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Abstract
Behavioural metrics provide a quantitative refinement of classical two-valued behavioural equivalences
on systems with quantitative data, such as metric or probabilistic transition systems. In analogy
to the linear-time/ branching-time spectrum of two-valued behavioural equivalences on transition
systems, behavioural metrics vary in granularity, and are often characterized by fragments of suitable
modal logics. In the latter respect, the quantitative case is, however, more involved than the
two-valued one; in fact, we show that probabilistic metric trace distance cannot be characterized
by any compositionally defined modal logic with unary modalities. We go on to provide a unifying
treatment of spectra of behavioural metrics in the emerging framework of graded monads, working
in coalgebraic generality, that is, parametrically in the system type. In the ensuing development
of quantitative graded semantics, we introduce algebraic presentations of graded monads on the
category of metric spaces. Moreover, we provide a general criterion for a given real-valued modal
logic to characterize a given behavioural distance. As a case study, we apply this criterion to obtain
a new characteristic modal logic for trace distance in fuzzy metric transition systems.
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1 Introduction

While qualitative models of concurrent systems are traditionally analysed using various
notions of two-valued process equivalence, it has long been recognized that for systems
involving quantitative data, notions of behavioural distance play a useful role as a more fine-
grained measure of process similarity. Well-known examples include behavioural distances
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on probabilistic transition systems [25, 13, 46], on systems combining nondeterminism and
probability [8], and on metric transition systems [11, 16]. Like in the two-valued case, where
process equivalences of varying granularity are arranged on the linear-time/branching-time
spectrum [47], one has a spectrum of behavioural metrics on a given system type that vary
in granularity (with greater distances thought of as having finer granularity) [15].

An important point of interest in this context are characteristic modal logics. In the
two-valued setting, a logic is characteristic for a given behavioural equivalence if the latter
coincides with the respective induced logical indistinguishability relation, so that behavioural
inequivalence can be certified by distinguishing formulae (as in the recent proof of the failure
of unlinkability in the ICAO 9303 e-passport standard [17])). For instance, Hennessy-Milner
logic is characteristic for bisimilarity [28], and most equivalences on the classical spectrum
are characterized by fragments of Hennessy-Milner logic [47] that are compositionally defined,
i.e. given by a choice of modalities and propositional operators equipped with a recursively
defined semantics (e.g. trace equivalence is characterized by the logic built from diamonds,
truth, and – optionally – disjunction). In the quantitative setting, a logic is characteristic
if the induced logical distance coincides with the respective behavioural distance, so that
high behavioural distance may be certified by means of distinguishing modal formulae [40].
A prototypical example is quantitative probabilistic modal logic, which is characteristic for
branching-time behavioural distance on probabilistic transition systems [46]. However, it
turns out that in general, the quantitative setting behaves less smoothly in this respect than
the two-valued setting. Indeed, we show as our first main result that for probabilistic metric
trace distance (on generative probabilistic transition systems in which the set of labels is
equipped with a metric, i.e. on the probabilistic variant of metric transition systems), there
does not exist any characteristic quantitative modal logic at all. Here, the term modal logic
is understood in a fairly broad sense; essentially, we stipulate no more than that, in analogy
to the two-valued case as discussed above, the logic should be a compositionally defined
fragment of a bisimulation-invariant next-step logic with unary modalities.

We subsequently work towards positive results, using the framework of graded se-
mantics [37, 14] to achieve an appropriate level of generality. Graded semantics is parametric
both in the type of systems (e.g. probabilistic, metric, fuzzy) and in the quantitative semantics
of systems, i.e. the choice of behavioural distance. The system type is abstracted as an
endofunctor on a suitable base category following the paradigm of universal coalgebra [43].
Parametricity in the system semantics, on the other hand, is based on the choice of a
graded monad, which handles additional semantic identifications (beyond branching-time
equivalence) by algebraic means, using grades to control the depth of look-ahead. Both
Kleisli-style coalgebraic trace semantics [27] and the smoother, but less widely applicable
Eilenberg-Moore-style coalgebraic trace semantics [29] are subsumed by this framework [37].

Graded semantics has recently been extended to cover behavioural distances in the
Eilenberg-Moore-style setting [5, 24], and, generalizing the two-valued case [37, 14], a
canonical notion of quantitative graded logic has been identified. Quantitative graded logics
are always invariant under the underlying behavioural distance in the sense that formula
evaluation is nonexpansive, so that logical distance is below behavioural distance. In some
cases, the reverse inequality, i.e. expressivity of quantitative graded logics, can be established
by a straightforward generalization of corresponding criteria for the two-valued case. Notably,
one can show that in the Eilenberg-Moore setting, one essentially always has a characteristic
modal logic [24], in sharp contrast to our present negative result. The flip side of the coin is
that Eilenberg-Moore style trace semantics applies to only rather few system types (essentially
automata with effects), and in particular does not support a metric on the labels as found,
for instance, in standard metric transition systems.
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Our second, now positive, contribution in the present work is to extend the framework to
unrestricted graded semantics, notably including Kleisli-style coalgebraic trace semantics
and, hence, trace semantics on systems with labels taken from a metric space. For the
syntactic treatment of spectra of behavioural distances in this sense, we introduce a graded
extension of quantitative algebra [36] that allows describing graded monads on the category of
metric spaces by operations and approximate equations. As suggested by our negative result,
establishing expressivity of graded logics in the general case presents additional challenges
compared to the two-valued variant and the Eilenberg-Moore case. In particular, it turns
out that the expressivity criterion needs to be parametric in a strengthening of the inductive
hypothesis in the induction on depth of look-ahead that it encapsulates; indeed, this happens
already in strikingly simple cases such as metric streams. We develop a number of example
applications: We recover results on expressivity of quantitative modal logics for (finite-depth)
branching-time distances [33, 48, 19, 32], as well as a recent result on expressivity of a
quantitative modal logic for trace distance in metric transition systems [4], which in fact we
generalize to systems with metric state space and closed branching. In a concluding case
study, we moreover identify a new characteristic modal logic for trace distance on fuzzy
metric transition systems, which turns out to require next-step modalities incorporating a
constant shift on label distances.

Omitted proofs and additional details can be found in the full version [23].

Related Work. We have mentioned previous work on coalgebraic branching-time behavioural
distances [2, 33, 22, 49, 50, 4, 32] and on graded semantics for two-valued behavioural
equivalences and preorders [37, 14, 19]. Kupke and Rot [34] study logics for coinductive
predicates, which generalize branching-time behavioural distances. Generally, our overall
setup differs from the one used in [34] and elsewhere by working with coalgebras that already
live on metric spaces (e.g. [42, 53, 46, 22, 26]); this allows covering functors on metric spaces
that are not liftings of set functors, such as the full Hausdorff functor (which takes closed
subsets). Recent work on Galois connections for logical distances [4, 5] is highly general (and
in fact not even tied to state-based systems) but leaves more work to the instantiation than
the framework of graded monads. Moreover, it is aimed primarily at fixpoint characterizations
of logical distance, and in fact induces behavioural distance from the logic, while we aim
to provide logical characterizations of given behavioural distances. Alternative coalgebraic
approaches to process equivalences coarser than branching time include coalgebraic trace
semantics in Kleisli [27] and Eilenberg-Moore categories [29], which are both subsumed by the
paradigm of graded monads [37], as well as an approach in which behavioural equivalences
are defined via characteristic logics [31]. The Eilenberg-Moore and Kleisli setups can be
unified using corecursive algebras, which also support, under certain assumptions, a logical
characterization for these cases [41]. The Eilenberg-Moore approach has been applied to
linear-time behavioural distances [2]. Recently, some of the present authors used the graded-
semantics approach to Eilenberg-Moore semantics to extract characteristic logics that factor
through the determinization of a coalgebra [24]. We make use of their notion of graded
logic and complement their work by considering unrestricted graded semantics, in particular
covering the more broadly applicable Kleisli-style semantics.

De Alfaro et al. [11] introduce a linear-time logic for (state-labelled) metric transition
systems. The semantics of this logic is defined by first computing the set of paths of a
system, so that propositional operators and modalities have a different meaning than in
corresponding branching-time logics, while our graded logics are fragments of branching-time
logics. Fahrenberg et al. [16] present a game-based approach to a spectrum of behavioural
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distances on metric transition systems. A two-valued logic for probabilistic trace semantics
(for a discrete set of labels) has been considered in the context of differential privacy [7]. A
notion of logical distance is then obtained via a real-valued semantics defined using a syntactic
distance on formulae; this semantics is not compositional (truth values are defined by taking
infima over the whole logical syntax), so subsequent results relating this logical distance
to notions of weak anonymity do not contradict our impossibility result on (compositional)
characteristic logics for probabilistic trace semantics.

2 Preliminaries

Basic familiarity with category theory is assumed (e.g. [1]). We write Set for the category of
sets and maps. Below, we recall some background on (bounded) metric spaces and universal
coalgebra.

Metric spaces. The real unit interval [0, 1] will serve as the domain of distances and
truth values. Under the usual ordering ≤, [0, 1] forms a complete lattice; we write

∨
,
∧

for joins and meets in [0, 1] (e.g.
∨

i xi = supi xi), and ∨,∧ for binary join and meet,
respectively. We denote truncated addition and subtraction by ⊕ and ⊖, respectively; that
is, x ⊕ y = min(x + y, 1) and x ⊖ y = max(x − y, 0). These operations form part of a
structure of [0, 1] as a (co-)quantale; for readability, we refrain from working with more
general quantales [49, 22].

▶ Definition 2.1. A (bounded) pseudometric space is a pair (X, d) consisting of a set X and
a function d : X ×X → [0, 1] satisfying the standard conditions of reflexivity (d(x, x) = 0
for all x ∈ X), symmetry (d(x, y) = d(y, x) for all x, y ∈ X), and the triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X); if additionally separation holds (for x, y ∈ X,
if d(x, y) = 0 then x = y), then (X, d) is a metric space. A function f : X → Y between
pseudometric spaces (X, dX) and (Y, dY ) is nonexpansive if dY (f(x), f(y)) ≤ dX(x, y) for all
x, y ∈ X. Metric spaces and nonexpansive maps form a category Met.

We often do not distinguish notationally between a (pseudo-)metric space (X, d) and its
underlying set X. Occasionally we use subscripts to make explicit the carrier to which a
(pseudo-)metric is associated, i.e. dX is the (pseudo-)metric of the space with carrier X. The
categorical product (X, dX)× (Y, dY ) of (pseudo-)metric spaces equips the Cartesian product
X × Y with the supremum (pseudo-)metric dX×Y ((a, b), (a′, b′)) = dX(a, a′) ∨ dY (b, b′).
Similarly, the Manhattan tensor ⊞ equips X × Y with the Manhattan (pseudo-)metric
dX⊞Y ((a, b), (a′, b′)) = dX(a, a′)⊕ dY (b, b′). We occasionally write elements of the product
Xn+m as vw if v ∈ Xn and w ∈ Xm. Given (pseudo-)metric spaces X, Y , the nonexpansive
functions X → Y form a (pseudo-)metric space under the standard supremum distance.

▶ Example 2.2. We recall some key examples of functors on Set and Met.
1. We write Pω for the finite powerset functor on Set, and Pω for the lifting of Pω to Met

given by the Hausdorff metric. Explicitly, for a metric space (X, d) and A, B ∈ PωX,

dPωX(A, B) = (
∨

a∈A

∧
b∈B d(a, b)) ∨ (

∨
b∈B

∧
a∈A d(a, b)). (2.1)

Both Pω and Pω are monads, with multiplication taking big unions.
2. Related to the above, the closed Hausdorff monad Pc on Met sends a metric space X

to the set of closed subsets of X, again equipped with the Hausdorff metric. For a
nonexpansive function f : X → Y , Pcf sends A ∈ PcX to the closure of f [A]. Monad
multiplication takes the closure of the big union.
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3. Similarly, Dω denotes the functor on Set that maps a set X to the set of finitely supported
probability distributions on X, and Dω denotes the lifting of Dω to Met that equips
DωX with the Kantorovich metric. Explicitly, for a metric space (X, d) and µ, ν ∈ DωX,

dDωX(µ, ν) =
∨

f

∑
x∈X f(x)(µ(x)⊖ ν(x))

where f ranges over all nonexpansive functions X → [0, 1]. We often write elements of
DωX as finite formal sums

∑
pi · xi, with xi ∈ X and

∑
pi = 1.

4. The finite fuzzy powerset functor Fω is given on sets X by FωX = {A : X → [0, 1] | A(x) =
0 for almost all x ∈ X}, and on maps f : X → Y by Fωf(A)(y) =

∨
{A(x) | f(x) = y}

for A ∈ FωX. That is, FωX consists of the finite fuzzy subsets of X, given by assigning
membership degrees in [0, 1] to elements of X, and Fωf acts by taking fuzzy direct images.
We lift Fω to a functor Fω on metric spaces that equips FωX with the fuzzy Hausdorff
distance [49, Example 5.3.1]. Explicitly, dFωX(A, B) = d0(A, B) ∨ d0(B, A) for a metric
space (X, d) and A, B ∈ FωX, where

d0(A, B) =
∨

x

∧
y(A(x)⊖B(y)) ∨ (A(x) ∧ d(x, y)).

Thus, d0(A, B) is analogous to the left-hand term in the binary join defining the Hausdorff
metric (2.1): Both terms can be read intuitively as “B is far from A if there is x such
that x ∈ A and for all y, if y ∈ B then y is far from x”, where d0(A, B) takes into account
that the sets A, B are fuzzy (in particular, the “if y ∈ B” is reflected in the contribution
of B(y) being negative).

Coalgebra. Universal coalgebra [43] has established itself as a way to reason about state-
based systems at an appropriate level of abstraction. It is based on encapsulating the
transition type of systems as an endofunctor G : C → C on a base category C. Then, a G-
coalgebra (X, γ) consists of a C-object X, thought of as an object of states, and a morphism
γ : X → GX, thought of as assigning to each state a collection of successors, structured
according to G. A C-morphism h : X → Y is a morphism of G-coalgebras (X, γ)→ (Y, δ) if
Gh · γ = δ · h.

For a functor G : Met→Met, one has a canonical notion of branching-time behavioural
distance dG

γ on a G-coalgebra (X, γ) [22]. In case G is a lifting of a set functor (which means
roughly that the underlying set of GX is independent of the metric on X), the general
definition simplifies as follows: dG

γ is the least fixpoint of the map d 7→ dG(X,d) ◦ (γ×γ) [2, 22].

▶ Example 2.3. Throughout the paper, we fix a metric space A of labels. Finitely branching
metric transition systems with transition labels in A are coalgebras for the functor Pω(A×−).
(More precisely, a metric transition system is usually assumed to have a set as its state space,
while Pω(A×−)-coalgebras more generally have a metric space of states, subsuming mere
sets of states as discrete metric spaces). Similarly, coalgebras for the functor Pc(A × −)
are closed-branching metric transition systems, where sets of successors can be infinite but
are required to be closed. With few exceptions (e.g. [22]), most coalgebraic approaches to
behavioural metrics (e.g. [2, 33, 50, 34]) rely on the functor being a lifting of a Set-functor.
We work with unrestricted functors on Met, thus, e.g., covering the above-mentioned functor
Pc(A×−), which is not a lifting of a set functor. We use trace semantics on metric labelled
transition systems (both finitely branching and closed-branching) as a running example of
concepts as they appear throughout the text.

CSL 2025



33:6 Quantitative Graded Semantics and Spectra of Behavioural Metrics

Quantitative Coalgebraic Modal Logic. We proceed to introduce the requisite notion of
quantitative coalgebraic modal logic [45, 33, 50, 24], in a formulation geared towards easing
the extraction of invariant fragments for various semantics [24], and instantiated to the
category of metric spaces. The notion of quantitative coalgebraic modal logic will also serve
as the yardstick for our negative result on characteristic modal logics for probabilistic metric
trace semantics (Section 3).

Syntactically, a modal logic is a triple L = (Θ,O, Λ) where Θ is a set of truth constants, O
is a set of propositional operators, each with associated finite arity, and Λ is a set of modal
operators, also each with an associated finite arity. For readability, we restrict to unary
modal operators; extending our positive results to modal operators of higher arity is simply
a matter of adding indices. The set of formulae of L is then given by the grammar

ϕ ::= c | p(ϕ1, . . . , ϕn) | Lϕ (c ∈ Θ, p ∈ O n-ary, L ∈ Λ).

Formulae are interpreted in G-coalgebras for a given functor G : Met→Met, and take values
in the truth value object Ω = [0, 1], which we equip with the standard metric dΩ(x, y) = |x−y|.
Moreover, the semantics is parametric in the following components:

For every c ∈ Θ, a nonexpansive map ĉ : 1→ Ω.
For p ∈ O with arity n, a nonexpansive map JpK : Ωn → Ω
For L ∈ Λ, a nonexpansive map JLK : GΩ→ Ω

The evaluation of a formula ϕ on a G-coalgebra (X, γ) is then a nonexpansive map JϕKγ : X →
Ω, inductively defined by

JcKγ = (X !−→ 1 ĉ−→ Ω) Jp(ϕ1, . . . , ϕn)Kγ = (X ⟨Jϕ1Kγ ,...,JϕnKγ ⟩−−−−−−−−−−−→ Ωn JpK−−→ Ω)

JLϕKγ = (X γ−→ GX
GJϕKγ−−−−→ GΩ JLK−−→ Ω)

▶ Example 2.4. We briefly exemplify the semantics of modalities: Take the functor G =
Pω(A×(−)) modelling metric transition systems (Example 2.3), and define the interpretation
J♢aK : Pω(A× Ω)→ Ω of modalities ♢a, for a ∈ A, by J♢aK(U) =

∨
(b,v)∈U (1− d(a, b)) ∧ v.

Then, roughly speaking, the degree to which a state in a metric transition system satisfies a
formula ♢aϕ is the degree to which it has a b-successor that satisfies ϕ, for some b that is
close to a. (The use of 1− d(a, b) is owed to the usual discrepancy between 1 representing
“true” but also “far apart”.)

In the framework defined so far, truth constants are interchangeable with nullary propos-
itional operators, but in the setting of graded logics (Section 6), the two concepts will
play syntactically and semantically distinct roles. In particular, invariance w.r.t. a target
semantics (Theorem 6.6) will in general hold only for formulae of uniform depth, that is,
formulae in which all occurrences of truth constants are nested under the same number of
modal operators. In cases where there are no truth constants, all formulae are uniform. We
write Lunif for the set of uniform-depth L-formulae.

▶ Definition 2.5. Logical distance under the logic L on a G-coalgebra (X, γ) is the pseudo-
metric dL given by dL(x, y) =

∨
{dΩ(JϕKγ(x), JϕKγ(y)) | ϕ ∈ Lunif}.

Logical distance is always a lower bound for branching-time behavioural distance [33, 50, 22];
we discuss details in Remark 7.10.
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3 Probabilistic Metric Trace Semantics

Finitely branching probabilistic metric transition systems over a metric space of transition
labels A are coalgebras for the functor Gprob = Dω(A⊞ (−)) (cf. Examples 2.2 and 2.3).
The probabilistic (metric) trace semantics [9] of a probabilistic transition system calculates,
at each depth n, a distribution over length-n traces. One then obtains a notion of depth-
n probabilistic trace distance dptrace

n , which takes Kantorovich distances of depth-n trace
distributions under the Manhattan distance on traces. Formal definitions are as follows.

▶ Definition 3.1. We write A⊞n for the n-fold Manhattan tensor A⊞ · · ·⊞A. Let (X, γ)
be a Gprob-coalgebra. For each x ∈ X, the depth-n trace distribution µn

x ∈ Dω(A⊞n)
is inductively defined as µn+1

x (aw) =
∑

y∈X γ(x)(a, y)µn
y (w) for a ∈ A and w ∈ An, with

µ0
x ∈ Dω(A⊞0) ∼= Dω(1) being the unique distribution on the singleton set 1. The probabilistic

trace distance on X is dptrace =
∨

n<ω dptrace
n , where dptrace

n (x, y) = dDω(A⊞n)(µ
n
x , µn

y ).

Consider the following concrete example, where we assume that d(b, c) = 0.5.

x
y

1
a

1
a

b
1

c
1

b 1
2

c 1
2

a
1
4

a
3
4

For n ≥ 2 we then have by the above definition that µn
x = 1

2 aban−2 + 1
2 acan−2 while µn

y =
1
4 aban−2 + 3

4 acan−2. The distance of the two relevant traces is given by d(aban−2, acan−2) =
d(a, a)⊕ d(b, c)⊕ d(a, a)⊕ . . .⊕ d(a, a) = 0.5. Calculating the Kantorovich distance of trace
distributions then gives us that d(µn

x , µn
y ) = 1

4 d(aban−2, acan−2) = 0.125, and by extension
dptrace(x, y) = 0.125.

One would now like to have a logic that characterizes the trace distance dptrace. However,
we establish the following impossibility result instead:

▶ Theorem 3.2. Let L = (Θ,O, Λ) be a coalgebraic modal logic with unary modalities for
the functor Gprob, over a non-discrete metric space A of labels. Then dL ̸= dptrace.

In other words, no quantitative coalgebraic modal logic with unary modalities has a com-
positionally defined fragment that characterizes probabilistic metric trace distance. The
restriction to coalgebraic modal logics effectively means only that modal logics should be
invariant under the standard branching-time semantics and have only next-step modalit-
ies [39, 44]. Theorem 3.2 implies in particular that the logic featuring modalities ♢a for a ∈ A,
with ♢aϕ being the expected truth value of ϕ restricted to a-successors, fails to characterize
probabilistic metric trace distance (even though it characterizes two-valued probabilistic
trace equivalence [6, 14]). In fact, it can even be shown that giving up the requirement of
interpretations of modalities being nonexpansive does not help.

Proof sketch (Theorem 3.2). Suppose that L is invariant under probabilistic metric trace
semantics (dL ≤ dptrace); we show that L fails to be expressive (dL ̸≥ dptrace). As an
intermediate step, we show that invariance under probabilistic metric trace semantics implies
that modal operators are affine maps. Then calculation shows that affine modalities are
unable to distinguish the states x and y in the following system, where d(a, b) = v < 1, to a
degree greater than v2, even though the behavioural distance of x and y under probabilistic
trace semantics is v.

CSL 2025
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x

xa xb

y

yb ya

1
2 a 1

2b

1
a

1
b

1
b

1
a

1
2 a 1

2b

◀

We leave the question of whether a characteristic logic with higher-arity modalities exists as
an open problem.

While expressive quantitative coalgebraic logics for branching-time semantics exist for
a wide variety of systems [33, 50, 22, 26], this is thus apparently not always the case for
linear-time semantics. The no-go result above emphasizes the challenges of the quantitative
setting and the need for a theory of quantitative coalgebraic logics beyond branching time.
In the following, we will address precisely this problem, by adopting techniques from the
theory of graded semantics and highlighting issues unique to the metric setting.

4 Graded Monads and Graded Algebras

The framework of graded semantics [14, 37] is based on the central notion of graded monads,
which algebraically describe the structure of observable behaviours, in particular identifica-
tions beyond branching time, at each finite depth. Here, depth is understood as look-ahead,
measured in terms of the number of transition steps.

▶ Definition 4.1. A graded monad M = ((Mn)n∈N, η, (µn,k)n,k∈N) on a category C consists
of a family of functors Mn : C → C for n ∈ N and natural transformations η : Id →M0 (the
unit) and µn,k : MnMk →Mn+k for all n, k ∈ N (the multiplications), subject to essentially
the same laws as ordinary monads up to the insertion of grades; specifically, one has unit laws
µ0,n · ηMn = idMn

= µn,0 ·Mnη and an associative law µn+k,m ·µn,kMm = µn,k+m ·Mnµk,m.

In particular, (M0, η, µ00) is an ordinary (non-graded) monad.
The understanding of the data constituting a graded monad is similar as for plain monads:

Roughly speaking (this will be made more precise in Section 5), MnX may be thought of as
a space of terms of depth n, modulo given identities, over variables from X; µnk substitutes
depth-k terms into a depth-n term, obtaining a depth-(n + k) term; and η converts variables
into terms of depth 0.

▶ Example 4.2. We discuss graded monads modelling the linear-time end of the spectrum,
noting that graded monads cover also branching-time (Remark 7.10) and intermediate
semantics, involving simulation, readiness, failures etc. [14]. A Kleisli distributive law is
a natural transformation λ : FT → TF where F is a functor and T a monad, subject to
coherence with the monad structure [27]. This yields a graded monad with Mn = TF n [37];
here, T may be understood as defining the branching type of the system, and F as defining a
type of accepted structure. We will use the following instance of this construction as a running
example: Take F = A × (−) and T = Pω or T = Pc (corresponding to nondeterministic
branching). Then λ(a, U) = {(a, x) | x ∈ U} defines a distributive law λ : A × T (−) →
T (A× (−)) (in particular, λ is nonexpansive). We obtain the graded metric trace monads
Mn = T (An × (−)).
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Graded monads come with a graded analogue of Eilenberg-Moore algebras, which play a
central role in the semantics of graded logics [37, 14].

▶ Definition 4.3 (Graded Algebra). Let M be a graded monad in C. A graded Mn-algebra
((Ak)k≤n, (amk)m+k≤n) consists of a family of C-objects Ai and morphisms amk : MmAk →
Am+k satisfying essentially the same laws as a monad algebra, up to insertion of the grades.
Specifically, we have a0m · ηAm

= idAm
for m ≤ n, and whenever m + r + k ≤ n, then

am+r,k ·µm,r
Ak

= am,r+k ·Mmar,k. An Mn-homomorphism of Mn-algebras A and B is a family
(fk : Ak → Bk)k≤n of maps such that whenever m + k ≤ n, then fm+k · am,k = bm,k ·Mmfk.
Graded Mn-Algebras and their homomorphisms form a category Algn(M).

That is, elements of a graded algebra are stratified by depth, and applying an operation of
depth m to elements of depth k yields elements of depth m + k, For n = 1, this definition
instantiates as follows: An M1-algebra is a tuple (A0, A1, a00, a01, a10), such that 1) (A0, a00)
and (A1, a01) are M0-algebras. 2) (Homomorphy) a10 : M1A0 → A1 is an M0-homomorphism
(M1A0, µ01) → (A1, a01). 3) (Coequalization) a10 ·M1a00 = a10 · µ10, i.e. the following
diagram commutes (without necessarily being a coequalizer):

M1M0A0 M1A0 A1
µ10

M1a00
a10

(4.1)

It is easy to see that ((MkX)k≤n, (µm,k)m+k≤n) is an Mn-algebra for every C-object X.
Again, M0-algebras are just (non-graded) algebras for the monad (M0, η, µ00).
The semantics of modalities will later need the following property:

▶ Definition 4.4 (Canonical algebras). Let (−)0 : Alg1(M)→ Alg0(M) be the functor taking
an M1-algebra A = ((Ak)k≤1, (amk)m+k≤1) to the M0-algebra (A0, a00). An M1-algebra A

is canonical if it is free over (A)0, i.e. if for every M1-algebra B and M0-homomorphism
f : (A)0 → (B)0, there is a unique M1-homomorphism g : A→ B such that (g)0 = f .

▶ Lemma 4.5 ([14, Lemma 5.3]). An M1-algebra A is canonical iff (4.1) is a coequalizer
diagram in the category of M0-algebras.

5 Graded Quantitative Theories

Monads on Set are induced by equational theories [35]. By equipping each operation with an
assigned depth and requiring each axiom to be of uniform depth, one obtains a notion of graded
equational theory which, modulo size issues, can be brought into bijective correspondence
with graded monads [37]. On the other hand, Mardare et al. [36] introduce a system of
quantitative equational reasoning, with formulae of the form s =ϵ t understood as “s differs
from t by at most ϵ”. These quantitative equational theories induce monads on the category
of metric spaces. We introduce a graded version of this system to present graded monads in
Met, keeping to finitary operations (and hence finite branching) for ease of presentation.

▶ Definition 5.1 (Graded signatures, uniform terms). A graded signature consists of an
algebraic signature Σ and a function δ : Σ→ N assigning a depth to each algebraic operation.
Uniform depth of terms is then defined inductively: Variables have uniform depth 0, and for
m-ary f ∈ Σ, f(t1, . . . , tm) has uniform depth n+k if δ(f) = n and all ti have uniform depth k.
In particular, constants c ∈ Σ, as terms, have uniform depth n for all n ≥ δ(c). We write
TΣ

n X, or just TnX, for the set of terms of uniform depth n over X. A substitution of uniform
depth n is a function σ : X → TnY . Such a substitution extends to a map σ : TkX → Tk+nY

on terms for all k ∈ N, where as usual one defines σ(f(t1, . . . , tm)) = f(σ(t1), . . . , σ(tm)). A
substitution is uniform-depth if it is of uniform depth n for some n.
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▶ Definition 5.2 (Graded quantitative theory). For a set Z, we let E(Z) denote the set of
quantitative equalities z1 =ϵ z2 where z1, z2 ∈ Z and ϵ ∈ [0, 1]. Given a set X of variables,
we then write E(T(X)) =

⋃
n∈N E(Tn(X)); that is, E(T(X)) is the set of uniform-depth

quantitative equalities among Σ-terms over X. A quantitative theory T = (Σ, δ, E) consists
of a graded signature (Σ, δ) and a set E ⊆ P(E(X))× E(TX) of axioms. Axioms (Γ, s =ϵ t)
are written in the form Γ ⊢ s =ϵ t; we refer to Γ as the context of the axiom. The depth of
Γ ⊢ s =ϵ t is that of s =ϵ t. We say that T is depth-1 if all its operations and axioms have
depth at most 1.

The context Γ of an axiom Γ ⊢ s =ϵ t forms a constraint on the variables that is required in
order for s =ϵ t to hold. Correspondingly, derivability of quantitative equalities in E(T(X))
over a graded quantitative theory T = (Σ, δ, E) in a context Γ0 ∈ P(E(X)) is defined
inductively by the following rules:

(triang) t =ϵ s s =ϵ′ u

t =ϵ+ϵ′ u
(refl)

s =0 s
(sym) t =ϵ s

s =ϵ t

(wk) t =ϵ s

t =ϵ′ s
(ϵ′ ≥ ϵ) (arch) {t =ϵ′ s | ϵ′ > ϵ}

t =ϵ s
(assn)

ϕ
(ϕ ∈ Γ0)

(ax) {σ(u) | u ∈ Γ}
σ(t) =ϵ σ(s) ((Γ, t =ϵ s) ∈ E) (nexp) t1 =ϵ s1 . . . tn =ϵ sn

f(t1, . . . , tn) =ϵ f(s1, . . . , sn)

where σ is a uniform-depth substitution. Note the difference between rules (ax) and (assn):
Quantitative equalities from the theory can be substituted into, while this is not sound for
quantitative equalities from the context. A graded quantitative equational theory presents a
graded monad M on Met where MnX is the set of terms of uniform depth n over variables
in X, quotiented by the equivalence relation that identifies terms s, t if s =0 t is derivable
in context X, with the distance dMn

([s], [t]) = ϵ of equivalence classes [s], [t] ∈MnX being
the least ϵ such that s =ϵ t is derivable (which exists by (arch)). Multiplication collapses
terms-over-terms, and the unit maps an element of x ∈ X to [x] ∈M0X.

▶ Remark 5.3. The above system for quantitative reasoning follows Ford et al. [20] in slight
modifications to the original (ungraded) system [36]. In particular, we make do without a
cut rule, and allow substitution only into axioms (substitution into derived equalities is then
admissible [20]). We include the rule (nexp) ensuring that all operations are nonexpansive,
i.e. the induced graded monad is enriched (acts nonexpansively on functions).

We recall that a graded monad is depth-1 [37, 14] if µnk and M0µ1k are epi-transformations
and the diagram below is a coequalizer of M0-algebras for all X and n < ω:

M1M0MnX M1MnX M1+nX.
µ10Mn

M1µ0n
µ1n

(5.1)

By Lemma 4.5 the following is then immediate:

▶ Proposition 5.4 ([14, Corollary 5.4]). If M is a depth-1 graded monad, then for every
n ∈ N and every object X, the M1-algebra with carriers MnX, Mn+1X and multiplications
as algebra structure is canonical.

We briefly refer to canonical algebras as per the above proposition as being of the form MnX.

Crucially, we establish a metric variant of a result on depth-1 graded monads on Set [37]:
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▶ Theorem 5.5. Graded monads on Met presented by depth-1 graded quantitative theories
are depth-1.

▶ Remark 5.6. A depth-1 graded monad M can be reconstructed from its constituents of
depth at most one, i.e. from M0, M1, η, and the µnk for n + k ≤ 1 [14]. Graded semantics
(Section 6) does however make use of the full structure of M also at higher depths.

Presentations of graded trace monads. We proceed to investigate the quantitative-algebraic
presentation of graded trace monads that are given by a Kleisli distributive law of the functor
A × (−) (with A being the space of action labels) over a monad (Example 4.2). Given a
function k : [0, 1]2 → [0, 1] with suitable properties, we write ⊗ for the tensor that equips
the Cartesian product of two sets with the metric dA⊗B((a, b), (a′, b′)) = k(d(a, a′), d(b, b′))
generated by k. This induces trace distances on An, n ≥ 0, by viewing An as the n-fold tensor
ofA. Examples include the Euclidean (k(x, y) =

√
x2 + y2), supremum (k(x, y) = max(x, y)),

and Manhattan (k(x, y) = x⊕ y) distances. The fact that k computes distances of traces
recursively “one symbol at a time” translates into uniform depth-1 equations:

▶ Definition 5.7. Let T = (Σ, E) be a quantitative algebraic presentation of a (plain)
monad T on Met. We define a graded quantitative theory T [A] by including the operations
and equations of T at depth 0, along with unary depth-1 operations a for all labels a ∈ A,
and as depth-1 axioms the distributive laws ⊢ a(f(x1, . . . , xn)) =0 f(a(x1), . . . , a(xn)) for all
a ∈ A and f ∈ Σ, as well as the distance axioms x =ϵ y ⊢ a(x) =k(d(a,b),ϵ) b(y).

The obvious candidate for a Kleisli distributive law inducing the graded monad presented by
the theory T [A] is the family of maps λX : A⊗ TX → T (A⊗X) given by

λX(a, t) = T ⟨a, idX⟩⊗(t) (5.2)

where ⟨a, idX⟩⊗ takes x ∈ X to (a, x) ∈ A ⊗X. However, these maps λX may fail to be
nonexpansive, depending on T and ⊗; for instance, this happens for T = Dω and ⊗ being
Cartesian product × (which carries the supremum distance):

▶ Example 5.8. Put X = {x, y} where d(x, y) = 1, and s = 0.5 · x + 0.5 · y, t = 1 · x ∈ DωX.
Clearly d(s, t) = 0.5. Given a, b ∈ A with d(a, b) = 0.5, we have d((a, s), (b, t)) = 0.5 in
A×DωX while d(λX(a, s), λX(b, t)) = d(0.5 ·(a, x)+0.5 ·(a, y), 1 ·(b, x)) = 0.75 in Dω(A×X).

Nonexpansiveness is, of course, needed to obtain a graded monad on Met, and as we show
later (Remark 6.3), its failure may cause undesirable effects. In the case of Manhattan
distance, nonexpansiveness always holds:

▶ Lemma 5.9. The maps λX as per (5.2) are nonexpansive as maps A⊞ TX → T (A⊞ X).

In case the λX as per (5.2) are nonexpansive, we do in fact have that the distributive law λ

and the algebraic theory T [A] induce the same graded monad:

▶ Lemma 5.10. Let λX be defined by (5.2). If λX : A⊗T → T (A⊗ (−)) is nonexpansive for
all X, then the λX form a Kleisli distributive law λ : A⊗ T → T (A⊗ (−)), and the graded
monad induced by λ according to Example 4.2 is presented by the quantitative equational
theory T [A] as per Definition 5.7.

▶ Example 5.11. In our running example of finitely branching metric trace semantics, it is
easy to check that the distributive law claimed in Example 4.2 is indeed nonexpansive, so
the induced graded monad is, by Lemma 5.10, presented by the corresponding theory as per
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Definition 5.7, and in particular is depth-1. Explicitly, recall [36, Corollary 9.4] that Pω is
a monad, presented in quantitative algebra by the usual axioms of join semilattices for a
binary join operation + and a constant 0 (nonexpansiveness of + is enforced by the deduction
rules). The quantitative graded theory presenting the graded metric trace monad Pω(An×−)
according to Lemma 5.10 has depth-0 operators + and 0 as above and adds unary depth-1
operations a for all a ∈ A, subject to axioms (for a, b ∈ A, ϵ ∈ [0, 1])

⊢ a(0) =0 0 ⊢ a(x + y) =0 a(x) + a(y) x =ϵ y ⊢ a(x) =ϵ∨dA(a,b) b(y).

The distribution of the operations a over the join semilattice structure effectively implements
trace equivalence, and the last axiom determines the metric on traces, which in this case is
taken to be the supremum metric.

6 Graded Quantitative Semantics and Graded Logics

We proceed to introduce the framework of graded quantitative semantics, to study spectra of
behavioural metrics for various system types. By “spectra” we informally refer to collections
of process comparisons of varying granularity that arise by observing a specific system type in
different ways, as exemplified by the classical linear-time/branching-time spectrum on labelled
transition systems [47]. Generally, a graded semantics [37] (M, α) of a functor G : C → C
consists of a graded monad M and a natural transformation α : G→M1. Intuitively, Mn1
(where 1 is a terminal object of C) is a domain of behaviours observable after n transition
steps, with α determining behaviours after one step. For a G-coalgebra (X, γ), we inductively
define behaviour maps γ(n) : X →Mn1 assigning to a state in X its behaviour after n steps:

γ(0) : X
M0!·η−−−−→M01 γ(n+1) : X

α·γ−−→M1X
M1γ(n)

−−−−−→M1Mn1 µ1n

−−→Mn+11

For C = Met, these maps induce a notion of graded behavioural distance (for readability, we
refrain from working with more general C, such as categories of relational structures [20]):

▶ Definition 6.1 (Graded behavioural distance). Given a graded semantics α : G→M1 of a
functor G on Met, (graded) behavioural distance is the pseudometric on states in G-coalgebras
(X, γ) given by dα(x, y) =

∨
n∈N dMn1(γ(n)(x), γ(n)(y)) for x, y ∈ X.

▶ Example 6.2. The metric trace semantics of finitely branching metric transition systems [11,
15] and closed-branching metric transition systems is captured by the graded metric trace
monads Mn = Pω(An×−) and Mn = Pc(An×−) (Example 4.2), respectively (with α being
identity). The behaviour maps calculate, at each depth n, sets of length-n traces, whose
distance is given by the Hausdorff distance induced by the supremum metric on traces.

▶ Remark 6.3. In cases where nonexpansiveness of α or the natural transformations of M
does not hold (e.g. if one attempts to construct M using a family of maps (5.2) that fails to
be nonexpansive, cf. Example 5.8), other expected properties can fail. For instance, it can
happen that trace distance exceeds branching time distance (while for trace semantics induced
by nonexpansive graded semantics, general properties of graded semantics imply that trace
distance is below branching-time distance, in tune with the two-valued setting where trace
equivalence is coarser than bisimilarity). Example 5.8 manifests in the Dω(A×−)-coalgebra
(i.e. generative probabilistic metric transition system) shown below, where A = {a, b, c, d}
with relevant distances d(a, b) = 0.5 and d(c, d) = 1:
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x
y

1
a

1
a

1
c

c 1
2

d 1
2

1
b

Here, we have length-n trace distributions µn
x = 1

2 ·(acan−2)+ 1
2 ·(adan−2) and µn

y = 1·(bcan−2)
for n ≥ 2. When the metric on traces is defined via supremum distance, instead of Manhattan
distance as in Section 3, the trace distance of the states x and y is

∨
n∈N d(µn

x , µn
y ) = 0.75,

while their branching-time distance (cf. Section 2) is 0.5.
We have the following criterion for invariance of a logic under a graded semantics (α,M),
with M depth-1, for a functor G : Met→Met that we fix from now on; recall from Section 2
that we use Ω to denote the unit interval [0, 1] equipped with Euclidean distance.

▶ Definition 6.4 (Graded logic). Let o : M0Ω → Ω be an M0-algebra structure on Ω. A
logic L is a graded logic (for (α,M)) if the following hold:
1. For n-ary p ∈ O, the semantics JpK is an M0-algebra homomorphism (Ω, o)n → (Ω, o).
2. For each L ∈ Λ, there is an associated nonexpansive map LLM : M1Ω→ Ω such that the

semantics JLK : GΩ → Ω factors as JLK = (GΩ αΩ−−→ M1Ω LLM−−→ Ω), and such that the
tuple (Ω, Ω, o, o, LLM) constitutes an M1-algebra (that is, LLM satisfies homomorphy and
coequalization, cf. Section 2). We abuse notation and write LLM to denote the M1-algebra
(Ω, Ω, o, o, LLM).

Notice the different treatment of nullary propositional operators and truth constants: The
former are required to be interpreted as homomorphisms 1→ (Ω, o) in a graded logic, while
no such condition is imposed on truth constants. In many examples, α = id, in which case
condition 2 just states that (Ω, Ω, o, o, JLK) is an M1-algebra (non-identity α are associated,
for instance, with readiness and failure semantics [14]).

▶ Definition 6.5. We say that L is invariant with respect to a graded semantics (α,M) if
dL ≤ dα holds in all G-coalgebras; expressive if dL ≥ dα; and characteristic if dL = dα.

▶ Theorem 6.6 ([24, Proposition 21]). Let L be a graded logic for (α,M). Then the evaluation
maps JϕKγ of uniform-depth L-formulae ϕ on G-coalgebras (X, γ) are nonexpansive w.r.t.
behavioural distance dα, and hence L is invariant.

The assumption of uniform depth cannot be removed in general [24].

▶ Example 6.7. We have a graded logic Lmtrace for metric trace semantics (Example 6.2)
featuring modalities ♢a for all a ∈ A as in Example 2.4, a single truth constant 1, and no
propositional operators. We equip the set Ω = [0, 1] of truth values with the usual Pω-algebra
(i.e. join semilattice) structure ([0, 1],∨, 0), and let 1̂ : 1→ [0, 1] take the value 1. The logic
Lmtrace remains invariant under metric trace semantics when extended with propositional
operators that are nonexpansive join-semilattice morphisms, such as ∨. Analogously we
define the logic Lcmtrace for trace semantics of closed-branching metric transition systems.
Notice that the interpretation of 1 fails to be homomorphic, so 1 needs to be a truth constant.

7 Expressivity Criteria

We proceed to adapt expressivity criteria appearing in previous work on two-valued behavi-
oural equivalences [14, 19] to the quantitative setting, which poses quite specific challenges. A
key role in the treatment of expressivity of logics will be played by the notion of initiality [1].
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▶ Definition 7.1. A family of maps (fi : A → B)i∈I between metric spaces A and B is
initial if A carries the smallest (pseudo-)metric making all maps fi nonexpansive, explicitly:
d(x, y) =

∨
i d(fi(x), fi(y)).

Using this notion, the definition of expressivity can be rephrased as follows: An invariant
logic L is expressive if for every G-coalgebra (X, γ), the family of all evaluation maps JϕKγ

of uniform-depth formulae ϕ is initial on (X, dα).
▶ Remark 7.2. In the branching-time case, a stronger notion of expressivity, roughly phrased
as density of the set of depth-n formulae in the set of nonexpansive properties at depth n,
follows from expressivity under certain additional conditions [22, 48, 49, 51, 33], using lattice-
theoretic variants of the Stone-Weierstraß theorem. The analogue of the Stone-Weierstraß
theorem in general fails for coarser semantics. Also, for semantics coarser than branching
time, expressivity in the sense of Definition 6.5 can often be established using more economic
sets of propositional operators (e.g. no propositional operators at all), for which density will
clearly fail.
Our expressivity result is based on propagating initiality through an induction on depth.
Unlike in the Eilenberg-Moore case [24], this requires, in many examples, to strengthen the
inductive invariant; we treat this systematically as follows:

▶ Definition 7.3. An initiality invariant is a property Φ of sets A ⊆ Met(X, Ω) of non-
expansive functions such that (i) every family of maps satisfying Φ is initial, and (ii) Φ is
upwards closed w.r.t. subset inclusion.

▶ Example 7.4.
1. Initiality itself is an initiality invariant. If Φ is initiality, then we say “initial-type” for

“Φ-type”.
2. We say that A ⊆ Met(X, Ω) is normed isometric if whenever d(x, y) > ϵ for x, y ∈ X

and ϵ > 0, then there is some f ∈ A such that |f(x) − f(y)| > ϵ and f(x) ∨ f(y) = 1.
Normed isometry is an initiality invariant.

Our expressivity criterion then takes the following shape:

▶ Definition 7.5. Let Φ be an initiality invariant. A graded logic L = (Θ,O, Λ) with truth
value object (Ω, o) is Φ-type depth-0 separating if the family of maps {o ·M0ĉ : M01→ Ω | c ∈
Θ} has property Φ. Moreover, L is Φ-type depth-1 separating if whenever A is a canonical
M1-algebra of the form Mn1 (Proposition 5.4) and A is a set of M0-homomorphisms A0 → Ω
that has property Φ and is closed under the propositional operators in O, then the set

Λ(A) := {LLM•(g) : A1 → Ω | L ∈ Λ, g ∈ A}

has property Φ, where LLM•(g) : A1 → Ω is the (by canonicity, unique) morphism extending
the M0-algebra morphism g to an M1-algebra morphism A→ LLM (Definition 6.4).

▶ Theorem 7.6 (Expressivity). Let Φ be an initiality invariant, and suppose that a graded
logic L is both Φ-type depth-0 separating and Φ-type depth-1 separating. Then L is expressive.

▶ Remark 7.7. Our definition of separation differs from notions used for two-valued logics [14,
19] and for quantitative graded semantics induced by Eilenberg-Moore distributive laws [24],
which overall have turned out to be much more well-behaved than the more general setting of
the present work. The most obvious novelty is the use of an initiality invariant Φ strengthening
the induction hypothesis in the inductive proof of Theorem 7.6. We will see that this is
needed even in very simple examples in our more general setting. Moreover, we have phrased



J. Forster, L. Schröder, P. Wild, H. Beohar, S. Gurke, B. König, and K. Messing 33:15

separation in terms of the specific canonical algebras Mn1 on which it is needed, rather than
on unrestricted canonical algebras. This allows exploiting additional properties of Mn1, e.g.
that for graded monads Mn = TF n arising from Kleisli distributive laws (Example 4.2), Mn1
is free as an M0-algebra.

▶ Example 7.8.
1. Metric Streams: A simple example for failure of initial-type separation (Example 7.4) are

metric streams, i.e. streams over a metric space of labels (A, dA); these are coalgebras for
the functor G = A×−. Behavioural distance on streams is captured by the graded monad
Gn = An × {−}. The logic L consisting of the truth constant 1 and modalities ♢a for all
a ∈ A, with interpretation J♢aK : A× [0, 1]→ [0, 1] given by (b, v) 7→ (1− dA(a, b))∧ v, is
Φ-type depth-0 separating and Φ-type depth-1 separating for Φ being normed isometry,
and hence expressive by Theorem 7.6. (The modality ♢a restricts the corresponding
modality for metric transition systems as per Examples 2.4 and 6.7 to metric streams: a
state satisfies ♢aϕ to the degree that its output is close to a and its successor satisfies ϕ).
On the other hand, L fails to be initial-type depth-1 separating, illustrating the necessity
of the general form of Theorem 7.6.

2. Metric transition systems: The graded logics Lmtrace and Lcmtrace for metric trace se-
mantics (Example 6.7), in the version with no propositional operators, are Φ-type depth-0
separating and Φ-type depth-1 separating for Φ being normed isometry, and hence are
expressive by Theorem 7.6. We thus improve on an example from recent work based on
Galois connections [4], where application of the general framework required the inclusion
of propositional shift operators (which were subsequently eliminated in an ad-hoc manner),
and we generalize to systems with closed branching on a metric state space.

3. Probabilistic metric trace semantics is modelled straightforwardly as a graded semantics
using a graded trace monad (Example 4.2). By Theorem 3.2, however, there is no graded
logic for probabilistic metric trace semantics that satisfies the conditions of Theorem 7.6.

▶ Remark 7.9. In a recent approach based on Galois connections [4, 5], logics are related
to fixpoints of behaviour functions induced by the logic itself (similar to approaches that
define trace semantics via intended characteristic logics [31]), while our present interest is in
providing logical characterizations of given behavioural distances. The Galois framework is
highly general, and in fact not even tied to coalgebraic modelling, or in fact to state-based
systems of any kind [4], but correspondingly offers less concrete recipes. Instantiated to
our current setup, the key condition of compatibility appearing in op. cit. roughly speaking
amounts to initial-type depth-1 separation of the logic w.r.t. its own Kantorovich lifting [2, 5].

▶ Remark 7.10 (Branching-time semantics). Any functor G yields a graded monad given by
iterated application of G, that is Mn = Gn, and by unit and multiplication being identity [37].
In general, the finite-depth branching-time semantics of a G-coalgebra (X, γ) is defined via
its canonical cone (pi : X → Gi1)i<ω into the final sequence 1 !←− G1 G!←− G21 ← . . . of G.
The pi are defined inductively by p0 = ! : X → 1 and pi+1 = Gpi · γ. This semantics is
captured by the graded monad Mn = Gn and α = id [37]. More specifically, the finite-depth
branching-time behavioural distance of states x, y ∈ X is

∨
i<ω d(pi(x), pi(y)), and thus agrees

with the graded behavioural distance obtained via the graded semantics in the graded monad
Mn = Gn. This monad has M0 = id, so that the corresponding graded logics are just
branching-time logics without further restriction [37, 14]. Coalgebraic quantitative logics of
this kind have received some recent attention [22, 48, 49, 51, 11, 30, 33]. Suppose Λ is a finite
separating set of modalities, i.e. the maps JLK ·Gf : GX → Ω, with L ranging over modalities
and f over nonexpansive maps X → Ω, form an initial family. Moreover, let O contain
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truth 1, meet ∧, fuzzy negation ¬ (i.e. ¬x = 1 − x), and truncated addition of constants
(−)⊕ c. Then one shows using a variant of the Stone-Weierstraß theorem [51] that the graded
logic L given by Λ, O, and Θ = ∅ is initial-type depth-0 separating and initial-type depth-1
separating. By Theorem 7.6, we obtain that L is expressive. Previous work on quantitative
branching-time logics [51, 33, 48, 49, 22] discusses, amongst other things, conditions on G

that allow concluding expressivity even for infinite-depth behavioural distance.

8 Case Study: Fuzzy Metric Trace Semantics

We apply the recipe outlined above to obtain a characteristic logic for trace distance on
fuzzy metric transition systems. That is, we proceed as follows: We cast fuzzy metric trace
distance as a graded semantics using a suitable depth-1 graded monad M, and check that M
is depth-1 using the techniques outlined in Section 5. We then identify a corresponding
graded logic L, verifying the requirements of Definition 6.4. Invariance of L then follows
automatically (Theorem 6.6). Finally, we show expressivity using Theorem 7.6.

A fuzzy A-labelled metric transition system (fuzzy metric LTS) [12, 54, 55, 30]) consists
of a set (or metric space) X of states and a fuzzy transition relation R : X ×A×X → [0, 1],
with A a metric space. A fuzzy LTS (X, R) is finitely branching if {(a, y) | R(x, a, y) > 0} is
finite for every x ∈ X. Equivalently, a finitely branching fuzzy LTS is a coalgebra for the
functor Fω(A× (−)) (cf. Example 2.2.4).

A natural fuzzy trace semantics of fuzzy transition systems assigns to each state x of a
fuzzy LTS (X, R) a fuzzy trace set Tr(x) ∈ Fω(A∗) where

Tr(x)(a1 . . . an) =
∨
{
∧n

i=1 R(xi−1, ai, xi) | x = x0, x1, . . . , xn ∈ X}.

This notion of trace relates, for instance, to a notion of fuzzy path that is implicit in the
semantics of fuzzy computation tree logic [38] and to notions of fuzzy language accepted by
fuzzy automata (e.g. [3]). We obtain a notion of fuzzy trace distance dT of states x, y, given by
the distance of Tr(x), Tr(y) in Fω(A∗), i.e. under fuzzy Hausdorff distance (Example 2.2.4)
w.r.t. the metric on A∗ that is the supremum metric on each An, and assigns distance 1
to traces of different lengths. To capture this distance in a graded semantics, consider
the distributive law λ : A × Fω(−) → Fω(A × −) given by λ(a, U)(a, x) = U(x) and
λ(a, U)(b, x) = 0 for b ̸= a. By Example 4.2 we thus obtain the graded fuzzy metric trace
monad Mn = Fω(An× (−)). The monad Fω can be presented by the following quantitative
equational theory: Take a binary operation +, a constant 0, and unary operations r for
every r ∈ [0, 1]. Impose strict equations (=0) saying that +, 0 form a join semilattice
structure and that the operations r define an action of the monoid ([0, 1],∧) (i.e. 1(x) = x,
r(s(x)) =0 (r∧ s)(x)). Finally, impose axioms x =ϵ y ⊢ r(x) =ϵ s(y) for r, s ∈ [0, 1] such that
|r−s| ≤ ϵ. By Lemma 5.10, the graded fuzzy trace monad Mn = Fω(An×X) is presented by
the above algebraic description of Fω at depth 0, with additional depth-1 unary operations a

for a ∈ A and depth-1 equations a(x + y) =0 a(x) + a(y), a(0) =0 0, a(r(x)) =0 r(a(x)), and
x =ϵ y ⊢ a(x) =ϵ∨d(a,b) b(y).

Fuzzy metric trace logic interprets the additional operations r ∈ [0, 1] on the truth
value object [0, 1] by r(x) = r ∧ x, and otherwise uses the same quantitative join semilattice
structure as for metric trace semantics (Example 6.7). We include the truth constant 1 and
modal operators ♢c

a for a ∈ A and c ∈ [0, 1] ∩Q, with interpretation J♢c
aK : M1[0, 1]→ [0, 1]

given by J♢c
aK(A) =

∨
b∈A,v∈[0,1] A(b, v)∧v∧ (c⊖d(a, b)). (When A is discrete, then ♢1

a is the
usual fuzzy diamond modality, e.g. [18]). Thus, a state x in a fuzzy metric transition system
satisfies ♢c

aϕ to the degree that x has a b-successor y with b close to a and y satisfying ϕ;
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crucially, “closeness” of b to a needs to be shifted down as governed by the parameter c.
This logic is initial-type depth-0 separating and initial-type depth-1 separating, and hence
expressive for fuzzy trace distance by Theorem 7.6; both this result and the logic itself appear
to be new (the case with A discrete is partially covered in work on Galois connections [5]).
Indeed for non-discrete A, the logic with only ♢1

a instead of all ♢c
a fails to be expressive. The

logic remains invariant when extended with additional nonexpansive propositional operators
that are Fω-homomorphic, such as ∨.

9 Conclusions

We have shown that there is no unary quantitative coalgebraic modal logic characterizing
a natural notion of quantitative trace distance on probabilistic metric transition systems.
Moving onwards from this observation, we have developed a generic framework for linear-
time/branching-time spectra of behavioural distances on state-based systems in coalgebraic
generality, covering, for instance, metric, probabilistic, and fuzzy transition systems. Unlike
previous work on Eilenberg-Moore-style coalgebraic trace distances [5, 24], the framework
covers also systems with labels from a metric space. The key abstractions in the framework are
based on the notion of a graded monad on the category of metric spaces and an arising notion
of quantitative graded semantics. We have provided a graded quantitative algebraic system
for the description of such graded monads (extending and modifying the existing non-graded
system [36]). Moreover, we have established sufficient conditions for canonical invariant
quantitative graded logics [24] to be expressive for given quantitative graded semantics, and
we have exploited this result to obtain expressive logics for some instances of Kleisli-type
trace semantics [27], notably including a new result for fuzzy metric trace semantics.

One important next step in the development will be to identify a generic game-based
characterization of behavioural distances in the framework of graded semantics, generalizing
work specific to metric transition systems [15] and building on game-based concepts for two-
valued graded semantics [21]. Also, there is interest in computing distinguishing quantitative
formulae (cf. [10, 52] for the two-valued branching-time setting), generalizing recent results
for the branching-time case [40] to spectra of coarser semantics.
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