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Abstract
The Weisfeiler-Leman dimension of a graph G is the least number k such that the k-dimensional
Weisfeiler-Leman algorithm distinguishes G from every other non-isomorphic graph, or equivalently,
the least k such that G is definable in (k + 1)-variable first-order logic with counting. The dimension
is a standard measure of the descriptive or structural complexity of a graph and recently finds various
applications in particular in the context of machine learning. This paper studies the complexity of
computing the Weisfeiler-Leman dimension. We observe that deciding whether the Weisfeiler-Leman
dimension of G is at most k is NP-hard, even if G is restricted to have 4-bounded color classes. For
each fixed k ≥ 2, we give a polynomial-time algorithm that decides whether the Weisfeiler-Leman
dimension of a given graph with 5-bounded color classes is at most k. Moreover, we show that for
these bounds on the color classes, this is optimal because the problem is P-hard under logspace-
uniform AC0-reductions. Furthermore, for each larger bound c on the color classes and each fixed
k ≥ 2, we provide a polynomial-time decision algorithm for the abelian case, that is, for structures
of which each color class has an abelian automorphism group.

While the graph classes we consider may seem quite restrictive, graphs with 4-bounded abelian
colors include CFI-graphs and multipedes, which form the basis of almost all known hard instances
and lower bounds related to the Weisfeiler-Leman algorithm.
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1 Introduction

The Weisfeiler-Leman algorithm is a simple combinatorial procedure studied in the context
of the graph isomorphism problem. For every k ≥ 1, the algorithm has a k-dimensional
variant, k-WL for short, that colors k-tuples of vertices according to how they structurally
sit inside the whole graph: if two tuples get different colors, they cannot be mapped onto
each other by an automorphism of the graph (while the converse is not always true). The
1-dimensional algorithm, which is also known as color refinement, starts by coloring each
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vertex according to its degree, and then repeatedly refines this coloring by including into each
vertex color the multisets of colors of its neighbors. The k-dimensional variant generalizes
this idea and colors k-tuples of vertices instead of single vertices [43, 11].

The Weisfeiler-Leman algorithm plays an important role in both theoretic and practical
approaches to the graph isomorphism problem, but is also related to a plethora of seemingly
unrelated areas: to finite model theory and descriptive complexity via the correspondence of
k-WL to (k + 1)-variable first-order logic with counting [11, 27], to machine learning via a
correspondence to the expressive power of (higher-dimensional) graph neural networks [37],
to the Sherali-Adams hierarchy in combinatorial optimization [3, 25], and to homomorphism
counts from treewidth-k graphs [14]. On the side of practical graph isomorphism, the color
refinement procedure is a basic building block of the so-called individualization-refinement
framework, which is the basis of almost every modern practical solver for the graph iso-
morphism problem [36, 28, 29, 1]. On the side of theoretical graph isomorphism, Babai’s
quasipolynomial-time algorithm for the graph isomorphism problem [4] uses a combination
of group-theoretic techniques and a logarithmic-dimensional Weisfeiler-Leman algorithm.

The Weisfeiler-Leman algorithm is a powerful algorithm for distinguishing non-isomorphic
graphs on its own. For every k, k-WL can be used as an incomplete polynomial-time
isomorphism test: if the multiset of colors of k-tuples of two graphs G and H differ, then G

and H cannot be isomorphic. In this case, k-WL distinguishes G and H, otherwise G and H

are k-WL-equivalent. For a given graph G, we say that the k-dimensional Weisfeiler-Leman
algorithm k-WL identifies G if it distinguishes G from every non-isomorphic graph. The
smallest such k is known as the Weisfeiler-Leman dimension of G [21].

It is known that almost all graphs have Weisfeiler-Leman dimension 1 [5]. However, color
refinement fails spectacularly on regular graphs, where it always returns the monochromatic
coloring. For these, it is known that 2-WL identifies almost all regular graphs [10, 32]. In
contrast to these positive results, for every k there is some graph G (even of order linear in k,
of maximum degree 3, and with 4-bounded abelian color classes, i.e., such that no more than 4
vertices can share the same vertex-color, and every color class induces a graph with abelian
automorphism group) that is not identified by k-WL [11]. These so-called CFI-graphs have
high Weisfeiler-Leman dimension and are thus hard instances for combinatorial approaches
to the graph isomorphism problem.

The situation changes for restricted classes of graphs. If the Weisfeiler-Leman dimension
over some class of graphs is bounded by k, then the k-WL correctly decides isomorphism over
this class. And since k-WL can be implemented in polynomial time O(nk+1 log n) [27], this
puts graph isomorphism over such classes into polynomial time. Examples of graph classes
with bounded Weisfeiler-Leman dimension include graphs of bounded tree-width [23], graphs
of bounded rank-width [24], graphs with 3-bounded color classes [27], planar graphs [30],
and more generally every non-trivial minor-closed graph class [20].

In this paper, we study the computational complexity of computing the Weisfeiler-Leman
dimension. We call the problem of deciding whether the Weisfeiler-Leman dimension of a
given graph is at most k the k-WL-identification problem. For upper complexity bounds, non-
identification of a graph G can be witnessed by providing a graph H that is not distinguished
from G by k-WL but is also not isomorphic to G. As the latter can be checked in co-NP,
this places the identification problem into the class ΠP

2 of the polynomial hierarchy. If the
graph isomorphism problem is solvable in polynomial time, this complexity bound collapses
to co-NP. However, there is no apparent reason why the identification problem should not be
polynomial-time decidable.
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On the side of lower complexity bounds, the 1-WL-identification problem is complete
for polynomial time under uniform reductions in the circuit complexity class AC0 [31, 2].
Hardness of the 1-WL-identification problem does, however, not easily imply any hardness
results for the k-WL-identification problem for higher values of k. Indeed, no hardness results
are known for k ≥ 2. The 2-WL-identification problem in particular includes the problem
of deciding whether a given strongly regular graph is determined up to isomorphism by its
parameters, which is a baffling problem from classic combinatorics far beyond our current
knowledge. To understand the difficulties of the k-WL-identification problem better, we can
again consider classes of graphs. On every class of graphs with bounded color classes, graph
isomorphism is solvable in polynomial time [6, 16], which puts the identification problem over
this class into co-NP for every k ≥ 2. Graphs with 3-bounded color classes are identified by
2-WL [27], which makes their identification problem trivial. As shown by the CFI-graphs [11],
this is no longer true for graphs with 4-bounded color classes. Nevertheless, as shown by
Fuhlbrück, Köbler, and Verbitsky, identification of graphs with 5-bounded color classes by
2-WL is efficiently decidable [15]. For higher dimensions or bounds on the color classes
essentially nothing is known.

Contribution. We extend the results of [15] from 2-WL to k-WL and give a polynomial-time
algorithm deciding whether a graph with 5-bounded color classes is identified by k-WL:

▶ Theorem 1. For every k, there is an algorithm that decides the k-WL-identification
problem for vertex- and edge-colored, directed graphs with 5-bounded color classes in time
Ok(nO(k)). If such a graph G is not identified by k-WL, the algorithm provides a witness for
this, i.e., a graph H that is not isomorphic to G and not distinguished from G by k-WL.

Via the correspondence of k-WL to (k + 1)-variable counting logic, Theorem 1 implies that
definability of graphs with 5-bounded color classes in this logic is decidable in polynomial time.
While the restriction to 5-bounded color classes may seem stark, almost all known hardness
results and lower bounds for the Weisfeiler-Leman algorithm remain true for graphs with
bounded color classes and in most cases even 4-bounded color classes suffice [19, 13, 40, 39, 38].

Towards generalizing Theorem 1 to arbitrary relational structures and larger color classes,
we consider structures with abelian color classes, i.e., structures of which each color class
induces a structure with an abelian automorphism group. Such structures were previously
considered in the context of descriptive complexity theory [44], and include both CFI-
graphs [11] and multipedes [39, 38] over ordered base graphs, which form the basis of all
known constructions of graphs with high Weisfeiler-Leman dimension. For many cases in
descriptive complexity theory, restricting to 4-bounded abelian color classes is sufficient, but
in some cases larger (but still abelian) color classes are required [26, 18, 33, 34]. For such
structures, we obtain a polynomial-time algorithm as before:

▶ Theorem 2. For every k ∈ N and c, r ≤ k, there is an algorithm that decides the k-WL-
identification problem for r-ary relational structures with c-bounded abelian color classes in
time Ok(nO(k)). If such a structure A is not identified by k-WL, the algorithm provides a
witness for this, i.e., a second structure B that is not isomorphic to A and not distinguished
from A by k-WL.

On the side of hardness results, we first prove that when the dimension k is part of the input,
the identification problem is NP-hard. Note that a similar result was recently independently
observed by Seppelt [42].

CSL 2025
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▶ Theorem 3. The problem of deciding, given a graph G and a natural number k, whether
the Weisfeiler-Leman dimension of G is at most k is NP-hard, both over uncolored simple
graphs, and over simple graphs with 4-bounded color classes.

Furthermore, we extend the P-hardness results for 1-WL [2] to arbitrary k and prove that,
when k is fixed, the k-WL-identification problem is hard for polynomial time:

▶ Theorem 4. For every k ≥ 1, the k-WL-identification problem is P-hard under uniform
AC0-reductions over both uncolored simple graphs, and simple graphs with 4-bounded abelian
color classes.

Techniques. To prove Theorem 1, we exploit the close connection between the coloring
computed by k-WL and certain combinatorial structures called k-ary coherent configurations.
These structures come with two notions of isomorphisms, algebraic ones and combinatorial
ones. Similarly to [15], we reduce the k-WL-identification problem to the separability problem
for k-ary coherent configurations, that is, to decide whether algebraic and combinatorial
isomorphisms for a given k-ary coherent configuration coincide. We make two crucial obser-
vations: First, we show that the k-ary coherent configurations obtained from graphs are fully
determined by their underlying 2-ary configurations. We call such configurations 2-induced.
Second, we reduce the separability problem for arbitrary k-ary coherent configurations to
the same problem on the structurally simpler class of star-free k-ary coherent configurations.
Combining both observations, we show that two 2-induced, star-free k-ary coherent config-
urations obtained from k-WL-equivalent graphs must be isomorphic. Given such a k-ary
coherent configuration obtained from a graph, it thus suffices to decide whether there is
another non-isomorphic graph yielding the same configuration. Finally, we solve this problem
by encoding it into the graph isomorphism problem for structures with bounded color classes,
which is polynomial-time solvable [6, 16].

The main obstacle to generalize Theorem 1 to larger color classes or relational structures of
higher arity is the existence of k-WL-equivalent structures that yield non-isomorphic star-free
k-ary coherent configurations, which greatly increases the space of possibly equivalent but
non-isomorphic structures. To make up for this, we consider structures with abelian color
classes. Using both the bijective pebble game [26] and ideas from the theory of coherent
configurations, we provide structural insights for the class of k-ary coherent configurations
with abelian fibers. This allows us to finally prove that in the abelian case, it does suffice to
consider other relational structures yielding the same k-ary coherent configuration.

NP-hardness in Theorem 3 is proved by combining the known relationship between the
Weisfeiler-Leman dimension of CFI-graphs [11] and the tree-width of the underlying base
graphs with the recent result that computing the tree-width of cubic graphs is NP-hard [9].
With the same techniques, we can also prove that deciding k-WL-equivalence of graphs is
co-NP-hard when the dimension k is considered part of the input.

For the P-hardness result of the k-WL-identification problem in Theorem 4, we adapt a
construction by Grohe [19] that he used to prove P-hardness of the k-WL-equivalence problem.
The construction encodes monotone boolean circuits into graphs using different types of
gadgets. This simultaneously reduces the monotone circuit value problem, which is known to
be hard for polynomial time, to the k-WL-equivalence and the k-WL-identification problem.
The main difficulty was to show identification of Grohe’s gadgets, specifically his so-called
one-way switches. We give an alternative construction of these one-way switches based on the
CFI-construction. This construction simplifies proofs and more importantly yields graphs
with 4-bounded color classes for every k. This shows hardness for the k-WL-equivalence and
k-WL-identification problems even for graphs with 4-bounded abelian color classes.

Full proofs of all statements can be found in the full version of this paper [35].
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2 The Weifeiler-Leman Algorithm and Coherent Configurations

Preliminaries. For n ∈ N, we set [n] := {1, . . . , n}. For a set A, the set of all k-element
subsets of A is denoted by

(
A
k

)
. For two runtime-bounding functions f and g with parameters

including κ, we write f ∈ Oκ(g) if f/g is bounded by a function of κ. A simple graph is
a pair G = (V (G), E(G)) of a set V (G) of vertices and a set E(G) ⊆

(
V (G)

2
)

of undirected
edges. For a directed graph, we allow E(G) ⊆ V (G)2 \ {(v, v) : v ∈ V (G)}. For either graph
type, we write uv for the edge {u, v} or (u, v) respectively. For a simple or directed graph
G, a vertex-coloring of G is a map χ : V (G) → C for some finite, ordered set C of colors.
Similarly, an edge-coloring is a map η : E(G) → C. A (vertex-)color class is a set χ−1(c) for
some vertex color c ∈ C. If all color classes have order at most q, we say that the colored
graph (G, χ) has q-bounded color classes.

Relational structures are a higher-arity analogue of graphs. Formally, a k-ary relational
structure A is a tuple (V (A), R1, . . . , Rℓ) of vertices V (A) and relations Ri ⊆ V (A)ri with
ri ≤ k. The number ri is the arity of the relation Ri. We again allow relational structures to
come with a vertex-coloring and define q-bounded color classes as before.

An isomorphism between graphs G and H is a bijection φ : V (G) → V (H) such that
uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H). In this case G and H are isomorphic and we
write G ∼= H. An isomorphism between edge- or vertex-colored graphs must also preserve
the vertex- and edge-colors. Similarly, an isomorphism between (vertex-colored) relational
structures is a (color-preserving) bijection between the vertex sets that preserves all relations
and their complements. An automorphism is an isomorphism from a structure to itself. We
say that a graph or relational structure A has abelian color classes if for every color class C,
the induced substructure A[C] has an abelian automorphism group.

Bounded Variable Counting Logics. First-order counting logic C is the extension of first-
order logic by the counting quantifiers ∃≥k for all natural numbers k, which state that
there exist at least k distinct elements satisfying the formula that follows. But because
first-order logic has the ability to simulate the counting quantifier ∃≥k by a sequence of
k usual existential quantifiers, adding counting quantifiers does not actually increase the
expressive power of first-order logic. This situation changes when we restrict the number
of variables. For a natural number k ≥ 2, we define k-variable counting logic Ck to be
the fragment of C which only uses the variables x1, . . . , xk. In order to not restrict the
expressive power of these logics too much, we do, however, allow requantifications, that
is, quantifications over a variable within the scope of another quantification over the same
variable. As an example, the following is a C2-formula

∀x1∃x2
(
Ex1x2 ∧

(
∃≥5x1Ex2x1

)
∧ ¬∃≥6x1Ex2x1

)
,

which states that every vertex is adjacent to a vertex of degree 5.
A relational structure A is definable in Ck if there exists some formula φ ∈ Ck which is

satisfied by a structure if and only if it is isomorphic to A.

The Weisfeiler-Leman Algorithm. The distinguishing power of bounded variable counting
logics has another characterization in terms of the Weisfeiler-Leman algorithm. For every
k ≥ 2, the k-dimensional Weisfeiler-Leman algorithm (k-WL) computes an isomorphism-
invariant coloring of k-tuples of vertices of a given graph G via an iterative refinement
process. Initially, the algorithm colors each k-tuple according to its isomorphism type,
i.e., x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ V (G)k get the same color if and only if mapping

CSL 2025
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xi 7→ yi for every i ∈ [k] is an isomorphism of the induced subgraphs G[{x1, . . . , xk}] and
G[{y1, . . . , yk}]. In each iteration, this coloring is refined as follows: if χG

r : V (G)k → Cr is
the coloring obtained after r refinement rounds, the coloring χG

r+1 : V (G)k → Cr+1 is defined
as χG

r+1(x) := (χG
r (x), Mr

x), where

Mr
x =

{{(
χG

r

(
xy

1
)
, . . . , χG

r

(
xy

k

))
: y ∈ V (G)

}}
and x y

i denotes the tuple obtained from x by replacing the i-th entry by y. If χG
r+1 does not

induce a finer color partition on V (G)k than χG
r , then the algorithm terminates and returns

the stable coloring χG
∞ := χG

r+1. This must happen before the nk-th refinement round.
We say that k-WL distinguishes two k-tuples x, y ∈ V (G)k if χG

∞(x) ̸= χG
∞(y) and

that k-WL distinguishes two ℓ-tuples x, y ∈ V (G)ℓ for ℓ < k if k-WL distinguishes the two
k-tuples we get by repeating the last entries of x respectively y. In either case, we write
(G, x) ̸≡k-WL (G, y). Finally, k-WL distinguishes two graphs G and H if the multisets of
stable colors computed for the k-tuples of vertices over the two graphs disagree. Otherwise, G

and H are k-WL-equivalent and we write G ≡k-WL H. A graph G is identified by k-WL
if k-WL distinguishes G from every other non-isomorphic graph. Every n-vertex graph
is identified by n-WL, and the least number k such that k-WL identifies G is called the
Weisfeiler-Leman dimension of G, denoted by WL-dim(G).

k-WL is at least as powerful in distinguishing graphs as (k − 1)-WL and this hierarchy
does not collapse [11]. Completely analogously, k-WL can be applied to relational structures.

▶ Lemma 5 ([11, 26]). Let A and B be two relational structures of arity at most k, and
a ∈ V (A)k and b ∈ V (B)k two tuples of vertices. Then the following are equivalent:

(i) For every Ck+1-formula φ(x1, . . . , xk), we have (A, a) |= φ if and only if (B, b) |= φ,
and

(ii) the stable colors computed by k-WL for the tuples a and b agree.
Further, every stable color class is definable by a single Ck+1-formula.

In particular, the Weisfeiler-Leman dimension of a structure is precisely one less than the
number of variables needed to define the structure in first-order counting logic.

Coherent Configurations. For an introduction to (2-ary) coherent configurations and their
connection to the Weisfeiler-Leman algorithm we refer to [15]. For k ≥ 2, a k-ary rainbow is
a pair (V, R) of a finite set of vertices V and a partition R of V k, whose elements are called
basis relations, that satisfies the following two conditions:
(R1) For every basis relations R ∈ R, all tuples x, y ∈ R have the same equality type, i.e.,

xi = xj if and only if yi = yj . We also call this the equality type of the relation R.
(R2) R is closed under permuting indices: For all basis relations R ∈ R and permutations σ

of [k], the set Rσ := {(xσ(1), . . . , xσ(k)) : (x1, . . . , xk) ∈ R} is a basis relation.
Because the vertex set V is determined by the partition R, we write R to denote the rainbow
(V, R) and in this case write V (R) for its vertex set V . A k-ary coherent configuration is a
k-ary rainbow C that is stable under k-WL-refinement. Formally, this means that
(C) for all basis relations R, R1, . . . , Rk ∈ C, the intersection number

p (R; R1, . . . , Rk) :=
∣∣∣{y ∈ V (C) : xy

i
∈ Ri for all i ∈ [k]

}∣∣∣
is the same for all choices of x ∈ R and is thus well-defined.
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For ℓ ≤ k, the partition of k-vertex tuples of an ℓ-ary relational structure according to
their isomorphism type always yields a k-ary rainbow. The connection of k-WL and k-ary
coherent configurations is that the partition of k-vertex tuples of a graph according to their
k-WL-colors always forms a k-ary coherent configuration.

Induced Configurations. If R is an ℓ-ary rainbow for ℓ ≤ k, we can interpret R as the k-ary
rainbow R|k by partitioning k-tuples according to the basis relations of the ℓ-subtuples they
contain. Formally, let ∼R be the equivalence relation on V (R)ℓ whose equivalence classes are
the basis relations of R. We define the equivalence relation ∼k

R on V (R)k by writing x ∼k y
if and only if for all I ∈

([k]
ℓ

)
we have x|I ∼R y|I , where x|I is the subtuple of x for which

all indices not in I are deleted. The basis relations of R|k are the equivalence classes of ∼k
R.

For every k-ary rainbow R, there is a unique coarsest k-ary coherent configuration
WLk(R) that is at least as fine as R and is called the k-ary coherent closure of R. For an
ℓ ≤ k and an ℓ-ary rainbow R, we also write WLk(R) for WLk(R|k). Similarly, for an ℓ-ary
relational structure A, we write WLk(A) for the partition of V (A)k into k-WL-color classes.

Every k-ary coherent configuration C induces the ℓ-ary coherent configuration C|ℓ for
every ℓ ≤ k by considering the partition of tuples of the form (x1, . . . , xℓ, . . . , xℓ) ∈ V (C)k.
This ℓ-ary coherent configuration is called the ℓ-skeleton of C. For every basis relation R ∈ C
and every subset I ∈

([k]
ℓ

)
of the indices, the set RI := {x|I : x ∈ R} is a basis relation of C|ℓ

and called the I-face of R. The 1-skeleton yields a partition of V (C), whose partition classes
are called fibers. We denote the set of fibers by F(C). C has c-bounded fibers if all fibers of C
have order at most c. If W ⊆ V (C) is a union of fibers, the induced structure C[W ] is again
a k-ary coherent configuration. Between two fibers X and Y , the induced configuration C|2
further induces a partition C|2[X, Y ] of X × Y , called an interspace.

A k-ary coherent configuration C is ℓ-induced if it is the coherent closure of its ℓ-skeleton,
i.e., if C = WLk(C|ℓ). This is equivalent to C being the coherent closure of some ℓ-ary rainbow.
In particular, the k-ary coherent closure of a (directed, colored) graph is 2-induced and the
k-ary coherent closure of an ℓ-ary relational structure is ℓ-induced for every k ≥ ℓ.

For a k-ary rainbow R = (V, {R1, . . . , Rℓ}), the vertex-colored k-ary relational structure
(V, R1, . . . , Rℓ, χ) where χ maps every vertex to its fiber is a colored variant of R. Note that
this requires choosing an ordering of the basis relations; colored variants are thus not unique.

Algebraic and Combinatorial Isomorphisms. There are two notions of isomorphism for
two k-ary coherent configurations C and D. First, a combinatorial isomorphism is a bijection
φ : V (C) → V (D) that preserves the partition into basis relations, i.e., for every basis relation
R ∈ C, the mapped set Rφ := {(φ(x1), . . . , φ(xk)) : (x1, . . . , xk) ∈ R} is a basis relation of D.
Combinatorial isomorphisms are thus isomorphisms between certain colored variants of C
and D and the notion also applies to rainbows.

Second, an algebraic isomorphism is a map f : C → D between the two partitions that
preserves the intersection numbers. More formally, we require that
(A1) for all R ∈ C, the relations R and f(R) have the same equality type,
(A2) for all R ∈ C and permutations σ of [k], we have f(Rσ) = f(R)σ, and
(A3) for all R, T1, . . . , Tk ∈ C, we have p (R; T1, . . . , Tk) = p (f(R); f(T1), . . . , f(Tk)),
but Property (A3) already implies the former two. Algebraic isomorphisms can be thought
of as maps preserving the Weisfeiler-Leman colors and thus as a functional perspective on
Weisfeiler-Leman equivalence. More formally, if for k-ary relational structures A and B,
f : WLk(A) → WLk(B) is an algebraic isomorphism that preserves the relations of A and

CSL 2025
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B, then f is the unique map that maps every color class of the stable coloring computed by
k-WL on A to the corresponding color class of the stable coloring computed by k-WL on B.
In particular, we get A ≡k-WL B in this case.

If f : C → D is an algebraic isomorphism, then f induces an algebraic isomorphism
f |ℓ : C|ℓ → D|ℓ for every ℓ ≤ k. If C = WLk(R) for some rainbow R, f induces a map
f |R : R → Rf for some rainbow Rf by sending each basis relation of R, which is a union of
basis relations of C, to the union of f -images of these basis relations of C. A combinatorial
(respectively algebraic) automorphism of C is a combinatorial (respectively algebraic) isomor-
phism from C to itself. Every combinatorial isomorphism induces an algebraic isomorphism,
but the converse is not true. Algebraic isomorphisms behave nicely with coherent closures as
seen in the next lemma (the proof is analogue to the k = 2 case [15, Lemma 2.4]):

▶ Lemma 6. For all k-ary rainbows R, algebraic isomorphisms f : C → D, and C = WLk(R)
1. D = WLk(Rf ), in particular, if C is ℓ-induced, then so is D,
2. f is fully determined by its action on basis relations in R, and
3. if f |R is induced by a combinatorial isomorphism φ, then φ induces f .

A k-ary coherent configuration C is called separable if every algebraic isomorphism f : C → D
from C is induced by a combinatorial one. There is a close relation to the power of the
Weisfeiler-Leman algorithm (the proof is analogue to the k = 2 case [15, Theorem 2.5]):

▶ Lemma 7. Let ℓ ≤ k and A be an ℓ-ary relational structure. Then A is identified by the
k-dimensional Weisfeiler-Leman algorithm if and only if WLk(A) is separable.

3 Deciding Identification for Graphs With 5-Bounded Color Classes

As recently shown [15], identification of graphs with 5-bounded color classes by 2-WL is
polynomial-time decidable. We extend this result to arbitrary dimensions of the Weisfeiler-
Leman algorithm. We adapt the approach of [15] and solve the separability problem for
2-induced k-ary coherent configurations with 5-bounded fibers. We generalize the elimination
of interspaces containing a matching and of interspaces of type 2K1,2: we reduce to star-free
k-ary coherent configurations. By characterizing separability using certain automorphism
groups, we provide a new reduction of the separability problem for such configurations to
graph isomorphism for bounded color classes, which can be solved in polynomial time.

Disjoint Unions of Stars. Let C be a k-ary coherent configuration and X, Y ∈ F(C) two
distinct fibers. A disjoint union of stars between X and Y is a basis relation S ∈ C|2[X, Y ]
such that every vertex in Y is incident to exactly one edge in S. If no interspace of C contains
a disjoint union of stars, then C is called star-free. We show that the separability problem of
(2-induced) k-ary coherent configurations reduces to that of star-free ones.

▶ Lemma 8. Let C be a k-ary coherent configuration, X, Y ∈ F(C) two distinct fibers, and
S ∈ C|2[X, Y ] a disjoint union of stars between X and Y . Then C is separable if and only if
C \ X := C[V (C) \ X] is separable. Furthermore, if C is 2-induced, then so is C \ X.

Proof sketch. Let EqS be the set of pairs of vertices in Y that have a common S-neighbor
in X. We show that the k-ary coherent configuration C is uniquely determined by the
configuration C \ X and the relation EqS . For this, consider the function νS : Y → X that
maps each vertex in Y to its unique neighbor in X. When we apply this map to some of the
Y -components of a basis relation R ∈ C, the resulting set is again a basis relation, and we
can obtain every basis relation of R ∈ C from basis relations in C \ X in this way.
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K1 K2 K3
−→
C 3 K4 F4 C4

−→
C 4

K5 C5
−→
C 5

Figure 1 The complete list of 2-ary coherent configurations on a single fiber of order up to 4
from [15], and the three 2-ary coherent configurations on a single fiber of order 5 from [41].

2K2,2 C8

Figure 2 All non-uniform and star-free interspace types between two fibers of order up to 5. In
each case, there are at least two basis relations in each fiber, including the drawn matchings, and
two basis relations between the fibers: the drawn one and its complement.

We show that both algebraic and combinatorial isomorphisms can detect the uniqueness of
this extension in the following sense: every algebraic or combinatorial isomorphism C \X → D
uniquely extends to an algebraic or combinatorial isomorphism C → D∗, for some uniquely
determined extension D∗ ⊇ D by a single fiber. Hence, C is separable if and only if C\X is. By
analyzing this unique extension, it is moreover clear that it does not affect 2-inducedness. ◀

Lemma 8 allows us to remove fibers that are incident to a disjoint unions of stars without
affecting the separability. This simultaneously generalizes the elimination of interspaces
containing a matching and the elimination of fibers of size 2 from [15].

5-Bounded Fibers. In order to structurally understand 2-induced k-ary coherent configu-
rations, it mostly suffices to understand their 2-skeletons. The possible isomorphism types
of 2-ary coherent configurations on a single fiber of order at most 5 are known [15, 41], see
Figure 1. Further, the possible interspaces between fibers of order up to 4 are also known [15].
For fibers X, Y ∈ F(C), it is always possible that the interspace C[X, Y ] is uniform, meaning
that it consists of only a single basis relation X × Y . Every interspace between a fiber of
size 5 and a fiber of size at most 4 is uniform [15, Lemma 3.1], and every interspace between
two fibers of size 5 is either uniform or contains a matching [15, Section 13]. Now, only two
possible non-uniform, star-free interspaces remain, which are depicted in Figure 2.

We call an algebraic automorphism f of a k-ary coherent configuration C strict if it fixes
every fiber, i.e., it satisfies f(X) = X for every X ∈ F(C). The strict algebraic automorphisms
of C form a group, which we denote by A(C). Using the enumeration of fiber and interspace
types, we obtain the following reformulation of separability as in [15, Lemma 7.2].

▶ Lemma 9. A star-free 2-induced k-ary coherent configuration with 5-bounded fibers is
separable if and only if every strict algebraic automorphism is induced by a combinatorial one.
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Proof sketch. The forward implication is immediate. For the backward implication, consider
an algebraic isomorphism f : C → D. Because every coherent configuration of order at most 8
is separable [15], f is induced by a combinatorial isomorphism on every union of two fibers.
We pick such a combinatorial isomorphism inducing f |2 for every interspace of type C8 and
everywhere else, we pick combinatorial isomorphisms inducing f |2 just on each fiber. Using
the structure of fibers of order at most 5 and their interspaces, we can show that these
isomorphisms combine to a combinatorial isomorphism φ inducing f |2 on every fiber. But
then, φ−1 ◦ f |2 is a strict algebraic automorphism and is thus induced by a combinatorial
automorphism θ. But then, φ ◦ θ induces f |2 and thus also f by Lemma 6. ◀

Strict Algebraic Automorphisms. We now sketch a polynomial-time algorithm that decides
whether every strict algebraic automorphism of a k-ary coherent configuration is induced by
a combinatorial automorphism. We will heavily use that the graph isomorphism problem is
polynomial-time solvable for graphs with bounded color classes.

▶ Lemma 10 ([6, 16]). Isomorphism of k-ary relational structures of order n and c-bounded
color classes is decidable in time Ok,c(nO(k)). A generating set of the automorphism group
of these structures is computable in time Ok,c(nO(k)).

By encoding the algebraic structure of a coherent configuration C into a relational structure,
we obtain the following:

▶ Lemma 11. There is an algorithm running in time Ok,c(nO(k)) that, given a k-ary coherent
configuration C of order n with c-bounded fibers, computes a generating set of A(C).

Proof. We construct a (k + 1)-ary relational structure AC with ck-bounded color classes
such that Aut(AC) ∼= A(C). The vertices of our constructed structure are the basis relations
of C, and we color each (k + 1)-tuple (R, R1, . . . , Rk) of basis relations using the color
p (R; R1, . . . , Rk). Further, we color each basis relation by the tuple of fibers of its components.
Because every fiber is c-bounded, at most ck basis relations can share a color. Furthermore, it
is immediate that the automorphisms of the structure constructed so far naturally correspond
to strict algebraic automorphisms of C. Thus, we can compute a generating set for the group
of strict algebraic automorphisms in the required time using Lemma 10. ◀

Similarly, we can reduce the question whether a strict algebraic automorphism is induced by
a combinatorial one to the graph isomorphism problem.

▶ Lemma 12. There is an algorithm running in time Ok,c(nO(k)) that, given a k-ary coherent
configuration C with c-bounded fibers and a strict algebraic automorphism f ∈ A(C), decides
whether f is induced by a combinatorial automorphism.

Proof sketch. Let C be an arbitrary colored variant of C and Cf another colored variant
such that f is a color-preserving map between the color classes of C and Cf . Combinatorial
automorphisms inducing f correspond to isomorphisms between C and Cf , meaning that f

is induced by a combinatorial automorphism if and only if C ∼= Cf . As C has bounded fibers,
so does C. Thus, we can decide the latter in the required time by Lemma 10. ◀

▶ Corollary 13. There is an algorithm running in time Ok,c(nO(k)) that, given a k-ary coher-
ent configuration C with c-bounded fibers, decides whether every strict algebraic automorphism
of C is induced by a combinatorial automorphism.
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Proof. Those strict algebraic automorphisms that are induced by combinatorial ones form a
subgroup of the group of all strict algebraic automorphisms. Hence, it suffices to compute a
generating set of the whole group via Lemma 11 and to decide whether all elements of it are
induced by combinatorial automorphisms using Lemma 12. ◀

Finally, we are ready to prove our first theorem.

▶ Theorem 1. For every k, there is an algorithm that decides the k-WL-identification
problem for vertex- and edge-colored, directed graphs with 5-bounded color classes in time
Ok(nO(k)). If such a graph G is not identified by k-WL, the algorithm provides a witness for
this, i.e., a graph H that is not isomorphic to G and not distinguished from G by k-WL.

Proof. In a first step, we run k-WL on G to get the 2-induced configuration C := WLk(G).
By Lemma 7, it remains to decide whether C is separable. Now, we eliminate disjoint unions
of stars using Lemma 8, while maintaining 2-inducedness of C. By Lemma 9, it remains to
decide whether every strict algebraic automorphism is induced by a combinatorial one. This
can be achieved using Corollary 13.

If this is the case, the input structure is identified by k-WL. Otherwise, the algorithm
actually finds a strict algebraic automorphism f which is not induced by a combinatorial
automorphism. By adding back all interspaces containing a disjoint union of stars, we
can extend f to an algebraic isomorphism f̂ : WLk(G) → D which is not induced by a
combinatorial isomorphism. But then, we can obtain a witnessing graph H from G by
replacing its edge set by its f̂ |2-image and similarly translating vertex- and edge-colors
along f̂ . ◀

4 Identification for Structures With Bounded Abelian Color Classes

The approach we used in Section 3 to decide the k-WL-identification problem for graphs with
5-bounded color classes does not easily generalize to larger bounds on the color classes or to
relational structures of higher arity. In particular, Lemma 9 was crucial in the reduction of
k-WL-identification to a statement on certain automorphisms which could be handled using
group-theoretic techniques. The proof of the lemma was based on an explicit case distinction
on the possible isomorphism types of interspaces, and fails for graphs with larger color classes.
In this section, we show that Lemma 9 remains true in the special case of relational structures
with bounded abelian color classes, i.e., structures for which the automorphism group of the
structure induced on each color class is abelian. Such structures were already considered
in the context of descriptive complexity theory [44] and include both CFI-graphs [11] and
multipedes [39, 38] over ordered base graphs.

Coherent Configurations With Abelian Fibers. To start, we translate the concept of abelian
color classes to the corresponding concept of abelian fibers for k-ary coherent configurations.
A combinatorial automorphism φ of a k-ary coherent configuration D is color-preserving
if φ fixes every basis relation of D. This is equivalent to φ being an automorphism of every
colored variant of D or to the algebraic automorphism induced by φ being the identity (recall
that combinatorial automorphisms are not required to fix every basis relation, but only the
partition of V (D)k into basis relations). We say that a coherent configuration C has abelian
fibers if, for each fiber X ∈ F(C), the group of color-preserving combinatorial automorphisms
of C[X] is abelian.

▶ Lemma 14. Let A be a relational structure of arity at most k. If A has abelian color
classes, then WLk(A) has abelian fibers.
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We start with a structural lemma, which states that small abelian fibers are always thin.
For a fiber X ∈ F(C), a binary basis relation S ∈ C|2[X] is called thin if every vertex in X

is incident to exactly one ingoing and exactly one outgoing S-edge, that is, if S is either
a matching or a union of directed cycles. The fiber X is called thin if all basis relations
R ∈ C|2[X] are thin and if this is true for all fibers of C, we say that C has thin fibers.

▶ Lemma 15. Let C be a k-ary coherent configuration. Then every abelian fiber of order at
most k is thin.

Proof. Let X ∈ F(C) be an abelian fiber of order at most k. Then C|2[X] is the partition
of X2 into orbits under the natural action of the group of color-preserving automorphisms.

Now, assume that some binary basis relation S ∈ C|2[X] contains two pairs xy and xy′

for x, y, y′ ∈ X. This implies that there is a color-preserving automorphism φ of C[X] that
maps xy to xy′. But as the group of color-preserving automorphism of C[X] is abelian and
acts transitvely on the vertices of X, its point-stabilizers are trivial. Because φ(x) = x, this
implies φ = idX and thus y′ = φ(y) = y. Thus, the basis relation S is thin. ◀

Next, we need one well-known lemma on the structure of thin fibers, which essentially
states that thin fibers correspond to Cayley graphs of their automorphism groups.

▶ Lemma 16 ([12, Section 2.1.4]). Let C be a 2-ary coherent configuration on a single thin
fiber. Then the basis relations of C are precisely those of the form Sφ := {xφ(x) : x ∈ V (C)}
for color-preserving combinatorial automorphisms φ of C.

Separability of Configurations With Bounded Thin Fibers. Next, we show that k-ary
coherent configurations with few, thin fibers are separable:

▶ Lemma 17. Let C be a k-ary coherent configuration with at most k fibers. If C has thin
fibers, then C is separable.

Proof sketch. Let x ∈ V (C)k be a k-tuple of vertices which contains a vertex from every
fiber of C. Then every vertex of C is the unique outgoing neighbor of some vertex in x with
respect to some thin basis relation. Thus, all vertices of C are fixed relative to x.

Now, let C be a colored variant of C. By Lemma 7, C is separable if and only if C is
identified by k-WL. We show the latter using the bijective (k + 1)-pebble game, which is
an Ehrenfeucht-Fraïssé-type game capturing k-WL-equivalence [26]. Indeed, if C ≡k-WL D,
this corresponds to Duplicator having a winning strategy in this game. But because we
can fix every vertex of C by only fixing one vertex per color class, we can easily extract an
isomorphism C → D from such a winning strategy. ◀

Finally, we are ready to once again reduce the question of separability to only strict algebraic
automorphisms, which we can again deal with using Corollary 13.

▶ Lemma 18. Let C be a k-ary coherent configurations with thin fibers. Then C is sepa-
rable if and only if every strict algebraic automorphism of C is induced by a combinatorial
automorphism.

Proof sketch. The proof is similar to that of Lemma 9, where instead of using that every 2-ary
coherent configuration of order at most 8 is separable, we apply Lemma 17 to get separability
of sufficiently small configurations. Afterwards, we use the structure of configurations with
thin fibers to show that the local bijections we picked are compatible with the partition in
the k-ary interspaces. ◀
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▶ Theorem 2. For every k ∈ N and c, r ≤ k, there is an algorithm that decides the k-WL-
identification problem for r-ary relational structures with c-bounded abelian color classes in
time Ok(nO(k)). If such a structure A is not identified by k-WL, the algorithm provides a
witness for this, i.e., a second structure B that is not isomorphic to A and not distinguished
from A by k-WL.

Proof. Let A be a relational structure of arity r. Then A is identified by k-WL if and
only if WLk(A) is separable. Because the k-ary coherent configuration WLk(A) has c-
bounded thin fibers by Lemmas 14 and 15, Lemma 18 implies that separability of WLk(A) is
equivalent to every strict algebraic automorphism of WLk(A) being induced by a combinatorial
automorphism. This can be checked in the given time using Corollary 13, and in case of a
negative answer, we can construct a non-isomorphic but non-distinguished structure from
the strict algebraic automorphism not induced by a combinatorial one as in Theorem 1. ◀

Note that the restriction to relational structures of arity at most k is insubstantial, because
the standard variant of the Weisfeiler-Leman algorithm given in Section 2 does not identify
any relational structure of arity larger than k, simply because it does not consider tuples of
length larger than k and thus cannot even detect whether a relation of arity larger than k is
empty. While there are variants of k-WL which identify some (k +1)-ary relational structures,
these variants can be treated similarly to decide identification by those algorithms.

5 Hardness

We now prove hardness results that complement the positive results in the previous two
sections. In the case that the dimension k is part of the input, the k-WL-equivalence
problem and the k-WL-identification problem are co-NP-hard and NP-hard, respectively.
We use that deciding whether a cubic graph has tree-width k is NP-hard [9]. The CFI-
construction [11] assigns to a graph G two CFI-graphs, which are distinguished by k-WL
if and only if G has tree-width at most k [8, 22]. If G is cubic, then the CFI-graphs are
polynomial-time computable and thus we reduced to k-WL-equivalence. To show hardness
of k-WL-identification, we show that the CFI-graphs are actually identified by k-WL if the
tree-width of G is at most k. Hardness of the k-WL-equivalence problem was independently
observed by Seppelt [42].

▶ Theorem 3. The problem of deciding, given a graph G and a natural number k, whether
the Weisfeiler-Leman dimension of G is at most k is NP-hard, both over uncolored simple
graphs, and over simple graphs with 4-bounded color classes.

▶ Theorem 19. The problem of deciding, for a given pair of graphs G and H and a natural
number k ≥ 1, whether G ≡k-WL H is co-NP-hard, both over uncolored simple graphs, and
over simple graphs with 4-bounded abelian color classes.

P-Hardness for Fixed Dimension. We again turn to the k-WL-identification problem for a
fixed dimension k ≥ 2, and show that both over uncolored simple graphs and over simple
graphs with 4-bounded abelian color classes, the problem is P-hard under logspace-uniform
AC0-reductions. We reduce from the P-hard monotone circuit value problem MCVP [17].
Our construction of a graph from a monotone circuit closely resembles the reductions of
Grohe [19] to show P-hardness of the k-WL-equivalence problem. A similar reduction was
also used to prove P-hardness of the identification problem for the color refinement algorithm
(1-WL) [2].
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The reduction is based on so-called one-way switches, which were introduced by Grohe [19].
These graph gadgets allow color information computed by the Weisfeiler-Leman algorithm
to pass in one direction, but block it from passing in the other. And while Grohe provides
one-way switches for every dimension of the Weisfeiler-Leman algorithm, his gadgets have
large color classes and are difficult to analyze. Instead, we give a new construction of such
gadgets with 4-bounded color classes. We then use these one-way switches to construct a
graph from an instance of the monotone circuit value problem from the identification of
which we can read off the answer to the initial MCVP-query.

One-Way Switches. Fix a dimension k ≥ 2 of the Weisfeiler-Leman algorithm. A k-one-way
switch is a graph gadget with a pair of input vertices {y1, y2} and a pair of output vertices
{x1, x2}, which each form a color class of size 2. A pair of vertices is split if the two vertices
are colored differently and k-WL splits a pair if the coloring computed by k-WL splits the
pair. The crucial property of a k-one-way switch is the following: if the input pair {y1, y2}
of the one-way switch is split, then k-WL also splits the output pair, but not the other
way around. One-way switches thus only allow one-way flow of k-WL-color information. In
contrast to Grohe’s gadgets, our one-way switches are based on the CFI-construction [11].
We give only a brief sketch of the properties of our one-way switches here, and postpone
their precise construction and properties to Appendix A.

▶ Lemma 20 (simplified). For every k ≥ 2, there is a colored graph Ok with 4-bounded
abelian color classes, called k-one-way switch, with an input pair {y1, y2} and an output pair
{x1, x2}, neither of which is split by k-WL, such that
1. the graph Ok

split obtained by splitting the input pair {y1, y2} is identified by k-WL,
2. k-WL splits the output pair {x1, x2} of Ok

split, and
3. if we split the output pair {x1, x2}, k-WL still does not split the input pair {y1, y2}.

From Monotone Circuits to Graphs. We reduce the monotone circuit value problem to the
k-WL-identification problem. A monotone circuit M is a circuit consisting of input nodes
with values True or False, inner nodes, which are either AND- or OR-nodes with two inputs
each, and a distinguished output node. We write V (M) for the set of nodes of M . With a
monotone circuit M , we associate the evaluation function valM : V (M) → {True, False},
which is defined in the expected way. The monotone circuit value problem asks whether the
output node of a given monotone circuit evaluates to True and is P-hard by [17].

Let M be a monotone circuit. We construct a colored graph GM such that for every node
a ∈ V (M), there is a vertex pair {a1, a2} in GM that will be split by k-WL if and only if
valM (a) = False. Up to the construction of the one-way switches, the construction of GM

is similar to constructions employed in [19] and [2]. We use two graphs GOR and GAND (see
Figure 3) as gadgets to simulate logic gates. These gadgets both have two input pairs and
one output pair such that exchanging the two output vertices by an automorphism requires
the two vertices of one (for GOR) or both (for GAND) input pairs to also be exchanged.

The formal construction of GM is depicted in Figure 4. For every node a of M , we add
a pair of vertices {a1, a2} forming a color class of GM . To encode the input values of the
circuit, we split every pair {a1, a2} corresponding to an input node a of value False. For
every AND-node a ∈ V (M) with input nodes b and b′, we add a freshly colored copy of
the gadget GAND from Figure 3 and identify its output pair with the pair {a1, a2}. Next,
we connect its two input pairs via freshly colored one-way switches Ok

ba and Ok
b′a to the

pairs {b1, b2} and {b′
1, b′

2} respectively. More precisely, we identify the input pairs of these
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GOR GAND

Figure 3 The gadgets GOR and GAND encoding OR- and AND-gates respectively. The two vertex
pairs at the top are their input pairs and the bottom pair is their output pair.

False False True

∧

∨

GAND

GOR

→ →
→ →

↑

Figure 4 A simple monotone circuit M and the graph GM obtained from it.

one-way switches with {b1, b2} or {b′
1, b′

2} respectively and identify their output pair with
the respective input pair of the copy is identif of GAND. Analogously, we add a copy of GOR
for every OR-node a ∈ V (M) and connect it to its input via one-way switches as before.

This concludes the translation of the circuit itself, but for our reduction to the identification
problem we need one more step: we connect all input pairs {a1, a2} with valM (a) = True
to the output pair {c1, c2} via additional one-way switches Ok

ca, whose input pair we identify
with {c1, c2} and whose output pair we identify with {a1, a2}. Let GM be the resulting graph.
Because we color different gadgets using distinct colors, and every gadget has 4-bounded
color classes, the resulting graph GM also has 4-bounded color classes and indeed, these
color classes could also be made abelian by introducing colored edges within the gadgets.
The following lemma is proven similar to [19, Section 5.4] and [2, Theorem 7.11] by using
the properties of the one-way switches to bound the distinguishing power of k-WL on GM in
terms of its distinguishing power on the individual gadgets.

Recall that GM contains, for every node a of M , a vertex pair {a1, a2}. The essential
property of the encoding of monotone circuits as graphs is the following:

▶ Lemma 21. For every monotone circuit M with output node c and every node a of M , we
have (GM , a1) ≡k-WL (GM , a2) if and only if valM (a) = valM (c) = True.

▶ Corollary 22. The k-WL-equivalence problem for vertices is P-hard under uniform AC0-
reductions, both over simple graphs with 4-bounded abelian color classes, and over uncolored
simple graphs.

Consider now the modified graph G∗
M that we get by adding another freshly colored one-way

switch Ok
∗ whose input pair is {c1, c2}, i.e., the vertex pair corresponding to the output node

of the circuit M . Furthermore, we split the output pair of Ok
∗ . Note that when splitting the
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output pair, we can choose which of the two vertices to give a fresh color to. We show that
these two choices lead to non-isomorphic graphs which are distinguished by k-WL if and
only if the circuit evaluates to False.

▶ Lemma 23. For every monotone circuit M , the graph G∗
M is identified by k-WL if and

only if valM (c) = False.

Proof sketch. If valM (c) = False, then all input and output pairs in G∗
M are split. Because

all gadgets in G∗
M are identified when their input and output pairs are split, and different

gadgets only interact at these split pairs, the whole graph G∗
M is identified.

Conversely, assume valM (c) = True, and let (G∗
M )′ be the graph constructed just like

G∗
M , but with the colors of the two output vertices of the one-way switch Ok

∗ exchanged.
Because the pair {c1, c2} is not split in GM , k-WL cannot distinguish the two output vertices
of Ok

∗ , which means that it cannot distinguish the non-isomorphic graphs G∗
M and (G∗

M )′. ◀

▶ Theorem 4. For every k ≥ 1, the k-WL-identification problem is P-hard under uniform
AC0-reductions over both uncolored simple graphs, and simple graphs with 4-bounded abelian
color classes.

6 Conclusion

We have shown on the one hand that when the dimension k is part of the input, the k-WL-
equivalence problem and the k-WL-identification problem are co-NP-hard and NP-hard,
respectively.

On the other hand, when the dimension k is fixed, the equivalence problem is trivially
solvable in polynomial time, and we have shown that the identification problem is solvable in
polynomial time over graphs with 5-bounded color classes and on relational structures with
k-bounded abelian color classes. Still, the identification problem is P-hard in both cases. As
an immediate corollary, we obtain the same polynomial-time solvability and hardness results
for definability and equivalence in the bounded-variable logic with counting Ck.

It would be interesting to know whether the k-WL-identification problem can be solved
in polynomial time for larger color classes or indeed on general graphs when k is fixed.
Indeed, our NP-hardness reduction was based on whether the tree-width of a given graph is
at most k, which can be solved in linear time for every fixed k [7], and thus does not even
yield a super-linear lower bound when k is fixed. Still, we would expect that neither the
identification nor the equivalence problem can be solved in time no(k). It might be fruitful to
study these problems from the lens of parameterized complexity or provide lower complexity
bounds based on the (strong) exponential time hypothesis.
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A Construction of One-Way Switches

We construct our one-way switches based on the CFI-construction, and the proof of the
properties heavily uses the bijective pebble game. We thus start with a short introduction to
these.

The Bijective Pebble Game. The question whether Ck+1 or k-WL can distinguish struc-
tures A and B has another characterization in terms of the so-called bijective (k + 1)-pebble
game. In this game, there are two players: Spoiler and Duplicator. Game positions are
partial maps g 7→ h between G and H, where both tuples contain at most k + 1 elements.
We also sometimes identify such partial maps with the set P = {gi 7→ hi : i ≤ |g|}.

We think of these maps as k + 1 pairs of corresponding pebbles placed in the two graphs.
If such a partial map is not a partial isomorphism, i.e., not an isomorphisms on the induced
subgraphs, Spoiler wins immediately.

Otherwise, at the beginning of each turn, Spoiler picks up one pebble pair, either from the
board if all k + 1 pairs are placed, or from the side if there are pebble pairs left. Duplicator
responds by giving a bijection φ : V (G) → V (H) between the two graphs. Spoiler then places
the pebble pair they picked up on a pair (g, φ(g)) of vertices of their choice. The game then
continues in the resulting new position.

We say that Spoiler wins if the graphs have differing cardinality or they can reach a
position that is no longer a partial isomorphism (and thus win immediately). Duplicator
wins the game if Duplicator can find responses to Spoiler’s moves indefinitely.

Lemma 5 now has the following extension:

▶ Lemma 24 ([11], [26]). Let A and B be two relational structures of arity at most k, and
a ∈ V (A)k and b ∈ V (B)k two tuples of vertices. Then the following are equivalent:
(i) Duplicator has a winning strategy in position a 7→ b of the bijective (k + 1)-pebble game

between A and B,
(ii) for every Ck+1-formula φ(x1, . . . , xk), we have (G, g) |= φ if and only if (H, h) |= φ,
(iii) the stable colors computed by k-WL for the tuples a and b agree.
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Figure 5 A CFI-gadget for a vertex of degree 3, consisting of four inner vertices and three outer
pairs.

The CFI-Construction. CFI-graphs are certain graphs with high Weisfeiler-Leman dimen-
sion [11]. To construct them, we start with a base graph G, which is a connected simple
graph, and a function f : E(G) → F2. For a vertex v ∈ V (G), we denote the set of edges
incident to v by E[v] := {uv : v ∈ NG(v)} ⊆ E(G). Now, to construct the CFI-graph
CFI(G, f), we replace each vertex v ∈ V (G) by a gadget Xv which consists of inner vertices
Iv := {v} × {x ∈ FE[v]

2 :
∑

x = 0} and outer vertices {v} × {(e, i) : e ∈ E[v], i ∈ F2}. Inside
each gadget, the inner and outer vertices each form an independent set, and an inner vertex
(v, x) and outer vertex (v, e, i) are connected by an edge if and only if xe = i. The resulting
gadget for a vertex of degree 3 is depicted in Figure 5.

Next, we define the edge set between different gadgets. For every edge e = uv ∈ E(G), we
connect the outer vertices (u, e, i) and (v, e, j) if and only if i + j = f(e) and add no further
edges. Thus, corresponding outer vertex pairs (u, e, ·) and (v, e, ·) are always connected by a
matching, which is either untwisted if f(e) = 0, or twisted if f(e) = 1.

Finally, we define a vertex coloring on this graph. For every vertex v, we turn the
set Iv of inner vertices into a color class of size 2d(v)−1. Moreover, we turn each outer pair
{(v, e, 0), (v, e, 1)} into a color class of size 2. This finishes the construction of CFI-graphs.

It turns out that for two functions f, g : E(G) → F2, we have CFI(G, f) ∼= CFI(G, g) if
and only if

∑
f =

∑
g, meaning that every even number of twists cancels out. Thus, we

also write CFI(G, 0) and CFI(G, 1) for the untwisted and twisted CFI-graphs over the base
graph G.

To understand the power of the Weisfeiler-Leman algorithm on CFI-graphs, it is convenient
to study tree-width, which is a graph parameter that intuitively measures how far a graph
is from being a tree. In this work, we do not need the formal definition of tree-width, and
refer to [8]. The power of the Weisfeiler-Leman algorithm to distinguish CFI-graphs can now
conveniently be expressed in terms of the tree-width of the base graphs, see [22].

▶ Lemma 25. For every base graph G of tree-width tw(G) ≥ 2, we have

WL-dim(CFI(G, 0)) = WL-dim(CFI(G, 1)) = tw(G).

Construction of the One-Way Switches. We start by defining a base graph. Consider a
wall graph consisting of k − 1 rows of k bricks each. Then, we attach a new vertex v to the
two upper corner vertices of the first row. The resulting graph Bk is depicted in Figure 6.

▶ Lemma 26. The graph Bk has tree-width k + 1, while Bk − v has tree-width k.

Now, we are ready to construct our one-way switches. In our proofs, we actually need
a more explicit version of Lemma 20 in order to precisely control the expressive power fo
the Weisfeiler-Leman algorithm on the whole graph in terms of its expressive power on the
individual gadgets:
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v

Figure 6 The base graph B6 of the CFI-graphs underlying our one-way switches.

▶ Lemma 27 (compare [19, Lemma 14]). For every k ≥ 2, there is a colored graph Ok with
4-bounded color classes, called k-one-way switch, with an input pair {y1, y2} and an output
pair {x1, x2} satisfying the following properties:
1. The graph Ok

split obtained by splitting the input pair {y1, y2} is identified by k-WL.
2. k-WL splits the output pair {x1, x2} of Ok

split.
3. There is no automorphism of Ok exchanging the output vertices x1 and x2.
Furthermore, there are sets of positions in the bijective (k + 1)-pebble game between Ok and
itself, called trapped and twisted such that
4. every trapped or twisted position is a partial isomorphism,
5. Duplicator can avoid non-trapped positions from trapped ones and non-twisted positions

from twisted ones,
6. for every trapped position a 7→ b, the position ax1 7→ bx1 is also trapped,1
7. for every twisted position a 7→ b, the position ax1 7→ bx2 is also twisted.
8. the positions y1y2 7→ y1y2 and y1y2 7→ y2y1 are both trapped and twisted,
9. every subposition of a trapped position is trapped, and every subposition of a twisted

position is twisted

Proof. Let Ok be the (untwisted) CFI-graph of Bk, but with a CFI-gadget of degree 3 added
for the vertex v instead of a gadget of degree 2. This leaves one outer pair of this gadget free
which we use as our output pair {x1, x2}. Furthermore, we use one of the other two outer
pairs of this same CFI-gadget as the input pair {y1, y2}.

Now, if we fix the output pair {x1, x2} by individualizing one of the two vertices, the
resulting graph corresponds to the usual CFI-graph of H, while switching the pair {x1, x2}
corresponds to the twisted CFI-graph of H. In particular, as these graphs are not isomorphic,
there is no automorphism of Ok switching the pair {x1, x2}, which proves Property 3.

Moreover, splitting the input pair {y1, y2} has the same effect to the power of k-WL as
removing one of the two edges incident to v in the base graph Bk has. When removing
this edge in the base graph, the resulting graph is essentially equivalent to the CFI-graph
of the k × (k + 1)-wall graph with one corner vertex replaced by a CFI-gadget of degree 3
instead of 2. Because exchanging the two vertices of the free outer pair of this degree-3
gadget interchanges the twisted and untwisted CFI-graphs over the base graph, and k-WL
can distinguish CFI-graphs from all other graphs, the resulting graph is identified by k-WL.
This proves Property 1.

1 If the position ax1 7→ bx1 contains more than k + 1 pebbles, this means that every subposition on at
most k + 1 pebbles is trapped.
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To show Property 2, we start the bijective (k + 1)-pebble game in position x1 7→ x2.
Then, Spoiler uses the usual strategy of pebbling a wall which they then move from one side
of the wall graph to the other. But because the game started in position x 7→ x′, the two
graphs the game is played on differ in a twist which will finally force Duplicator to lose.

Now, consider again the original graph Ok without splitting the input pair. On this graph,
we can extend every winning position for Duplicator in the bijective k-pebble game between
the untwisted CFI-graph CFI(Bk, 0) and the twisted CFI-graph CFI(Bk, 1) to a position
in the bijective k-pebble game between Ok and itself which is compatible with x1 7→ x2.
Similarly, we can extend every winning position for Duplicator in the bijective k-pebble game
between the untwisted CFI-graph CFI(Bk, 0) and itself to a position between Ok and itself
which is compatible with x1 7→ x1.

We call the former positions twisted and the latter positions trapped. Properties 4, 6, 7
and 9 are then immediate, and Property 5 follows from Lemma 25 together with Lemma 26.

Because v lies on a cycle in Bk, there exists an automorphism of CFI(Bk) which twists
both outer pairs of the gadget corresponding to v. Lifting this automorphism to Ok yields
an automorphism switching y1 and y2 whilst fixing x1 and x2. This proves Property 8. ◀
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