bb#ω bb#ω 1 1
13 bb#ω bω 1 1

Figure 2 Consider the forward-stable NFA A in Figure (a). Each state is assigned an integer
i indicating its position in the co-lex extension ≤. We denote by ui the i-th state according to ≤.
Figures (b) and (c) show the NFAs encoding a left-minimal infimum walk and a right-maximal
supremum walk, respectively, for each state. The table on the right shows for each state u the values
of inf Iu, sup Iu, ϕ(u, P inf

u ), and γ(u, P sup
u ), where P inf

u and P sup
u are the walks shown in Figures (b)

and (c). Our data structure comprises ≤, the walks in Figures (b) and (c), and the two columns ϕ,
γ from the table. We sketch the four cases that arise when determining whether u <F S v holds,
assuming u < v. (i) By Lemma 14, since sup Iu3 ≤ inf Iu5 , it follows that u3 <F S u5. (ii) Consider
P sup

u2 = u2, u13 . . . and P inf
u6 = u6, u9 . . ., since sup Iu2 > inf Iu6 , and u2 < u6, u13 > u9, by Lemma 15,

¬(u2 <F S u6). (iii) Consider now P sup
u4 = u4, u6 . . . and P inf

u7 = u7, u6 . . .. Since, sup Iu4 > inf Iu7 ,
u4 < u7, u6 = u6, and max{γ2(u4, P sup

u4 ), ϕ2(u7, P inf
u7 )} = 1 < 2, by Lemma 24, we can conclude

u4 <F S u7. (iv) Finally, consider P sup
u10 = u10, u4, u6 . . . and P inf

11 = u11, u7, u6 . . ., due to the fact that
sup Iu10 > inf Iu11 , u10 < u11, u4 < u7, u6 = u6, and max{γ3(u10, P sup

u10 ), ϕ3(u11, P inf
u11 )} = 26 ≥ 3,

by Lemma 24, we conclude that ¬(u10 <F S u11).

6 Existence of a Leftmost Walk

In this section, we consider an (unlabeled) directed graph G = (V, E), and a total order ≤
on V . We always assume that every node of G has at least one incoming edge. Moreover,
a walk to a node u ∈ V , denoted by Pu = (ui)l

i=1, is a sequence of l nodes such that:
(i) u1 = u, and (ii) (ui+1, ui) ∈ E for each i ∈ [l − 1]. We denote by Pu = (ui)i≥1 a
walk to u of infinite length. We fix some further graph-related notation. The induced
subgraph of G on V ′ ⊆ V is the graph G[V ′] := (V ′, E ∩ (V ′ × V ′)). The subgraph of G

reachable from a subset S ⊆ V , denoted by δG(S), is the induced subgraph G[V ′] on the
nodes V ′ = {v ∈ V : ∃Pv = (vi)ℓ

i=1 with vℓ ∈ S}. For two sets of nodes S, T ⊆ V , we call
N(S) := {v ∈ V : ∃u ∈ S and (u, v) ∈ E} the neighbors of S, E(S) := E ∩ (S×V ) the edges
from S to N(S), and E(S, T ) := E ∩ (S×T ) the edges from S to T . For two directed graphs
G1 = (V1, E1) and G2 = (V2, E2) their union is defined as G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2).

The rest of the section is devoted to proving the following theorem.
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▶ Theorem 25. Let G = (V, E) be a directed graph, and let ≤ be a total order on V . Then,
there exists a function p : V → V such that Pu = (pi(u))i≥0 is a leftmost (rightmost) walk to
u for every u ∈ V .

Hereafter, we only consider the leftmost case since the rightmost is analogous. We prove
Theorem 25 constructively, i.e., we give an algorithm, termed Forward Visit, that computes
the function p on input a directed graph G = (V, E) and a total order ≤ on V . At a very high
level, the algorithm consists of DFS and BFS visits that alternate with each other. Here the
DFS visit has the purpose of computing a cycle C. Once this cycle C is computed, we start
two BFS-like searches starting from C on two different subgraphs GL and GR of G. These
two BFS-like searches each compute walks starting from nodes in C that when concatenated
with C form the leftmost infinite walks for all nodes on those walks. These walks will then
be represented by the function p. More precisely, the BFS-like searches work as follows: Let
V ′ be nodes for which we have not computed a value for p yet. The graph GL contains the
nodes that can be reached in G[V ′] from some node u ∈ C through a neighbor node v /∈ C

that is on the left of u’s cycle successor with respect to the total order ≤. The subgraph GR

is defined symmetrically as reachable through right neighbors. The BFS-like searches are
then a multi-source shortest path search in GR and a multi-source longest path search in GL.
The intuition why we compute shortest paths for GR and longest paths for GL is as follows.
Let z /∈ C be a node in GL that is reachable by a length-d path from some cycle node u ∈ C

through a left neighbor v /∈ C of u. Now, consider some other length-d path from u to z that
follows the cycle longer, i.e., goes through the successor of u in the cycle. Such a walk is
not left-most by definition and in fact our algorithm will never output such a walk as it is
constructed using a strictly shorter path from C to z than the one going through v. By a
symmetric argument nodes in GR should be connected to C via shortest path.
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Figure 3 (a) A directed graph G = (V, E) and a total order ≤ over V represented by the integer
names of nodes. (b) In green the first cycle C that is found by the DFS of Algorithm 1, if we start a
DFS from node 2; in red and blue the subgraphs GL and GR corresponding to C, respectively. Here,
L = {3, 4} and R = {11, 13}. (c) Leftmost walks represented by p (indicated by the shown edges).

The Forward Visit Algorithm. We proceed with a detailed description of the algorithm, a
pseudocode implementation can be found in Algorithm 1. For each u ∈ V , the algorithm
maintains three values, p(u) (initially null), u.color (initially white), and u. next (initially
null). The algorithm iterates over the nodes in V in an arbitrary order. For each u ∈ V with
u.color = white, the algorithm starts a DFS visit from u. This DFS first changes the color of
u to gray, and eventually to black once the DFS from u terminated. The DFS visit from u is
a classical DFS up to two caveats. (1) For a node u ∈ V , its neighbors N(u) are processed in
increasing order with respect to ≤. (2) The color v.color of a neighbor v ∈ N(u) determines
our action when processing v as follows: (a) if v.color = black, the node v is ignored, (b) if
v.color = white, we process the node normally, i.e., we launch a new DFS from v and set
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u. next = v, and (c) if v.color = gray, we still set u. next = v but we temporarily interrupt
the DFS from u. Case (c) implies that the DFS from u found a cycle C in G that can be
reconstructed from the next-values. We now call the function ComputeWalks with input C.

Algorithm 1 Forward Visit.

Input : directed graph G = (V, E), total order ≤ over V

Output : function p : V → V s.t. (pi(u))i≥0 is a leftmost walk for every u ∈ V

1 Function ComputeWalks(C):
2 V ′ ← {v ∈ V : p(v) = null}
3 R← {v ∈ V ′ : ∃(u, v) ∈ E(C) and v > u. next} and EC,R ← E(C, R)
4 L← {v ∈ V ′ : ∃(u, v) ∈ E(C) and v < u. next} and EC,L ← E(C, L)
5 GR ← (C, EC,R) ∪ δG[V ′](R) and GL ← (C, EC,L) ∪ δG[V ′](L)
6 MultiSourceShortestPath(GR, C) // sets p(v) for nodes v in GR s.t. v /∈ C

7 MultiSourceLongestPath(GL, C) // sets p(v) for nodes v in GL s.t. v /∈ C

8 foreach v ∈ C do p(v)← u where u ∈ C s.t. u. next = v

9 foreach node u in GL and GR do u.color ← black

10 Function DFS(u):
11 u.color ← gray
12 foreach v ∈ N(u) in increasing order w.r.t. ≤ do
13 if v.color = white then u.next← v, DFS(v)
14 else if v.color = gray then
15 u.next← v, ū = u, and C ← ∅
16 do C.append(u), u← u.next while ū ̸= u // build cycle C

17 ComputeWalks(C)

18 u.color ← black
19 p(u)← null, u.color ← white, and u.next← null for all u ∈ V // initialization
20 foreach u ∈ V such that u.color = white do DFS(u)

Let us denote with V ′ := {v ∈ V : p(v) = null} all the nodes for which we have not yet
constructed a leftmost walk. The function ComputeWalks computes two (possibly overlapping)
subgraphs GR and GL of G[V ′] and constructs walks from C to the nodes in these two graphs.
The graphs GR and GL are defined as follows. First, we compute two (possibly overlapping)
subsets R and L of N := N(C)∩V ′ as follows. We let R := {v ∈ V ′ : ∃(u, v) ∈ E(C) and v >

u. next} and L := {v ∈ V ′ : ∃(u, v) ∈ E(C) and v < u. next}, as well as EC,R := E(C, R)
and EC,L := E(C, L). In other words, the set R (the set L) consists of those neighbors in
V ′ of nodes u ∈ C that are larger (smaller) than u. next with respect to ≤. We then define
GR = (VR, ER) := (C, EC,R) ∪ δG[V ′](R) and GL = (VL, EL) := (C, EC,L) ∪ δG[V ′](L). In
order to compute the function p(u) for nodes u ∈ VR ∪ VL \ C, we now launch two BFS-like
visits in a specific (and essential) order. We first launch a multi-source shortest path search
in GR and then a multi-source longest path search in GL, in both cases from C. In both of
these subroutines we set p(v) = u whenever v is discovered to be the next node on a shortest
(respectively longest) path starting from the cycle. In both of these BFS-like visits, we
process a node’s neighbors in increasing order with respect to ≤ (recall that we are searching
for leftmost walks), we give more details in the paragraph below. It is essential that we
first run the shortest path search on GR and then the longest path search on GL as the two
graphs possibly overlap and we hence reset the p-values for nodes that are in both graphs,
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prioritizing paths in GL. We then compute p(u) also for the nodes u ∈ C by setting p(u) = v

where v ∈ C is such that v. next = u. Lastly, we set u.color = black for each u ∈ VL ∪ VR.
Then the function ComputeWalks terminates and the DFS is resumed. We refer the reader
to Figure 3 for an example run of the algorithm.

Details on the BFS searches. The multi-source shortest path search is implemented as
a classical BFS on GR with a queue initially containing the nodes C. When a node u is
dequeued, nodes v ∈ N(u) ∩ VR are processed in increasing order with respect to ≤. If v is
newly discovered by the BFS, we set p(v) = u and enqueue v.

The multi-source longest path search is implemented as follows. It is essential that GL is
acyclic, see Lemma 27 (i). Hence, we can simply compute the maximum distance d(C, u)
from C to every node u in GL by traversing GL in a topological order. We then perform
a BFS-like search on GL with a queue initially containing the nodes C. When a node u is
dequeued, nodes v ∈ N(u) ∩ VL are processed in increasing order with respect to ≤. If v is
newly discovered by the BFS and d(C, v) = d(C, u) + 1, we set p(v) = u and enqueue v.

Analysis. We start with the following simple observation.

▶ Observation 26. (i) At termination of ComputeWalks(C) it holds that p(u) ̸= null for
every u ∈ V that can be reached from C. (ii) Before and after each run of ComputeWalks, if
(ui)l

i=1 is a walk in G and p(uj) ̸= null for some j ∈ [l], then p(u1) ̸= null.

Proof. (i) Let V ′ = {u ∈ V : p(u) = null} as in the algorithm. ComputeWalks(C) inserts
every node u ∈ V ′ that can be reached from C to the subgraphs GL or GR. Then it computes
function p for all and only nodes in GL∪GR. (ii) When the DFS outputs a cycle C, all nodes
u that are reachable from C and that satisfy p(u) = null are added to one of the subgraphs
GL or GR. This holds as R ∪ L = N(C) ∩ V ′, where V ′ were all nodes v with p(v) = null.
Hence ComputeWalks always calculates p(u) for all and only those nodes in GL and GR. ◀

We proceed with the lemma about the acyclicity of GL.

▶ Lemma 27. Let GL = (VL, EL) and C be the subgraph of G = (V, E) and the cycle
computed during an arbitrary execution of ComputeWalks in Forward Visit. Then, (i) GL is
acyclic and (ii) it holds that v /∈ C for each v such that there exists (u, v) ∈ EL.

Proof. Let L ⊆ VL be as in the algorithm. Suppose for the purpose of contradiction that (i)
or (ii) does not hold. In both cases there exists z ∈ VL such that z ∈ C ′ for some cycle C ′

in G different from C. Let (u, v) ∈ E(C, L) be the edge such that v can reach z in GL. As
z ∈ VL, we know that p(z) = null and, by Observation 26 (ii), it follows that p(z̄) = null for
each z̄ ∈ C ′, and, for an analogous argument, also the nodes v̄ that can reach C ′ must satisfy
p(v̄) ̸= null. Thus, at this point of the algorithm execution, the function ComputeWalks
cannot have colored those nodes black that can reach C ′, as it colors exactly the nodes for
which it computes the function p (i.e., the nodes in GL ∪GR). The only remaining part in
which Forward Visit may color a node v̄ black that can reach C ′ is line 18, i.e., when DFS(v̄)
has terminated. Notice however that v̄ can trivially reach C ′ and thus DFS(v̄) has to find
a cycle C ′′ that can reach the cycle C ′ in G before terminating (possibly C ′′ = C ′). Thus,
by Observation 26 (i), when DFS(u) is launched, DFS(v̄) has not terminated yet, otherwise
p(z) ̸= null would hold. When DFS(u) was started, the nodes in N(u) were processed in
increasing order with respect to ≤. In addition, as v < u. next by definition of L, it follows
that v was visited by DFS(u) before u. next. Finally, since v can reach z, it follows that
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DFS(z) has to terminate before DFS(v). As for each node v̄ reaching C the function DFS(v̄)
has not terminated yet, it holds that DFS(v) has to output a cycle C ′′ (possibly C ′′ = C ′)
different from C before terminating, contradicting the assumption that C is the output
cycle. ◀

We next observe that Forward Visit indeed computes a complete function p on V .

▶ Observation 28. Upon termination Forward Visit has computed p(u) for every node u ∈ V .

Proof. Let u ∈ V . By assumption, every node has an incoming edge and thus there exists a
cycle Cu in G containing u. If before or after any run of ComputeWalks there exists v ∈ Cu

with p(v) ̸= null, then Observation 26 (ii) shows that also p(u) ̸= null. Otherwise, before
and after every run of ComputeWalks it holds that p(v) = null for all v ∈ Cu. In this case,
ComputeWalks has never colored the nodes in Cu black, as by line 9, it colors black all
and only those nodes for which it has computed the function p. By line 20, the algorithm
starts a DFS visit from every node in V (either in line 13 or in line 20). Therefore, let v

be the first node of Cu for which a DFS visit is started. As for each z ∈ Cu it holds that
p(v) = null, before DFS(v) starts z.color = white for each z ∈ Cu. However, since v ∈ Cu

the DFS visit cannot terminate without finding a cycle C with v ∈ C. Thus, since v can reach
u, by property (i) of Observation 26, we can conclude that the next run of ComputeWalks
calculates p(u). ◀

We are now ready to prove Theorem 25.

Proof of Theorem 25. By Observation 28, it holds that p(v) ̸= null for all v ∈ V upon
termination of the algorithm. It remains to prove that Pu = (p(u)i)i≥0 is a leftmost walk to u

according to ≤ for any node u ∈ V . Let ui+1 := p(u)i for i ≥ 0 (i.e., u0 = u) and suppose for
the purpose of contradiction that Pu is not a leftmost walk to u. Then by Definition 18 there
exists a walk P ′

u = (ūi)i≥0 to u such that ūj = uj for some j > 1 and ūj−1 < uj−1. Let j be
minimal with that property. Furthermore, let k with 0 ≤ k < j − 1 be maximal such that
ūk = uk (such k exists as ū0 = u0 = u). Consider now the execution of ComputeWalks that
has computed p(u) and let the cycle C and the subgraphs GL = (VL, EL) and GR = (VR, ER)
be the instances of those objects in that execution of the function. By Observation 26 (ii),
at the beginning of this execution p(v) = null for each v in Pu and P ′

u. Consider the walk
P̂uk

= (ûi)i≥k to uk, where ûi = ūi for i with k ≤ i ≤ j and ûi = ui for i ≥ j. We distinguish
three cases: (1) uk ∈ C, (2) uk ∈ VL \ C, and (3) uk ∈ VR \ (C ∪ VL).

(1) Let uk ∈ C. Then, ui ∈ C for all i ≥ k from how the algorithm sets p in line 8. Hence,
ûi ∈ C for all i ≥ j. Now, consider the largest m with k ≤ m < j such that ûm = ûm′ for
some m < m′. By assumption, this integer m exists since k < j and ûk ∈ C. Thus, if m′ is
the smallest integer satisfying this property, the sequence C ′ = ûm, ûm+1, . . . , ûm′ is a cycle
different from C in G. Since ûj−1 < uj−1, the DFS has to visit ûj−1 before uj−1 and as
ûj−1 can reach ûm and consequently the cycle C ′, it contradicts that the DFS output C.

(2) Now, let uk ∈ VL \ C and consider the smallest h with h > k such that uh ∈ C and
observe that then also ui ∈ C for i ≥ h. Observe that P ′

uk
= (ui)h

i=k is a longest path from
C to uk in GL. We distinguish two sub-cases. (a) Suppose that h < j. Then uj−1 ∈ C

and ûj−1 ∈ L as ûj−1 < uj−1. This implies (ûi+1, ûi) ∈ EL for each i with k ≤ i < j by
the definition of EL. By Lemma 27 (i), the graph GL is acyclic and thus (ûi)j

i=k is a path
from C to ûk in GL that is longer than P ′

uk
, a contradiction. (b) Now assume that h ≥ j.

This implies ûj−1 ∈ VL \ C and trivially also ûi ∈ VL for i with k ≤ i < j. Lemma 27 (ii)
implies ûi ∈ VL \ C and hence h is also minimal such that ûh ∈ C. Due to the previous
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considerations d(C, ûi) = d(C, ui) for each i with k ≤ i < j, where d is as in the algorithm.
As the multi-source longest path search processes the neighbors of uj in increasing order
with respect to ≤ and since ûj−1 < uj−1, this contradicts p(uk) = uk+1.

(3) Now assume uk ∈ VR \ (C ∪ VL). Note that ûk′ /∈ VL \C for all k′ > k as the opposite
would imply uk ∈ VL. As in (2) let h be minimal with h > k such that uh ∈ C and observe
that then also ui ∈ C for each i ≥ h. Observe that P ′

uk
= (ui)h

i=k is a shortest path from C

to uk in GR. We again distinguish two sub-cases. (a) Suppose that h < j. Then uj−1 ∈ C

and ûj−1 ∈ L as ûj−1 < uj−1. This implies ûj−1 ∈ VL \ C as p(uj−1) = uj , a contradiction
to our observation above. (b) Now assume that h ≥ j. This implies ûj−1 ∈ VR \ C and
ûi ∈ VR for each i with k ≤ i < j. Furthermore, ûi /∈ C for each i with k ≤ i < j as (ui)h

i=k

is a shortest path from C to uk. It follows that (ûi)h
i=k is another shortest path from C to uk

in GR. As the multi-source shortest path search processes the neighbors of uj in increasing
order with respect to ≤ and since ûj−1 < uj−1, this contradicts p(uk) = uk+1. ◀
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