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Abstract
In this work, we will explore modalities through dialogical game lenses. Games provide a powerful
tool for bridging the gap between intended and formal semantics, often offering a more conceptually
natural approach to logic than traditional model-theoretic semantics.

We begin by exploring substructural calculi from a game semantic perspective, driven by intuitions
about resource-consciousness and, more specifically, cost-sensitive reasoning. The game comes into
full swing as we introduce cost labels to assumptions and a corresponding budget. Different proofs
of the same end-sequent are interpreted as strategies for a player to defend a claim, which vary in
cost. This leads to a labelled calculus, which can be viewed as a fragment of subexponential linear
logic. We conclude this first part with a discussion of cut-admissibility for the proposed system.

In the second part, we show that our games offer an interesting insight also into modal logics.
More precisely, we will focus on the modal logic PNL, characterised by Kripke frames with two
types of disjoint and symmetric reachability relations. This framework is motivated by the study of
group polarisation, where the opinions or beliefs of individuals within a group become more extreme
or polarised after interaction. Our approach to reasoning about group polarisation is based on PNL
and highlights a different aspect of formal reasoning about the corresponding models – using games
and proof systems. We conclude by outlining potential directions for future research.
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4:2 Playing with Modalities

1 Introduction

Modalities, both as formal constructs and as tools for reasoning, have been central to the
development of logic and proof theory. In this work, we explore modalities through the lens
of dialogical games, emphasising their potential to bridge the gap between formal semantics
and conceptual intuition. Games not only offer a dynamic perspective on logical systems
but also serve as a unifying framework for analysing the structure of proofs and resource
management in a variety of logical settings.

We begin by examining substructural calculi, inspired by resource-sensitive reasoning. We
introduce the concept of prices for resources (represented by formulas) into the game using
the unary operator !a, a ∈ R+, which shares some characteristic features with subexponentials
in linear logic LL (SELL [14, 32]). Intuitively, a formula !aA represents a permanent resource:
from !aA, we can derive A as many times as needed, paying the price a each time.

We extend our game to this enriched language by incorporating a budget into the game
states, which decreases whenever a price is paid. Different strategies for proving the same
end-sequent can then be evaluated based on the budget required to execute them safely,
i.e., without incurring debt. This approach to resource-consciousness not only enhances the
game but also translates naturally into a sequent system, where cost bounds for proofs are
expressed as labels attached to sequents. By associating costs with proof steps, we provide a
fine-grained analysis of proof strategies and their computational bounds.

We note that, up to this point, the content summarises the work presented in [28], where
resources were considered only in assumptions. In this setting, sequents are restricted by
limiting the occurrences of the modality !a negatively, thereby eliminating the need for a
promotion rule.

In Section 2.2, we introduce new perspectives by allowing modalities in positive contexts.
This includes the addition of “worse costs,” linearisation of the cut formula, and tracking the
use of contraction during the cut-elimination process.

In the second part of this paper, we present an overview of our work in [22], going beyond
resource-awareness, and showing how games can illuminate modal logics. Specifically, we
focus on the positive-negative modal logic (PNL [47]), characterised by Kripke frames with
two disjoint and symmetric reachability relations. In PNL, individuals in a social network
are identified with worlds of the frame, and the associated relations represent either “friends”
(positive) or as “enemies” (negative). These relationships can be understood in different
ways: Instead of genuine friendship or enduring enmity, they may simply mean agreement
or disagreement on a particular issue. Our interest in PNL stems from its application in
modelling phenomena such as group polarisation, where interactions amplify the extremity of
opinions within a network. We show how the dialogical game lenses lead to both a semantic
game and a provability game for (hybrid) extensions of PNL.

In semantic games [25], each instance is played over a formula F and a model M by two
players, traditionally called I (or Me) and You. At every point in the game, one player acts
as the proponent (P), while the other acts as the opponent (O) of the current formula. The
set of actions at each stage is determined by the main connective of the current formula.

In contrast, provability games [29] do not concern truth in a specific model but rather
logical validity. These games are also played by two participants, Me and You, and involve
attacking assertions of formulas made by the other player and defending against these attacks.

We conclude this summary by showing how to transform the semantic game over single
models into a provability game that characterises logical validity. This transformation led
to the first Gentzen-style systems for variants of PNL, which modularly adapt to different
frame properties by faithfully capturing the rules for elementary games.



E. Pimentel, C. Olarte, T. Lang, R. Freiman, and C. G. Fermüller 4:3

Each part concludes with a discussion of future research directions and methodologies for
combining and adapting the frameworks presented here to other logics and systems.

2 A game model for costs

Our starting point is a calculus for affine intuitionistic linear logic (aILL) [24]. Formulas in
aILL are built from the grammar

A ::= p | 0 | 1 | A1 & A2 | A1 ⊕ A2 | A1 ⊗ A2 | A1 −◦ A2 | ! A.

with a denumerable infinite set of propositional variables {p, q, r, . . .}, the units {0, 1},
the binary connectives for additive conjunction and disjunction {&, ⊕}, the multiplicative
conjunction ⊗, the linear implication −◦, and the exponential !.

Similar to modal connectives, the exponential ! in linear logic is not canonical, in the sense
that, even having the same scheme for introduction rules, marking the exponentials with
different labels does not preserve equivalence. That is, if i ̸= j then !iA ̸≡ !jA. Intuitively,
this means that we can mark the exponential with labels taken from a set I organized in
a pre-order ⪯ (i.e., a reflexive and transitive relation), obtaining (possibly infinitely-many)
exponentials !i for i ∈ I. These are called subexponentials [14], and the respective proof
system for linear logic with subexponentials is called SELL [33]. As in multi-modal systems,
the pre-order determines the provability relation: for a general formula A, !bA implies !aA iff
a ⪯ b. Pre-ordering the labels (together with an upward closeness requirement) guarantees
cut-elimination in SELL [14].

The algebraic structure of subexponentials, combined with their intrinsic structural
properties (weakening and contraction) allow for the proposal of rich linear logic based
frameworks. This opened a venue for proposing different multi-modal substructural logical
systems [46], that encountered a number of different applications (see [37] for a survey).

In this paper, we will use subexponentials to model the notion of costs. We will start by
considering the particular case where labels will be elements of R+, the set of non-negative
real numbers, with the usual pre-order ≤. Formally, we substitute in aILL the exponential !
by the unary modal operators !a for each a ∈ R+.

We shall use A, B, C (resp. Γ, ∆) to range over formulas (resp. multisets of formulas).
Sequents have the form Γ ⇒ C where subformulas !aA will have a restriction to occur only
negatively in the sequent.2 We denote by !Γ a set of formulas prefixed with !a for some (not
necessarily the same) a ∈ R+.

The rules for the system C(R+) are depicted in Figure 1. Note that the cut rule is not
included in our presentation of C and that weakening is present only implicitly, via the
context Γ in the initial sequents. Furthermore, in rule init, p is a propositional variable and
there is no right rule for ! in C(R+) since this connective only appears in negative polarity.
We shall write ⊢C(R+) S if the sequent S is provable in C(R+).

2 The notion of polarity is the standard one: A subformula occurrence in the antecedent of a sequent is
negative if it occurs in the scope of an even number (including 0) of contexts ([·] −◦ B), and otherwise
it is positive. For occurrences of a subformula in the consequent, one replaces “even” by “odd”. The
reason for this restriction will be made clear in Section 2.2.

CSL 2025



4:4 Playing with Modalities

Γ, A, B ⇒ C

Γ, A ⊗ B ⇒ C
⊗L

!Γ, ∆1 ⇒ A !Γ, ∆2 ⇒ B

!Γ, ∆1, ∆2 ⇒ A ⊗ B
⊗R

!Γ, ∆1 ⇒ A !Γ, ∆2, B ⇒ C

!Γ, ∆1, ∆2, A −◦ B ⇒ C
−◦L

Γ, A ⇒ B

Γ ⇒ A −◦ B
−◦R

Γ, !aA, A ⇒ C

Γ, !aA ⇒ C
!L

Γ, Ai ⇒ B

Γ, A1 & A2 ⇒ B
&Li

Γ ⇒ A Γ ⇒ B
Γ ⇒ A & B

&R
Γ, A ⇒ C Γ, B ⇒ C

Γ, A ⊕ B ⇒ C
⊕L

Γ ⇒ Ai

Γ ⇒ A1 ⊕ A2
⊕Ri

Γ, p ⇒ p
init Γ ⇒ 1 1R Γ, 0 ⇒ C

0L

Figure 1 The sequent system C(R+).

2.1 Playing with subexponentials
We shall characterize C(R+) proofs as winning strategies (w.s.) in a two-player game, the
players denoted P and O. As usual, we will interpret bottom-up proof search in sequent
systems as a game where, at any given state, player P first chooses a formula of a sequent
and, in the next step:

if the rule has only one premise: P moves to the premise sequent of the corresponding
introduction rule;
if the rule has two premises either

(i) player O chooses a premise sequent in which the game continues; or
(ii) the game splits into independent subgames, where P has to win all of them if she

wants to win the game.
The choice between (i) and (ii) depends on the nature of the rule: branching in additive
rules is modelled as choices made by O, while branching in multiplicative rules involves P
splitting the context into two disjoint parts, which then serve as the corresponding contexts
for two subgames played in parallel. Consequently, the state of the game is represented by a
multiset of sequents, with each sequent belonging to a distinct subgame.

Now, to capture the notion of costs, game states include a budget (modelled as a real
number) that decreases whenever the rule !L is applied. This implies a cost a is incurred
during dereliction, i.e., when unpacking a formula stored within the modality !a. Formally
we have the following.

▶ Definition 1 (The game GC(R+)). GC(R+) is a game of two players, P and O. Game
states are tuples (H, b), where H is a finite multiset of sequents and b ∈ R is a “budget”.
GC(R+) proceeds in rounds, initiated by P’s selection of a sequent S from the current game
state. The successor state is determined according to rules that fit one of the two following
schemes:
(1) (G ∪ {S}, b) ⇝ (G ∪ {S′}, b′)
(2) (G ∪ {S}, b) ⇝ (G ∪ {S1} ∪ {S2}, b)
A round proceeds as follows: After P has chosen a sequent S ∈ H among the current game
state, she chooses a rule instance r of C(R+) such that S is the conclusion of that rule.
Depending on r, the round proceeds as follows:
1. If r is a unary rule different from !L with premise S′, then the game proceeds in the game

state (G ∪ {S′}, b).
2. Budget decrease: If r = !L with premise S′ and principal formula !aA, then the game

proceeds in the game state (G ∪ {S′}, b − a).
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3. Parallelism: If r is a binary rule with premises S1, S2 pertaining to a multiplicative
connective, then the game proceeds as (G ∪ {S1} ∪ {S2}, b).

4. O-choice: If r is a binary rule with premises S1, S2 pertaining to an additive connective,
then O chooses S′ ∈ {S1, S2} and the game proceeds in the game state (G ∪ {S′}, b).

A winning state (for P) is a game state (H, b) such that all S ∈ H are initial sequents of
C(R+) and b ≥ 0.

▶ Definition 2 (Plays and strategies). A play of GC(R+) on a game state (H, b) is a sequence
(H1, b1), (H2, b2), . . . , (Hn, bn) of game states, where (H1, b1) = (H, b) and each (Hi+1, bi+1)
arises by playing one round on (Hi, bi). A strategy (for P) on a game state (H, b) is defined as
a function telling P how to move in any given state. A strategy on (H, b) is a winning strategy
(w.s.) if all plays following it eventually reach a winning state. We write |=GC(R+) (H, b) if P
has a w.s. in the GC(R+)-game starting on (H, b).

The intuitive reading of |=GC(R+) (H, b) is: The budget b suffices to win the game H.

▶ Example 3. Consider the following well-known riddle:

You have white and black socks in a drawer in a completely dark room. How many
socks do you have to take out blindly to be sure of having a matching pair?

We can model the matching pair by the disjunction (w ⊗ w) ⊕ (b ⊗ b), and the act of drawing
a random sock by the labelled formula !1(w ⊕ b). The above question then becomes:

What is the least budget n such that |=GC(R+) (!1(w ⊕ b) ⇒ (w ⊗ w) ⊕ (b ⊗ b), n)?

The following play illustrates that n = 3 suffices, where F = (w⊗w)⊕(b⊗b) and G = !1(w⊕b):
1. ({G ⇒ F}, 3)
2. ({G, w ⊕ b, w ⊕ b, w ⊕ b ⇒ F}, 0) (P plays !1L 3×, budget decrease)
3. ({G, w, w ⊕ b, w ⊕ b ⇒ F}, 0) (O chooses w)
4. ({G, w, b, w ⊕ b ⇒ F}, 0) (O chooses b)
5. ({G, w, b, b ⇒ F}, 0) (O chooses b)
6. ({G, w, b, b ⇒ b ⊗ b}, 0) (P plays ⊕R2)
7. ({G, w, b ⇒ b} ∪ {G, b ⇒ b}, 0) (P plays ⊗R, parallelism)
The other possible choices for O are similar or simpler, and show that n = 2 is not enough
for winning the game.

We note that it is not necessary to consider all possible strategies in GC(R+): For example, P
never needs to take the budget into account when deciding the next move. Also, it is easy to
see that a C(R+)-proof Ξ of a sequent S translates to a w.s. in ({S}, b) for some sufficiently
large budget b. Taking these observations together, one can prove the following.

▶ Theorem 4 (Weak adequacy for GC(R+) [28]). Let S be a sequent. Then

∃b
(

|=GC(R+) ({S}, b)
)

iff ⊢C(R+) S

This is a weak adequacy since information about the budget b is lost in the proof theoretic
representation. In other words, the game GC(R+) is more expressive than the calculus C(R+).

To overcome this discrepancy, we introduce a labelled extension of C(R+) that we call
Cℓ(R+). A Cℓ(R+)-proof is build from labelled sequents b : Γ ⇒ A where Γ ⇒ A is a sequent
and b ∈ R+. The complete system is given in Figure 2. Now we can prove the desired
correspondence.

CSL 2025



4:6 Playing with Modalities

labelled sequent system for Cℓ(R+)

b : Γ, A, B ⇒ C

b : Γ, A ⊗ B ⇒ C
⊗L

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2 ⇒ B

a + b : !Γ, ∆1, ∆2 ⇒ A ⊗ B
⊗R

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, B ⇒ C

a + b : !Γ, ∆1, ∆2, A −◦ B ⇒ C
−◦L

b : Γ, A ⇒ B

b : Γ ⇒ A −◦ B
−◦R

b : Γ, Ai ⇒ B

b : Γ, A1 & A2 ⇒ B
&Li

a : Γ ⇒ A b : Γ ⇒ B
max{a, b} : Γ ⇒ A & B

&R

a : Γ, A ⇒ C b : Γ, B ⇒ C

max{a, b} : Γ, A ⊕ B ⇒ C
⊕L

b : Γ ⇒ Ai

b : Γ ⇒ A1 ⊕ A2
⊕Ri

c : Γ, !aA, A ⇒ C

c + a : Γ, !aA ⇒ C
!aL

0 : Γ, p ⇒ p
init 0 : Γ ⇒ 1 1R 0 : Γ, 0 ⇒ A

0L
a : Γ ⇒ A
b : Γ ⇒ A

wℓ(b ≥ a)

Figure 2 The labelled sequent system Cℓ(R+).

▶ Theorem 5 (Strong adequacy for GC(R+) [28]). |=GC(R+) ({Γ ⇒ A}, b) iff ⊢Cℓ(R+) b :
Γ ⇒ A.

This result can be further strengthened. In fact, proofs (and games) can be assigned a
minimal budget, referred to as the cost: given a proof Ξ of a sequent, one can assign the
label 0 to all initial sequents of Ξ and propagate the labels downward according to the rules
of Cℓ(R+). However, the broader implications are even more interesting, as illustrated in the
following example.

▶ Example 6. Suppose that a printer costs $500 and it produces copies for $0.1. Which is
the budget needed for making 2 copies?

Since buying a printer and making a copy can be modelled as !500(!0.1C), the goal is to
find possible budgets for

b : !500(!0.1C) ⇒ C ⊗ C

Now, there are many ways of proving this sequent in Cℓ(R+). For example, the proof below
has a cost $500.20:

0 : C, C ⇒ C ⊗ C
⊗, init

0.20 : !0.1C ⇒ C ⊗ C
!0.10 × 2

500.20 : !500(!0.1C) ⇒ C ⊗ C
!500

This proof corresponds to purchasing one printer and producing two copies from it.
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Alternatively, one could overprice the scenario by purchasing two printers and making
one copy with each, incurring a cost of $1,000.20.

0 : C, C ⇒ C ⊗ C
⊗, init

0.20 : !0.1C, !0.1C ⇒ C ⊗ C
!0.10

1, 000.20 : !500(!0.1C) ⇒ C ⊗ C
!500 × 2

Hence, different proofs of the same sequent can lead to different costs. Nevertheless, cost-
optimal strategies exist for all provable sequents, as the following result shows.3

▶ Theorem 7 (Cost-optimal proofs [28]). If ⊢C(R+) Γ ⇒ A, then there exists a smallest b

such that ⊢Cℓ(R+) b : Γ ⇒ A.

2.2 About cut-admissibility
We begin by noting that establishing cut-admissibility in Cℓ(R+) critically relies on the ability
to define a computable function f that relates the cost of the end-sequent to the labels of
the premises in the cut rule. Given that exponentials only occur negatively in Cℓ(R+), no
cut steps involve banged formulas. This allows us to demonstrate that f(a, b) = a + b is the
minimal such function.

▶ Theorem 8 (Negative-cut [28]). For f(a, b) = a + b, the following cut rule is admissible in
Cℓ(R+):

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

f(a, b) : !Γ, ∆1, ∆2 ⇒ C
cutℓ

Moreover, whenever cutℓ is admissible w.r.t. a given f ′, then a + b ≤ f ′(a, b).

It turns out that extending cost-conscious reasoning to modalities occurring positively in
sequents is far from trivial. While an intuitive game-theoretic interpretation of promotion
could be provided in the style of [16], this does not align with a proof-theoretic notion of
cut-admissibility. This is due to the inherent difficulty in defining a functional notion of the
cut-label, as demonstrated below.

Let CPℓ(R+) be the system resulting from Cℓ(R+) by adding the following labelled
promotion rule

b : Γ≤!a ⇒ A
b : Γ ⇒ !aA

!aR

where Γ≤!a denotes all formulas in Γ which are of the form !cB and a ≥ c.
The question that arises is whether the cut-admissibility result can be extended to

CPℓ(R+). To address this, consider the following derivation:

b1 : ⇒ A

b1 : ⇒ !aA
!aR

b2 : ∆, !aA, A ⇒ C

b2 + a : ∆, !aA ⇒ C
!aL

b1 + b2 + a : ∆ ⇒ C
cut

3 We note that the proof of this result is non-constructive!

CSL 2025



4:8 Playing with Modalities

This is usually reduced to

b1 : ⇒ A

b1 : ⇒ !aA b2 : ∆, !aA, A ⇒ C

b1 + b2 : ∆, A ⇒ C
cut

2b1 + b2 : ∆ ⇒ C
cut

where the upper cut has a smaller rank, and the lower cut has a smaller degree than the
original cut. However, this approach fails in the labelled setting because, whenever a < b1,
the label increases.

Although alternative reduction methods could be explored, the following result shows that
it is impossible to define a labelled cut rule for CPℓ(R+) where the label of the conclusion
depends solely on the labels of the premises. We include the proof, as it is highly insightful.

▶ Theorem 9 (Impossible-cut [28]). There is no function f : R+ × R+ → R+ such that the
rule

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

f(a, b)!Γ, ∆1, ∆2 ⇒ C
cut

is admissible in CPℓ(R+).

Proof. Let p, q be different propositional variables, and let A⊗n denote the n-fold multiplic-
ative conjunction of a formula A. The sequents

a : !1/kp ⇒ !1/kp⊗(k·a) and b : !1/kp⊗(k·a) ⇒ p⊗(k·k·a·b)

are provable in CPℓ(R+) for all natural numbers a, b, k. The smallest label f which makes
their cut conclusion f : !1/kp ⇒ p⊗(k·k·a·b) provable in CPℓ(R+) is k · a · b, which is not a
function on the premise labels a, b. ◀

The theorem above indicates that, to find an admissible labelled cut rule, we must either:
1. restrict the form of the cut formula;
2. allow the labelling function f to incorporate more information from the premises than

just their labels;
3. keep track of the use of contraction in the cut-elimination process.

We shall explore next different fragments and (admissible) cut-like rules that can be
proposed for CPℓ(R+).

2.2.1 Infinite costs
We start by observing that the inclusion of “worse costs” entails a trivial labelling that makes
cut admissible. Let R+

∞ be the completion of R+ with ∞ and CPℓ(R+
∞) the corresponding

labeled proof system with decreasing for b ≤ a being defined as follows:
If a, b ̸= ∞, a − b is defined as usual;
If a = ∞, then a − b = ∞.

In the following theorem, the cut formula A is an arbitrary formula (containing, possibly,
positive and/or negative occurrences of the modality !a).

▶ Theorem 10 (Infinite-cut). The following rule is admissible in CPℓ(R+
∞)

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

∞ : !Γ, ∆1, ∆2 ⇒ C
cut∞
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The proof follows the same steps of the cut-elimination proof for SELL [14, 33], using natural
extensions of invertibility and permutability of rules to the labelled case.

But this still does not define a computable function relating the labels of the premises
and the conclusion of the cut rule.

2.2.2 Linearity
Now we show cases where the cut formula is restricted, starting with the case where the cut
formula is !-free.

▶ Theorem 11 (Linear-cut). Let A be a formula with no occurrences of !a. Then, the following
rule is admissible in CPℓ(R+)

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, A ⇒ C

a + b : !Γ, ∆1, ∆2 ⇒ C
cutL

Moreover, if a : Γ ⇒ C is provable using cutL, then there is a cut-free proof of a′ : Γ ⇒ C

with a ≥ a′.

The proof uses a standard cut-reduction strategy for SELL, observing in each case that the
reduction of the label is possible.

Still, forcing cut formulas to be linear seems to be a very severe restriction to impose.
We will now consider another, and less limiting, syntactic restriction on the cut formula.

▶ Definition 12. A formula of the form !aA is simply exp-labelled if a ̸= 0 and A is bang-free.

Since the formulas used in the proof of Theorem 9 can be simply exp-labelled, it is
clear that we cannot expect to find an admissible cut rule for all simply exp-labelled cut
formulas where the labelling depends solely on the labels of the premises. However, we can
also incorporate the information from the label a in the simply exp-labelled formula !aA, as
follows.

▶ Theorem 13 (Exp-labelled-cut [27]). For any simply exp-labelled formula !aA, the following
cut rule is admissible in CPℓ(R+):

b1 : !Γ, ∆1 ⇒ !aA b2 : !Γ, ∆2, !aA ⇒ C

f(b1, b2, a) : !Γ, ∆1, ∆1 ⇒ C
cutel

where f(b1, b2, a) = b2 + ⌊b2/a⌋ · b1.

The intuition behind this labelling is as follows: if the right subproof R of the cutel ends
with the label b2, then the formula !aA can be unpacked at most ⌊b2/a⌋ times within a
multiplicative subtree of R. Therefore, we can assume that the rule !aL is applied only ⌊b2/a⌋
times on such a subtree.

2.2.3 Accumulated costs
We will end the part of substructural modalities with a new approach towards cut-admissibility,
where we keep track of the use of contraction in the cut-elimination process. The idea is that,
if proving A costs b, then any use of A must pay this “extra cost”. For that, we introduce
the following notation.
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▶ Definition 14. Let E = {ab | a, b ∈ R+} be such that
1. ab +E cd = a + b + c + d.
2. ab ≥E ac (i.e., the ordering ≥E ignores the subindices).
3. ab >E cd iff a > c.
For any formula A ∈ CPℓ(R+), we define [A]c as the formula that substitutes any modality
!ab with !ab+c .

Hence CPℓ(R+) can be slightly modified so that sequent labels belong to R+, while modal
labels belong to E . Due to the ordering above, the promotion of !a0 has the same effect/con-
straints that the promotion of !ab . However, the dereliction of the latter requires a greater
budget (a + b instead of a). Moreover, the equivalence !abA ≡ !acA can be proven, each
direction requiring a different budget. Finally, note that E0 = {a0 | a ∈ R+} ≃ R+, that is,
each element a ∈ R+ can be seen as the equivalence class of a0 in R+ × R+ modulo R+. We
will abuse of the notation and continue representing the resulting system by CPℓ(R+), also
unchanging the representation of sequents.

The following lemma has a straightforward proof.

▶ Lemma 15. If b : Γ, [A]c ⇒ C then b′ : Γ, A ⇒ C with b ≥ b′. More generally, if
b : Γ, [A]c ⇒ C and c ≥ c′ then b′ : Γ, [A]c′ ⇒ C with b ≥ b′.

The next definition restricts the occurrence of unbounded modalities only under linear
implication.

▶ Definition 16. We say that A is −◦-linear if for all subformulas of the form B −◦ C in A,
B is bang-free.

The following result presents the admissibility of an extended form of the cut rule, where the
budget information from the left premise is passed to the cut-formula in the right premise.
Observe that the label of the conclusion is now a function of the labels of the premises.
Moreover, the cut-reduction is label preserving, meaning that the budget monotonically
decreases in the cut-elimination process.

▶ Theorem 17 (−◦-linear-cut). The following rule is admissible

a : !Γ, ∆1 ⇒ A b : !Γ, ∆2, [A]a ⇒ C

a + b : !Γ, ∆1, ∆2 ⇒ C
cutLL A is a −◦-linear formula

Moreover, if b : Γ ⇒ C is provable using cutLL, then there is a cut-free proof of b′ : Γ ⇒ C

with b ≥ b′.

Proof. We will illustrate some cases.
Note that: [!abA]c = !ab+c [A]c; the promotion of !abA, bottom-up, results in a context of
! formulas (that can be contracted at will); and the dereliction of !ab [A]c decreases the
budget in a + b. Hence,

c : (!Γ)≤!ab ⇒ A

c : !Γ, ∆1 ⇒ !abA

d : !Γ, ∆2, [A]c, !ab+c [A]c ⇒ C

a + b + c + d : !Γ, ∆2, !ab+c [A]c ⇒ C

a + b + 2c + d : !Γ, ∆1, ∆2 ⇒ C

reduces to

c : (!Γ)≤!ab ⇒ A

c : !Γ ⇒ !abA d : !Γ, !ab+c [A]c, ∆2, [A]c ⇒ C

c + d : !Γ, ∆2, [A]c ⇒ C

2c + d : !Γ, ∆1, ∆2 ⇒ C

where the “extra cost” ab disappears after the reduction.
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Note that [A ⊗ B]c = [A]c ⊗ [B]c. Here, let c = c1 + c2:

c1 : !Γ, ∆′
1 ⇒ A c2 : !Γ, ∆′′

1 ⇒ B

c : !Γ, ∆1 ⇒ A ⊗ B

b : !Γ, ∆2, [A]c, [B]c ⇒ C

b : !Γ, ∆2, [A ⊗ B]c ⇒ C

b + c : !Γ, ∆1, ∆2 ⇒ C

reduces to

c1 : !Γ, ∆′
1 ⇒ A

c2 : !Γ, ∆′′
1 ⇒ B b : !Γ, ∆2, [A]c1 , [B]c2 ⇒ C

b + c2 : !Γ, ∆′′
1 , ∆2, [A]c1 ⇒ C

b + c : !Γ, ∆1, ∆2 ⇒ C

It is worth noticing that in the first derivation, the cost c = c1 + c2 is “charged” to A ⊗ B

(in the formula [A ⊗ B]c) while in the second one, in a finer way, the cost c1 is charged to
A and c2 to B.
The case of implication explains the restriction we impose. Here b = b1 + b2:

c : !Γ, ∆1, A ⇒ B

c : !Γ, ∆1 ⇒ A −◦ B

b1 : !Γ, ∆′
2 ⇒ [A]c b2 : !Γ, ∆′′

2 , [B]c ⇒ C

b : !Γ, ∆2, [A −◦ B]c ⇒ C

c + b : !Γ, ∆1, ∆2 ⇒ C

reduces to

b1 : !Γ, ∆′
2 ⇒ A

c : !Γ, ∆1, [A]b1 ⇒ B b2 : !Γ, ∆′′
2 , [B]c ⇒ C

c + b2 : !Γ, ∆1, ∆′′
2 , [A]b1 ⇒ C

c + b : !Γ, ∆1, ∆2 ⇒ C

Note that the reduction above is correct since A does not have occurrences of !a and then
[A]c = [A]b1 = A. ◀

2.3 Discussion – part I

This research line offers at least three promising directions for future exploration.
First, the work initiated in [28] highlights that our games and systems provide more

precise control over resources appearing negatively in sequents, unlocking new opportunities
for analysing the problem of comparing proofs. For instance, studying proof costs in
labelled calculi could reveal deeper links between labels and computational bounds [2].
Similarly, examining the interplay between resource budgets and the complexity of the
cut-elimination process, particularly within the multiplicative-(sub)exponential fragment,
presents considerable opportunities [40, 41].

Second, there is substantial value in investigating how the dialogue games we have
developed align with the framework of concurrent games [1, 15, 13]. Understanding these
connections could enrich our framework and provide new perspectives on resource management
in proof theory.

Lastly, an essential direction involves addressing compositionality in dialogue games
governed by the cut rule. Regardless of the specific approach taken to achieve cut-admissibility,
ensuring compositionality remains a critical and promising challenge [34].
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3 A game model for polarisation

We now turn to the study of modalities in the classical setting, focusing on the positive-
negative modal logic PNL with nominals [47, 35]. This logic is based on Kripke frames with
two disjoint and symmetric reachability relations. Here we will outline the construction of
an adequate semantic game for PNL, its transformation into a provability game, and the
derivation of a corresponding sequent system. This opens a discussion on how to generalise
this method to other modal systems.

We begin with a brief discussion of games for modal logics and the motivation for hybrid
extensions. As studied in [9] and further developed in [19], extending Hintikka games [25]
dialogue game to modal logic is conceptually straightforward: in addition to the current roles
of the players and the current formula F , one only has to keep track of the current world
w in the model. However, this extension introduces an unfortunate drawback: the game
trees, i.e., labelled trees whose nodes are game states, are no longer determined solely by the
syntax of the formula, but instead depend on the relational structure of the model. This
is in stark contrast to semantic games for propositional logic, where semantic information
is required only at the final stage to determine the winner. The loss of uniformity in game
trees across all models is a significant limitation of this approach.

As in [9, 18], we address this problem by turning to hybrid logic [10, 12, 11], allowing
explicit references to worlds and the accessibility relation within the object language.

Let A = {a, b, . . .} be a non-empty set of agents, At = {p, q, . . .} be a countable set of
propositional variables, and N = {i, j, . . .} be a countable set of nominals. The language of
PNL is generated by the following grammar

F ::= p | ¬F | F1 ∧ F2 | F1 ∨ F2 | R+(i, j) | R−(i, j) | ♢+F | ♢−F | [A]F

where p ∈ At, and i, j ∈ N . Formulas of the form p, R+(i, j), or R−(i, j) are called elementary.
We shall use F, G, H to range over formulas. The propositional connectives ⊤, ⊥, →, and
the (dual) modalities ⊞ and ⊟ can be obtained in the usual way.

Intuitively, nominals are used as names for worlds of the model, while the propositions
R±(i, j) state that agent i is a friend/enemy (or, more generally, agrees/disagrees) with j.
The formula ♢+F (resp. ♢−F ) states that F holds for a friend (resp. an enemy). The global
modality [A]F states that F holds for all the agents. We use R± to denote either R+ or R−,
and ♢± to denote either ♢+ or ♢−.

A model M is a tuple ⟨A, R+, R−, V, g⟩ where A is a set (of agents), g : N → A is called
denotation function, R+, R− ⊆ A × A, and V : At → P(A). A model is a PNL-model if:

g is surjective, i.e., every agent has a name;
R+ is reflexive; and
R+ and R− are both symmetric and non-overlapping, i.e., for all a, b ∈ A, (a, b) /∈ R+ or
(a, b) /∈ R−.

The Kripke semantics of PNL is in Figure 3. A formula F is true over M, written M ⊩ F iff
M, a ⊩ F , for all agent a ∈ A. For a set of formulas ∆, we write M |= ∆ iff M ⊩ ∆ for all
F ∈ ∆. A formula F is valid iff M ⊩ F for every PNL-model M. For a class of models M,
we write ∆ |=M F iff M ⊩ F for every model M ∈ M with M |= ∆.

▶ Example 18. Consider the following models (omitting self loops for R+):

I

+

M1

I

−

M2

−

I

+

M3

−

I

+

M4

+

{p}
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M, a ⊩ p iff a ∈ V(p) M, a ⊩ ¬F iff M, a ̸⊩ F

M, a ⊩ F ∧ G iff M, a ⊩ F and M, a ⊩ G M, a ⊩ F ∨ G iff M, a ⊩ F or M, a ⊩ G

M, a ⊩ R±(i, j) iff (g(i), g(j)) ∈ R±

M, a ⊩ ♢±F iff there is j ∈ N such that M, g(j) ⊩ R±(i, j) and M, g(j) ⊩ F

M, a ⊩ [A]F iff M, g(j) ⊩ F, for all j ∈ N.

Figure 3 Kripke semantics for PNL.

The following holds:
M1: I have a friend where ¬p: M1, I ⊩ ♢+¬p;
M2: All my enemies do not believe in p: M2, I ⊩ ⊟¬p;
M3: I have an enemy: M3, I ⊩ ♢−⊤;
M4: Everybody has a friend where p: M4, a ⊩ [A]♢+p for any agent a.

3.1 Playing with models
Before starting playing, remember that in a PNL-model M, every agent a has a name i,
i.e., there exists i ∈ N s.t. g(i) = a. Hence, from now on, we will internalise the nominals,
identifying an agent a with its respective nominal i.

The semantic game is played over a PNL-model M = (A, R+, R−, V, g) by two players,
Me (or I ) and You, who argue about the truth of a formula F at an agent i. At each stage
of the game, one player acts as proponent, while the other acts as opponent of the claim that
F is true at i.

We represent the situation where I am the proponent (and You are the opponent) by the
game state P, i : F , and the situation where I am the opponent (and You are the proponent)
by O, i : F .

We call a game state elementary if its involved formula is elementary. For a game state g,
we denote the game starting at g over the model M by GM(g).

The game over a PNL-model M proceeds by reducing the involved formula F to an
elementary formula by following the rules described in Figure 4.4

In general, every two-person, zero-sum, win-lose game is usually represented by a game
tree. In our case, the root of the game tree representing the game GM(g) is g. The children
of each node in the game tree are exactly the possible choices of the corresponding player.
For instance, if h = P, i : F1 ∧ F2 appears in the game tree, then its children are P, i : F1 and
P, i : F2. Each node in the tree is labelled either “I”, or “Y”, depending on which player is to
move in the corresponding game state, and we label the nodes P, i : ¬F and O, i : ¬F with
“I” (even though there is no choice involved in these game states). For instance, the node
corresponding to the game state h above is “Y”, since it is Your choice in P : F1 ∧ F2. The
leaves of the tree receive the label of the winning player. A run of the game is a maximal
path through the game tree.

Now we are ready to define winning strategies and state the main result of this section:
the adequacy of the proposed game semantics with respect to the Kripke semantics for PNL.

▶ Definition 19. A strategy for Me in the game GM(g) is a subtree σ of the associated game
tree such that: (1) g ∈ σ, (2) if h ∈ σ is a node labelled “Y”, then all children of h are in
σ, (3) if h ∈ σ is a node labelled “I”, then exactly one child of h is in σ. The strategy σ is
called winning if all leaves in the tree σ are labelled “I”. (Winning) strategies for You are
defined dually.

4 The outcome of the game state Q, k : R±(i, j) is independent of k (it only depends on the underlying
model M). Hence, we write Q, _ : R±(i, j) instead of Q, k : R±(i, j).
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(P∧) At P, i : F1 ∧ F2, You choose between P, i : F1 and P, i : F2 to continue the game.

(O∧) At O, i : F1 ∧ F2, I choose between O, i : F1 and O, i : F2 to continue the game.

(P∨) At P, i : F1 ∨ F2, I choose between P, i : F1 and P, i : F2 to continue the game.

(O∨) At O, i : F1 ∨ F2, You choose between O, i : F1 and O, i : F2 to continue the game.

(P¬) At P, i : ¬F , the game continues with O, i : F .

(O¬) At O, i : ¬F , the game continues with P, i : F .

(P♢±) At P, i : ♢±F , I choose a nominal j, and You decide whether the game ends in the
state P, _ : R±(i, j) or continues with P, j : F .

(O♢±) At O, i : ♢±F , You choose j, and I choose between O, _ : R±(i, j) and O, j : F .

(P[A]) At P, i : [A]F , You choose a nominal j and the game continues with P, j : F .

(O[A]) At O, i : [A]F , I choose a nominal j, and the game continues with O, j : F .

(Pel) Let Fe be an elementary formula. I win and You lose at P, i : Fe iff M, i |= Fe.
Otherwise, You win and I lose.

(Oel) At O, i : Fe, I win and You lose iff M, i ̸|= Fe. Otherwise, You win and I lose.

Figure 4 Semantic game given a PNL-model M.

▶ Theorem 20 (Adequacy - semantic games [22]). Let M be a PNL-model, a an agent with
nominal i, and F a formula.
(1) I have a winning strategy for GM(P, i : F ) iff M, a |= F .
(2) You have a winning strategy for GM(P, i : F ) iff M, a ̸|= F .

▶ Example 21 ([22]). Let (4B) = ((♢+♢+p∨♢−♢−p) → ♢+p)∧((♢+♢−p∨♢−♢+p) → ♢−p). This formulas
specifies local balance [35] and captures the idea that “the enemy of my enemy is my friend”,
“the friend of my enemy is my enemy”, and “the friend of my friend is my friend”. I have a
winning strategy for the game P, a : 4B on M1 while You have a winning strategy for the
same game on M2 where (omitting self-loops for R+):

M1 =
a

b

c

+
−
−

{p}

M2 =
a

b

c

+
+

−
{p}

For M1, in the first conjunct, I pick (P∨) ♢+p and then b in (P♢+); for the second conjunct,
I pick the first disjunction in F = (♢+♢−p ∨ ♢−♢+p) → ♢−p) where, in any of Your choices (P¬
followed by O∨ and O♢±), I win all the elementary states. For M2, I do not have a winning
strategy for the second conjunct: I can neither win ♢−p (no R− successor), nor the first
disjunct in F above since, after P¬, You choose (O∨) ♢+♢−p and select c and then b (O♢±)
where p holds and You win. See the complete game in our tool [23].

3.2 Playing all models
We now leverage semantic games to PNL-provability games. The key observation is that
the rules of the semantic game remain independent of the underlying model, except at the
level of elementary game states.
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(Dupl) If no state in D is underlined, I can choose a non-elementary g ∈ D and the game
continues with D

∨
g.

(Sched) If no state in D = D′ ∨
g is underlined, and g is non-elementary, I can choose to

continue the game with D′ ∨
g.

(Move) If D = D′ ∨
g then the player who is to move in the semantic game G(g) at g makes

a legal move to the game state g′ and the game continues with D′ ∨
g′.

(End) The game ends if there are no non-elementary game states left in D, or if no game state
is underlined and I win according to Definition 22. Otherwise, I must move according to
(Dupl) or (Sched).

Figure 5 Rules for the provability game.

The provability game DG(P, i : F ) can be thought of as Me and You playing all semantic
games G(P, i : F ) over all PNL-models M simultaneously. We point out that the rules of
the semantic game do not depend on the structure of M but merely on F . Truth degrees are
only needed at the atomic level to determine who wins the particular run of the game. This
allows us to require players to play “blindly”, i.e., without explicitly referencing a model M.
Clearly, if I have a winning strategy in such a game, then I can win in GM(P, i : F ), for
every M, making this strategy an adequate witness of logical validity.

Provability game states are finite multisets of the game states defined in Section 3.1.
We denote by g1

∨
...

∨
gn the provability game state {g1, ..., gn}. We write D1

∨
D2 for the

multiset sum D1 + D2 and D
∨

g for D + {g}. A provability state is called elementary if all
its game states are elementary. We use DG(D) to denote the provability game starting at D.

▶ Definition 22. Let Del denote the provability state consisting of the elementary game
states of D. I win and You lose at D if for every PNL-model there is a game state in Del

where I win the corresponding semantic game.

In the provability game, I additionally take the role of a scheduler, deciding which game
is to be played next. We signal the chosen game state by underlining it as in g.

▶ Definition 23. The rules of the provability game are in Figure 5. Infinite runs, and runs
that end in elementary provability states where I do not win according to Definition 22,
are winning for You and losing for Me. (Dupl) is referred to as the duplication rule and
(Sched) as the scheduling, or underlining rule.

▶ Theorem 24 (Adequacy - provability games [22]). I have a winning strategy in DG(D) iff
for every PNL-model M, there is some g ∈ D such that I have a winning strategy in GM(g).

▶ Corollary 25. The formula F is PNL-valid iff I have a winning strategy in DG(P, i : [A]F ).

▶ Example 26. Consider the game P, i : p ∨ ¬p. I duplicate the game state in the first
round and the game continues with the provability state P, i : p ∨ ¬p

∨
P, i : p ∨ ¬p.

Now I move to P, i : p in the first subgame and to P, i : ¬p in the second. After a role
switch in the second subgame, the final state is P, i : p

∨
O, i : p, where I win regardless of

the underlying model.
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3.3 From games to proofs
Theorems 20 and 24 establish that winning strategies for Me in the provability game
correspond to the validity of formulas. In this section, we extend this result to proof systems
by introducing a sequent calculus, DS, where proofs correspond to My’s winning strategies
in the provability game.

Labelled nominal formulas are either labelled formulas of the form i : F or relational atoms
of the form R(i, j), where i and j are nominals and F is a PNL formula.5 Labelled sequents
have the form Γ ⇒ ∆, where Γ, ∆ are multisets containing labelled nominal formulas.

Starting with sequents, every provability state of the form

O, i1 : F1
∨

. . .
∨

O, in : Fn

∨
P, j1 : G1

∨
. . .

∨
P, jm : Gm

can be rewritten as the labelled sequent Γ ⇒ ∆ where Γ = {i1 : F1, . . . , in : Fn} and ∆ =
{j1 : Gi, . . . , jm : Gm}. In what follows, we will not distinguish between provability states
and their corresponding labelled sequent. For example, the provability game state O, i :
(♢+♢+p ∨ ♢−♢−p)

∨
P, i : ♢+p will be identified with the sequent i : (♢+♢+p ∨ ♢−♢−p) ⇒ i : ♢+p.

The inference rules must be tailored in such a way that proofs in the sequent system
match exactly My winning strategies in the provability game. This means that the user of the
proof system takes the role of Me, scheduling game states and choosing moves in P-states.
Moreover, provability in the proof system should correspond to validity in the game. For
that, it is crucial to establish the formal relationship between elementary game states and
logical axioms.

▶ Lemma 27 ([22]). Let Γ ⇒ ∆ be composed of elementary game states only. I win the
provability game in Γ ⇒ ∆ iff one of the following holds6

i. R−(i, i) ∈ Γ or R+(i, i) ∈ ∆ for some i;
ii. {R+(i, j), R−(i, j)} ⊆ Γ for some i ̸= j;
iii. Γ ∩ ∆ ̸= ∅.

Figure 6 presents the labelled sequent systems DS with the standard initial axiom and
structural/propositional rules. The modal rules and the relational rules sym and ref±
coincides with the modal rules originally presented by Viganò in [45], adapted to multi-
relational modal logics. It is routine to show that the rule no in Figure 6 correspond to the
non-overlapping axiom ∀i, j.¬(R+(i, j) ∧ R−(i, j)).

The following result immediately implies that the provability game DG is adequate with
respect to the calculus DS.

▶ Theorem 28 (Adequacy - sequent system [22]). I have a winning strategy in the provability
game DG(Γ ⇒ ∆) iff Γ ⇒ ∆ is provable in DS.

Let us write |=PNL Γ ⇒ ∆ iff for every PNL-model there is some i : F ∈ Γ such that
M, g(i) ̸|= F , or there is some i : G ∈ ∆ such that M, g(i) |= G. We have the following
consequence of Theorems 20, 24, and 28:

▶ Corollary 29. Let Γ, ∆ be multisets of labelled formulas. Then |=PNL Γ ⇒ ∆ iff there is a
proof of Γ ⇒ ∆ in DS. In particular, F is PNL-valid iff there is a proof of ⇒ F in DS.

5 Observe that here we are abusing the notation, identifying k : R(i, j) with R(i, j) – see Footnote 4.
6 Since relations are symmetric, we will identify R±(i, j) with R±(j, i).
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Axiom and Structural Rules
init

Γ, i : Fel ⇒ ∆, i : Fel

Γ, i : F, i : F ⇒ ∆
(Lc)

Γ, i : F ⇒ ∆
Γ ⇒ i : F, i : F, ∆

(Rc)
Γ ⇒ i : F, ∆

Propositional Rules

Γ ⇒ i : F, ∆
(L¬)

Γ, i : ¬F ⇒ ∆
Γ, i : F ⇒ ∆

(R¬)
Γ ⇒ i : ¬F, ∆

Γ, i : F ⇒ ∆ Γ, i : G ⇒ ∆
(L∨)

Γ, i : F ∨ G ⇒ ∆
Γ ⇒ i : F, ∆

(R1
∨)

Γ ⇒ i : F ∨ G, ∆
Γ ⇒ i : G, ∆

(R2
∨)

Γ ⇒ i : F ∨ G, ∆

Γ, i : F ⇒ ∆
(L1

∧)
Γ, i : F ∧ G ⇒ ∆

Γ, i : G ⇒ ∆
(L2

∧)
Γ, i : F ∧ G ⇒ ∆

Γ ⇒ i : F, ∆ Γ ⇒ i : G, ∆
(R∧)

Γ ⇒ i : F ∧ G, ∆

Modal Rules

Γ, R±(i, j) ⇒ ∆
(L♢±)1

Γ, i : ♢±F ⇒ ∆
Γ, j : F ⇒ ∆

(L♢±)2
Γ, i : ♢±F ⇒ ∆

Γ ⇒ R±(i, j), ∆ Γ ⇒ j : F, ∆
(R♢±)

Γ ⇒ i : ♢±F, ∆
Γ, j : F ⇒ ∆

(L[A])Γ, i : [A]F ⇒ ∆
Γ ⇒ j : F, ∆

(R[A])Γ ⇒ i : [A]F, ∆

Relational Rules

Γ ⇒ ∆, R±(j, i)
sym

Γ ⇒ ∆, R±(i, j)
ref+

Γ ⇒ ∆, R+(i, i)

ref−
Γ, R−(i, i) ⇒ ∆

Γ ⇒ ∆, R+(i, j) Γ ⇒ ∆, R−(i, j)
no

Γ ⇒ ∆

Figure 6 The proof system DS. In the rule init, Fel denotes an elementary formula. In the rules
(L♢± )1, (L♢± )2, and (R[A]), the nominal j is fresh. The rule R♢− has the proviso that i ̸= j.

Proving cut-admissibility of labelled systems can be cumbersome due to the presence
of relational rules. In [30], a systematic procedure for transforming axioms into rules
was presented, based on focusing and polarities [5]. This procedure not only allows for
generalizing different approaches for transforming axioms into sequent rules present in the
literature [39, 45, 31], but it also provides a uniform way of proving cut-admissibility for the
resulting systems.

The cut-admissibility result for DS is a particular instance of the general result in [30].

▶ Theorem 30 (PNL-cut). The following cut rule is admissible in DS

Γ ⇒ ∆, i : F i : F, Γ ⇒ ∆
Γ ⇒ ∆ cut

As a consequence, DS is consistent, since the only rule that can be applied in an empty
sequent is no, and it is routine to show that it does not trivialise derivations.

3.4 Discussion – part II
This work opens up several promising directions for future exploration.

It would be interesting to explore extensions of PNL that relax symmetry assumptions,
enabling the representation of scenarios where an agent a can influence the opinion of agent
b, but not vice versa. Another potential direction involves incorporating the concept of
a “budget,” as introduced in the game discussed in the first part of this paper, to model

CSL 2025



4:18 Playing with Modalities

situations where proponents and opponents operate under a limited amount of political
capital. In such scenarios, adding or modifying relations (i.e., making new friends, making
enemies to reconcile, etc) could reduce this capital. Preferences on how to “expend” the
political capital could be expressed through a combination of PNL with a suitable choice
logic – a framework where preferences are explicitly definable at the object level. Semantic
games for choice logics have been explored in [20], and the extension of game-induced choice
logic (GCL) to a provability game and proof system was proposed in [21]. Exploring these
dynamics within our framework offers a compelling direction for future research.

Another particularly interesting avenue is extending the semantic-provability-proof system
approach to other logics characterised by Kripke semantics. For instance, it would be
worthwhile to investigate games for logics that involve model-change modalities [44, 36] or
dynamic modalities [42]. Initial progress in this direction was made in [22], where we showed
how the global link-adding and local link-changing modalities from [35] (inspired by sabotage
modal logic [6, 7, 43]) can be incorporated into our framework.

We are also interested in exploring the application of this framework to develop games for
constructive and intuitionistic modal logics [17, 38, 39, 8]. The constructive logic CK stands
out as a promising candidate due to its intuitive semantics and straightforward sequent
system. The main challenge lies in adapting the classical approach presented here to an
intuitionistic setting.

Finally, building on ideas from [4, 3], we aim to establish a correspondence between
winning innocent strategies in games played on Hyland-Ong arenas [26] and proofs in
these constructive logics. This correspondence would deepen the connection between game
semantics and constructive modal reasoning, opening new avenues for further study.
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