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Abstract
In earlier articles we have introduced truth table natural deduction which allows one to extract
natural deduction rules for a propositional logic connective from its truth table definition. This
works for both intuitionistic logic and classical logic. We have studied the proof theory of the
intuitionistic rules in detail, giving rise to a general Kripke semantics and general proof term calculus
with reduction rules that are strongly normalizing. In the present paper we study the classical rules
and give a term interpretation to classical deductions with reduction rules. As a variation we define
a multi-conclusion variant of the natural deduction rules as it simplifies the study of proof term
reduction. We show that the reduction is normalizing and gives rise to the sub-formula property.
We also compare the logical strength of the classical rules with the intuitionistic ones and we show
that if one non-monotone connective is classical, then all connectives become classical.
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1 Introduction

Classically, the meaning of a propositional connective is fixed by its truth table. This
immediately implies consistency, a decision procedure, completeness (with respect to Boolean
algebras) for classical logic. Constructively, following the Brouwer-Heyting-Kolmogorov
interpretation [17], the meaning of a connective is fixed by explaining what a proof is that
involves the connective. Basically, this explains the introduction rule(s) for each connective,
from which the elimination rules follow. This was first phrased like this by Prawitz in [14],
who studied natural deduction in detail, including the reduction of proofs (deductions).
By analyzing constructive proofs we then also get consistency (from proof normalization),
a decision procedure (from the sub-formula property) and completeness (with respect to
Heyting algebras and Kripke models).

In previous papers [6, 7], we have defined a general method to derive natural deduction
rules for a connective from its truth table definition, which we have coined TT-ND, Truth
Table Natural Deduction. This also works for constructive logic, which we have shown in
detail by relating the method to Kripke semantics and by studying proof normalization. For
classical logic, a similar method has been described by Milne [10]. The advantage is that
the derived rules give natural deduction rules for a connective “in isolation”, so without the
need to explain a connective in terms of another (e.g. explaining the classical properties of
implication using the double negation law). Also, this gives constructive rules for connectives
that haven’t been studied so far, like if-then-else and nand. These constructive connectives
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2:2 Classical Natural Deduction from Truth Tables

are described and studied in detail in [7]. Finally, it allows to study various properties
for a whole set of connectives all at once, like proof normalization and a generic (sound
and complete) Kripke semantics. Proof normalization has been defined and studied in [7],
where a weak normalization result is proven. Strong normalization has been proven in [8]
and [1]. These proofs proceed by defining a proof-term calculus for TT-ND, following the
Curry-Howard proofs-as-terms (and formulas-as-types) interpretation, and by defining a
reduction relation on these proof terms.

These results all apply to the constructive case. In the present paper we study the
classical case. We first prove some results only in terms of the logic. We show that for
monotonic connectives (like ∨, ∧), the classical and constructive rules are equivalent. This
has also been shown in [18, 9], but we give a new (arguably simpler) proof. This shows that
non-monotonic connectives “make classical logic classical”. In our systems, the difference
between constructive logic and classical logic for a connective c lies only in the introduction
rules for c. To substantiate that non-monotonicity is crucial, we prove that if we allow one
classic introduction rule for one non-monotonic connective, all connectives become classical.
This implies, for example, that the classical rules for → imply the (seemingly stronger)
classical rules for ¬ in presence of the constructive rules for ¬.

We also study proof reduction for classical logic derived from truth tables. To do this,
we define a proof term calculus which now also has conclusion variables, similar in style
with λµ of Parigot [13] or variants of that studied by Ariola and Herbelin [2] and Curien
and Herbelin [4]. We define various variants of this, depending on whether one has a single
conclusion or multiple conclusions. We also define these as logics and we show – as was to be
expected – that multiple conclusion intuitionistic TT-ND is logically equivalent to classical
TT-ND. On the proof terms (that include conclusion variables and binding of them), we
define a reduction relation that conforms with the reduction of deductions arising from detour
elimination and with the goal to obtain a deduction that satisfies the sub-formula property.
We describe this in detail for classical multi-conclusion logic, classical single-conclusion logic
and intuitionistic single-conclusion logic. We define the reduction on proof-terms, show that
it satisfies the subject reduction property and show that proof-terms in normal form satisfy
the sub-formula property.

For the study of normalization, we introduce the unified framework of Truth Table Logic
that arises quite naturally as a system unifying classical/intuitionistic multi-conclusion logic
and classical/intuitionistic single conclusion logic. It works with elimination patterns and
introduction patterns which can be combined to form proof terms. For this system we prove
strong normalization, and from that, strong normalization for the original intuitionistic logic
follows immediately. For the original versions of classical logic, the reduction is actually too
“fine-grained” to derive strong normalization directly. But we can conclude that, if there is a
proof term in classical logic (multi-conclusion or single conclusion), there is a proof-term
in normal form of that same formula. From this we conclude that all logics satisfy the
subformula property.

2 Natural Deduction from Truth Tables

We recap our earlier work on Truth Table Natural Deduction. To be able to reason generically
about natural deduction rules, all our rules have a “standard form” that looks like this

Γ ⊢ A1 . . . Γ ⊢ An Γ, B1 ⊢ D . . . Γ, Bm ⊢ D

Γ ⊢ D

The idea is that, if the conclusion of a rule is Γ ⊢ D, then the hypotheses of the rule can be
of one of two forms:
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1. Γ ⊢ A: instead of proving D from Γ, we now need to prove A from Γ. We call A a Lemma.
2. Γ, B ⊢ D: we are given extra data B to prove D from Γ. We call B a Casus.
Given this standard form of the rules, we don’t have to give the Γ explicitly, as it can be
retrieved, so we write

⊢ A1 . . . ⊢ An B1 ⊢ D . . . Bm ⊢ D

⊢ D

Various well-known deduction rules follow this format:
⊢ A ∨B A ⊢ D B ⊢ D

∨-el
⊢ D

⊢ B
∨-in2

⊢ A ∨B

⊢ A ⊢ B
∧-in

⊢ A ∧B

But there are others that do not follow this format, for example implication introduction:

A ⊢ B
→ -in

⊢ A → B

In our set-up, implication introduction will break down in two rules, one introducing the
implication, and one discharging the hypothesis. these together are equivalent to standard
implication introduction.

A ⊢ B
→ -in1

A ⊢ A → B

A ⊢ A → B
→ -in2

⊢ A → B

▶ Definition 1 (Natural Deduction rules from truth tables). Let c be an n-ary connective c
with truth table tc.

Each row of tc gives rise to an elimination rule or an introduction rule for c. (We write
Φ = c(A1, . . . , An).)

A1 . . . An Φ
p1 . . . pn 0 7→

⊢ Φ . . . ⊢ Ai (if pi = 1) . . . Aj ⊢ D (if pj = 0) . . .
el

⊢ D

constructive intro
A1 . . . An Φ
q1 . . . qn 1 7→

. . . ⊢ Ai (if qi = 1) . . . Aj ⊢ Φ (if qj = 0) . . .
ini

⊢ Φ

classical intro
A1 . . . An Φ
r1 . . . rn 1 7→

Φ ⊢ D . . . ⊢ Ai (if ri = 1) . . . Aj ⊢ D (if rj = 0) . . .
inc

⊢ D

We call ⊢ Φ (resp. Φ ⊢ D) the major premise and the other hypotheses of the rule we
call the minor premises. The minor premises are either a Lemma, Ai (if pi = 1 or qi = 1 or
ri = 1 in tc), or a Casus, Aj (if pj = 0 or qj = 0 rj = 0) in tc.

▶ Definition 2 (Definition of the logics). Given a set of connectives C := {c1, . . . , cn}, we
define the intuitionistic and classical natural deduction systems for C, IPCC and CPCC as
follows.

Both IPCC and CPCC have an axiom rule

axiom( if A ∈ Γ)
Γ ⊢ A

Both IPCC and CPCC have the elimination rules for the connectives in C.

TYPES 2022
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IPCC has the intuitionistic introduction rules for the connectives in C.
CPCC has the classical introduction rules for the connectives in C.

In [6], we have given a sound and complete a Kripke semantics for IPCC . Briefly, a Kripke
model is defined as usual and for w a world in the Kripke model, we define [[φ]]w ∈ {0, 1} with
the meaning that [[φ]]w = 1 if and only if formula φ is true in world w. For φ = c(φ1, . . . , φn),
we define [[φ]]w := 1 if tc([[φ1]]w′ , . . . , [[φn]]w′) = 1 for each w′ ≥ w, where tc is the truth table
of c, and otherwise [[φ]]w := 0. Similarly, a sound and complete valuation semantics can be
given for CPCC, where a valuation is a map from the proposition letters to {0, 1} and the
interpretation of composite formulas follows the truth table.

▶ Example 3. Constructive rules for ∧ (3 elimination rules and one intro rule):

A B A ∧B

0 0 0
0 1 0
1 0 0
1 1 1

⊢ A ∧B A ⊢ D B ⊢ D
∧-el00

⊢ D

⊢ A ∧B A ⊢ D ⊢ B
∧-el01

⊢ D

⊢ A ∧B ⊢ A B ⊢ D
∧-el10

⊢ D

⊢ A ⊢ B
∧-in11

⊢ A ∧B

These rules can be shown to be equivalent to the well-known constructive rules. These
rules can be optimized to the three rules we are familiar with.

▶ Example 4. Rules for ¬: 1 elimination rule and 1 introduction rule.

A ¬A
0 1
1 0

Constructive:
⊢ ¬A ⊢ A

¬-el
⊢ D

A ⊢ ¬A
¬-ini

⊢ ¬A
Classical:
⊢ ¬A ⊢ A

¬-el
⊢ D

¬A ⊢ D A ⊢ D
¬-inc

⊢ D

Using the classical rules for ¬, we show that ¬¬A ⊢ A is derivable:

¬¬A,¬A ⊢ ¬¬A ¬¬A,¬A ⊢ ¬A
¬-el

¬¬A,¬A ⊢ A ¬¬A,A ⊢ A
¬-inc

¬¬A ⊢ A

Simplifying the set of rules

There are various ways to optimize the rules, for example by taking two rules together in one
that is equivalent. These have already been described and proven in [6], so we only recap the
Lemmas here. To describe these, a first important operation is substituting one derivation
on top of another, a kind of “cut operation”.
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▶ Lemma 5 (Substituting a deduction in another [6]). If Γ ⊢ A and ∆, A ⊢ B, then Γ,∆ ⊢ B.

Proof. If Σ is a deduction of Γ ⊢ A and Π is a deduction of ∆, A ⊢ B, then we have the
following deduction of Γ,∆ ⊢ B.

····
Σ

Γ ⊢ A . . .

····
Σ

Γ ⊢ A····
Π

Γ,∆ ⊢ B

The idea here is that in Π, the leaves that derive ∆′ ⊢ A (for some ∆′) as an (axiom) is
replaced by a copy of the deduction Σ, which is also a deduction of ∆′,Γ ⊢ A (due to
weakening). As contexts only grow if one goes upwards in the tree, we have ∆′ ⊇ ∆, so this
new derivation is well-formed. ◀

▶ Lemma 6 ([6]). A system with two deduction rules of the following form

⊢ A1 . . . ⊢ An B1 ⊢ D . . . Bm ⊢ D C ⊢ D

⊢ D

⊢ A1 . . . ⊢ An ⊢ C B1 ⊢ D . . . Bm ⊢ D

⊢ D

is equivalent to the system with these two rules replaced by

⊢ A1 . . . ⊢ An B1 ⊢ D . . . Bm ⊢ D

⊢ D

We don’t repeat the proof, which is in [6], but we give an example.

▶ Example 7. The two rules for ∧ from Example 3, (∧-el00) and (∧-el10) can be replaced by
one rule:

⊢ A ∧B B ⊢ D
∧-el_0

⊢ D

The intuition is that, as A can occur as a Lemma or as a Casus in an elimination rule where
everything else is the same, we can just omit it.

As we can also leave rule (∧-el00) in (as it is derivable), we can do the replacement again,
and replace rules (∧-el00) and (∧-el01) by

⊢ A ∧B A ⊢ D
∧-el0_

⊢ D

▶ Lemma 8. [6] A system with a deduction rule of the form to the left is equivalent to the
system with this rule replaced by the rule on the right.

⊢ A1 . . . ⊢ An B ⊢ D

⊢ D

⊢ A1 . . . ⊢ An

⊢ B

Again, we don’t repeat the proof, as it is in [6], but we give an example.

▶ Example 9. Having the optimized rules for ∧ from Example 7, (∧-el_0) and (∧-el0_), we
can replaced them by the following rules, which are the well-known elimination rules for ∧.

⊢ A ∧B
∧-el′_0⊢ B

⊢ A ∧B
∧-el′0_⊢ A

TYPES 2022
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The constructive connectives

We have already seen the ∧,¬ rules. The optimized rules for ∨,→,⊤ and ⊥ we obtain are:

⊢ A ∨B A ⊢ D B ⊢ D
∨-el

⊢ D

⊢ A
∨-in1

⊢ A ∨B

⊢ B
∨-in2

⊢ A ∨B

⊢ A → B ⊢ A
→ -el

⊢ B

⊢ B
→ -in1

⊢ A → B

A ⊢ A → B
→ -in2

⊢ A → B

⊤-in
⊢ ⊤

⊢ ⊥
⊥-el

⊢ D

The rules for the classical → connective

The classical rules for implication are as follows. The elimination is rule is the same as the
constructive one and we also have the first introduction rule → -in1. In addition we have the
rule on the right. It is classical in the sense that one can derive Peirce’s law from it (without
using negation).

⊢ A → B ⊢ A
→ -el

⊢ B

⊢ B
→ -in1

⊢ A → B

A → B ⊢ D A ⊢ D
→ -inc

2⊢ D

▶ Example 10. We give a classical derivation of Peirce’s law, using only the classical rules
for →.

A ⊢ A

A ⊢ ((A → B) → A) → A

(A → B) → A ⊢ (A → B) → A A → B ⊢ A → B

A → B, (A → B) → A ⊢ A

A → B, (A → B) → A ⊢ ((A → B) → A) → A

A → B ⊢ ((A → B) → A) → A
→ -inc

2⊢ ((A → B) → A) → A

3 Monotone and non-monotone connectives

▶ Definition 11. A connective c is monotone if its truth table tc is a monotone function
from {0, 1}n to {0, 1} with respect to the ordering 0 ≤ 1.

Of the standard connectives, ∨ and ∧ are monotone, while ¬, → and ↔ are non-monotone.
For monotone connectives, the constructive and classical rules are equivalent. (So this holds
for ∧, ∨.) For the non-monotone connectives like → and ¬, this is not the case, which is
well-known, as Example 10 shows. There is an even stronger result: the classical intro rule
for the one (→ or ¬) implies the classical intro rule for the other (¬ or →). This hold in
general: if we add one classical introduction rule for one non-monotone connective, then all
non-monotone connectives are classical.

▶ Proposition 12. For c monotone, the classical and constructive derivation rules are
equivalent.
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Proof. Let c be a monotone connective, say with an introduction rule derived from the
truth table row r = (r1, . . . , ri, . . . , rn|1). If ri = 0, then we also have the truth table row
r′ = (r1, . . . , 1, . . . , rn|1). That is, we have rows (r1, . . . , 0, . . . , rn|1) and (r1, . . . , 1, . . . , rn|1).
Now, the first lemma for simplifying the rules (Lemma 6) says that the i-th minor premise
is immaterial for the rule. This reasoning applies to every 0-entry in row r, so we can
eliminate all 0-s from r and we obtain an equivalent introduction rule without any Casus,
which therefore looks like this:

Φ ⊢ D ⊢ A1 . . . ⊢ Am

⊢ D

Now, by the second lemma for simplifying rules, Lemma 8, this rule is equivalent to

⊢ A1 . . . ⊢ Am

⊢ Φ
which is the constructive introduction rule for c. So for c monotone, a classical introduction
rule is equivalent to a constructive one. ◀

3.1 For non-monotone connectives, one classical introduction suffices
We now show that, if we have a set of connectives C and c ∈ C is non-monotone, then adding
one classical introduction rule for c makes the whole logic classical. So, if we add this one
classical introduction rule, we can derive the other classical introduction rules for c and also
the classical introduction rules for all other connectives d. In case d is monotone, this doesn’t
add anything, because of Proposition 12. But, for example in the case of ¬ and →, which are
both non-monotone, this shows that the classical rule for → can be derived from the classical
rule for ¬, and vice versa, the classical rule for ¬ can be derived from the classical rule for →.
The first might be expected, but the second maybe not, as one might have the impression
that the “double negation law” is really stronger then the classical rules for →. Theorem
13 below is even more general, as it says that all non-monotonic classical connectives are
equally strong.

It should be noted that, when we talk about a non-monotonic connective c, say of arity n,
we should actually speak about a “non-monotonic pattern in tc”, which is an index i (1 ≤ i ≤
n) and a sequence a1, . . . , ai−1, 1, ai+1, . . . , an such that tc(a1, . . . , ai−1, 0, ai+1, . . . , an) = 1
and tc(a1, . . . , ai−1, 1, ai+1, . . . , an) = 0. When we say we “add a classical introduction
rule for this non-monotone c”, we mean to add a classical introduction rule for a line
(a1, . . . , ai−1, 0, ai+1, . . . , an) that is part of such a pattern. (There may be other lines

−→
b

in the truth table of c, with tc(
−→
b ) = 0, that are not part of such a pattern; making the

introduction rule for such a
−→
b classical leaves the whole system intuitionistic.) We will not

use the terminology of “non-monotonic pattern in tc”, to keep the text simple, and for ¬, →
etcetera it isn’t relevant. But in the proof we will start from such a situation.

▶ Theorem 13. Let C be a set of connectives and let c ∈ C be non-monotone. If we add one
classical introduction rule for c, we can derive the classical rules for all connectives.

Proof. To simplify the presentation we do not consider the situation where we have optimized
rules, but the proof goes through basically unaltered. Let c be an n-ary connective which is
not monotone. Then there are rows r = (r1 . . . rn|1) and s = (s1 . . . sn|0) which only differ
at position f and such that rf = 0 and sf = 1. So the corresponding classical introduction
and elimination rules for c have the same minor premises, except for position f where the
introduction rule (based on r) has a Casus while the elimination rule (based on s) has a
Lemma.

TYPES 2022
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We want to show that any other classical introduction rule, say the one form-ary connective
d based on a row t = (t1 . . . tm|1), can be derived from this particular classical introduction
rule for c based on row r = (r1 . . . rn|1), by just using the constructive introduction rules
and the elimination rules of the connectives c and d. Note that c and d need not be different
connectives and the language need not contain any other connective.

The problem can be stated more precisely as follows. We have the following rows in the
truth tables.

r = (r1 . . . rn|1) for n-ary c rk ranges over the 1-entries, rℓ ranges over the 0-entries,
s = (s1 . . . sn|0) for n-ary c sg ranges over the 1-entries, sh ranges over the 0-entries,
t = (t1 . . . tm|1) for m-ary d ti ranges over the 1-entries, tj ranges over the 0-entries.

Based on these rows, we have the following rules, where D and the As are arbitrary.

c(A1, . . . , An) ⊢ D ⊢ Ak (for rk = 1) Aℓ ⊢ D (for rℓ = 0)
c-intro based on r

⊢ D

⊢ c(A1, . . . , An) ⊢ Ag (for sg = 1) Ah ⊢ D (for sh = 0)
c-elim based on s

⊢ D

⊢ Ai (for ti = 1) Aj ⊢ d(A1, . . . , Am) (for tj = 0)
d-intro based on t, intuitionistic

⊢ d(A1, . . . , Am)

Fix the formulas Φ = d(C1, . . . , Cm) and D (where C1, . . . , Cm, D are arbitrary). We
need to show that the following is derivable (without using classical introduction for d):

Φ ⊢1 D ⊢2 Ci (for ti = 1) Cj ⊢3 D (for tj = 0)
⊢ D

We have marked, using ⊢1, ⊢2 and ⊢3, the hypotheses that we will need to derive ⊢ D so we
can easily refer to them.
Solution from any extra assumption
We first show that we can derive our result D from an arbitrary additional assumption.

▷ Claim 14. For any formula X, we can derive X ⊢ D (under the assumptions laid out so
far).

Proof of the Claim. Let X be any formula. Define Ψ = c(B1, . . . , Bn) where:
Bu = X if ru = su = 1,
Bu = D if ru = 0 and su = 1 (so this is the case where u = f , the only place where rows
r and s differ),
Bu = Φ if ru = su = 0.

We now have the following derivation of X ⊢ D (where we still have to create a derivation
of the major premise, X,Ψ ⊢∗ D).

X,Ψ ⊢∗ D X ⊢ Bk (rk = 1) Bf ⊢ D Bℓ ⊢ D (rℓ = 0)
c-intro based on r

X ⊢ D

Note that the minor premises of this rule are all derivable:
For rk = 1, we have Bk = X and we have X ⊢ X,
For rℓ = 0 with ℓ = f , we have Bf = D and we have D ⊢ D,
For rℓ = 0 with ℓ ̸= f , we have Bℓ = Φ and we have Φ ⊢1 D, one of our hypotheses.
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We now show the derivability of the major premise, X,Ψ ⊢∗ D, by giving a derivation of
X,Ψ ⊢ Φ, which, combined with Φ ⊢1 D, gives X,Ψ ⊢ D. Here is the derivation:

⊢2 Ci (for ti = 1)
Ψ ⊢ Ψ X,Ψ ⊢ Bg (for sg = 1) Cj ⊢ Bf Bh ⊢ Φ (for sh = 0)

c-el
X,Ψ, Cj ⊢ Φ (for tj = 0)

d-in
X,Ψ ⊢ Φ

by Φ ⊢1 D
X,Ψ ⊢ D

Note that the minor premises of this rule are all derivable:
For sg = 1 and rg = 1, we have Bg = X and we have X ⊢ X,
For sg = 1 with g = f , we have Bf = D and we have Cj ⊢3 D, one of our hypotheses,
For sh = 0, we have Bh = Φ and we have Φ ⊢ Φ.

So we have shown that, given Φ ⊢1 D, ⊢2 Ci (for ti = 1) and Cj ⊢3 D for tj = 0, we can
derive X ⊢ D for any formula X. This proves our Claim 14. ◁

Full Solution. If we can find a formula X such that ⊢ X then in combination with Claim
14, X ⊢ D we get ⊢ D so we are done. If we have some standard connectives in our language,
then we can take any theorem for X, like ⊤, ¬⊥ or A → A. If we happen to be inside a
non-empty Γ, we can take X to be any formula in Γ. But in general, we don’t have a Γ and
we cannot assume any other connectives than c and d (where c and d may even be the same).

If the introduction rule for d that is based on row t has at least one Lemma (Ci), then we
can take for X any such Ci. So if in t = (t1 . . . tm|1) we have ti = 1 somewhere, we are done.

Now suppose that t = (0 . . . 0|1), so each minor premise is a Casus in the introduction
rule for d based on t that we are considering. Let, for A a formula, δ(A) denote the formula
d(A, . . . , A). Then constructive d-intro gives

A ⊢ δ(A)
d-intro based on t, intuitionistic

⊢ δ(A)
Let’s denote by v the row in the truth table for d with just 1s as arguments: either

v = (1 . . . 1|1) or v = (1 . . . 1|0).
case v = (1 . . . 1|1).
Then the constructive introduction rule derived from v directly gives A ⊢ δ(A) so we are
done: take X := δ(A) (for arbitrary A), then ⊢ X is shown by:

A ⊢ A
d-intro based on v, intuitionistic

A ⊢ d(A, . . . , A)
d-intro based on t, intuitionistic

⊢ d(A, . . . , A)
case v = (1 . . . 1|0).
Now take X := δ(δ(D)), where D is the formula that we want to prove ⊢ D for.

From row v we have an elimination rule for d, in particular we have, for any E:
⊢ δ(D) ⊢ D

d-elim based on v
⊢ E

We take δ(δ(D)) for E and we have the following derivation of δ(δ(D)) (and we are done).
Note that δ(D) ⊢ D holds by our earlier Claim 14, because X ⊢ D for any X.

δ(D) ⊢ δ(D) δ(D) ⊢ D
d-elim based on v

δ(D) ⊢ δ(δ(D))
d-intro based on t, intuitionistic

⊢ δ(δ(D))
This completes the proof of Theorem 13. ◀
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4 Variants of Classical Natural Deduction

There are various ways to move from constructive logic to classical logic. In sequent calculus,
this is done by considering multi-conclusion judgments of the form Γ ⊢ ∆, where ∆ is a
sequence (or finite set) of formulas, with the intuitive meaning that the conjunction of the
formulas in Γ implies the disjunction of the formulas in ∆. We can also make our truth
table natural deduction “multi-conclusion”, which helps to clarify the connection between
the various systems, but more importantly, it is helpful in describing the proof reduction of
classical logic. We first introduce these logics and prove their connection.

▶ Definition 15. Let C be a set of connectives with their associated truth tables and let Γ and
∆ be finite sets of formulas over C. We define intuitionistic and classical multi-conclusion
logic by considering the following derivation rules.

(axiom)
Γ, A ⊢ A,∆

Γ ⊢ Φ,∆0 . . .Γ ⊢ Ak,∆k . . . . . .Γ, Aℓ ⊢ ∆ℓ
(el) if ∆ ⊇ ∆0,∆k,∆ℓ

Γ ⊢ ∆

. . .Γ ⊢ Ai,∆i . . . . . .Γ, Aj ⊢ Φ,∆j . . .
(in-int) if ∆ ⊇ ∆i,∆j

Γ ⊢ Φ,∆

Γ,Φ ⊢ ∆0 . . .Γ ⊢ Ai,∆i . . . . . .Γ, Aj ⊢ ∆j . . .
(in-class) if ∆ ⊇ ∆0,∆i,∆j

Γ ⊢ ∆

In each rule, Φ = c(A1, . . . , An) for some connective c. The Ai and Aj range over the entries
with ri = 1 and rj = 0 of some 1-row r for c. The Ak and Aℓ range over the entries with
r′

k = 1 and r′
ℓ = 0 of some 0-row r′ for c.

We define the following logics by having the rules (axiom) and (el) and one introduction
rule:
1. Int-mc, intuitionistic multi-conclusion logic, has introduction rule (in-int).
2. Class-mc, classical multi-conclusion logic, has introduction rule (in-class).
For the multi-conclusion logics, we can also let the ∆ be a constant in the rules (just like
the Γ), as the (axiom) rule gives weakening anyway. We get the original truth table natural
deduction rules by restricting these derivation rules to judgments with a single conclusion:

(axiom-sc) is rule (axiom) with ∆ empty
(el-sc) is rule (el) with ∆ a singleton, ∆0 and the ∆k empty, and the ∆ℓ equal to ∆
(in-int-sc) is rule (in-int) with ∆ empty
(in-class-sc) is rule (in-class) with ∆ a singleton, ∆0 and the ∆j equal to ∆, and the ∆i

empty
We define the original truth table natural deduction logics in this format by having the rules
(axiom-sc) and (el-sc) and one introduction rule:
1. Int, intuitionistic single-conclusion logic, has introduction rule (in-int-sc).
2. Class, classical single-conclusion logic, has introduction rule (in-class-sc).

▶ Proposition 16.
1. Int-mc, Class and Class-mc are equivalent in the sense that

Γ ⊢ Φ in Class ⇔ Γ ⊢ Φ in Class-mc
Γ ⊢ ∆ in Int-mc ⇔ Γ ⊢ ∆ in Class-mc

2. Int is really weaker than the other 3 systems if C contains a non-monotone connective.
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Proof.
1. The proof of Γ ⊢ Φ in Class ⇔ Γ ⊢ Φ in Class-mc is by showing completeness for both

Class and Class-mc in the standard way (using maximally consistent extensions of sets
of formulas) with respect to a valuation semantics. For Class-mc, one proves Γ ⊢ ∆ ⇔
Γ ⊨ ∆, where Γ ⊨ ∆ is defined as: for all v : At → {0, 1}, if ∀φ ∈ Γ(v(φ) = 1), then
∃ψ ∈ ∆(v(ψ) = 1). One proves the same result for Class, from which the first equivalence
in the Proposition follows.
For the proof of Γ ⊢ ∆ in Int-mc ⇔ Γ ⊢ ∆ in Class-mc, the ⇒ is immediate, while for the
⇐ we show that the classical introduction rule (in-class) is derivable in Int-mc: suppose
we have Γ,Φ ⊢ ∆0, Γ ⊢ Ai,∆i (for all appropriate i, according to row r in truth table tc)
and Γ, Aj ⊢ ∆j (for all appropriate j) in Int-mc. We also have Γ, Aj ⊢ Φ,∆j , so we can
apply the intuitionistic introduction rule (in-int) to conclude Γ ⊢ Φ,∆ for ∆ ⊇ ∆i,∆j .
We also have Γ,Φ ⊢ ∆0, so by Substitution Lemma (Lemma 5 extends directly to the
case for Int-mc and Class-mc), we conclude Γ ⊢ ∆,∆0 (for ∆ ⊇ ∆i,∆j) and we are done.

2. For well-known non-monotone connectives like ¬ and →, it is known that Int is really
weaker than Class, e.g. one can prove Peirce’s law and ¬¬A ⊢ A in Class, which cannot
be proven in Int, as one can show by constructing a Kripke counter-model. This also
implies that for other non-monotone connective, say c of arity n, the classical rules are
really stronger: with the classical rules for c and the intuitionistic rules for ¬ one can
prove ¬¬A ⊢ A. (This follows directly from Theorem 13.) With the intuitionistic rules
for c and ¬ one cannot prove ¬¬A ⊢ A, as the Kripke semantics for intuitionistic truth
table natural deduction shows, see [6]. ◀

5 Proof terms for natural deduction

In earlier articles, we gave proof terms for natural deductions. This simplified the study of
proof normalization. We followed the Curry-Howard formulas-as-types (and proofs-as-terms)
paradigm. We defined systems with judgments Γ ⊢ t : B, where B is a formula, Γ is a set of
declarations {x1 : A1, . . . , xn : An}, where the Ai are formulas and the xi are term variables
such that every xi occurs at most once in Γ, and t is a proof term. In these systems, the
type of a proof term t is the conclusion B of the proof and the types of the free variables xi

of t are the assumptions Ai of the proof. A Lemma D (a sub-proof of formula D as part of
the proof of B) is represented by a sub-term of t of type D. A Casus C (a part of the proof
that uses C as extra assumption) is represented by a λ-abstraction over a variable of type C.

In this section, we first define proof term calculi for the logics we have already discussed,
and also for some logics we have studied in earlier work, but now with both variables for
assumptions (hypotheses) and for conclusions (goals).

By using (abstractions over) conclusion variables, we can distinguish between terms like
x (representing an assumption A), γ · x (representing a proof of A ⊢ A) and µγ : A.γ · x
(representing a Lemma A). It is also very useful to represent multi-conclusion deductions.

5.1 Proof terms for truth table natural deduction with conclusion
variables

We define proof term calculi for TT-ND with conclusion variables for various logics:
1. Int, intuitionistic logic,
2. Class, classical logic,
3. Int-mc, intuitionistic multi-conclusion logic,
4. Class-mc, classical multi-conclusion logic,
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2:12 Classical Natural Deduction from Truth Tables

The judgments of these calculi will be of the form

t : (Γ ⊢ ∆)

where t denotes the proof term, Γ contains the labelled assumptions, typically Γ = x1, :
A1, . . . , xn : An, and ∆ contains the labelled conclusions, typically ∆ = α1 : B1, . . . , αm : Bm.

Such a judgment expresses that the sequent A1, . . . , An ⊢ B1, . . . , Bm is derivable in the
corresponding logic. As in sequent calculus, this can informally be read as “t is a proof of the
disjunction of the Bj from the conjunction of the Ai”. In case we have single conclusion logic
∆ is a singleton, but still with a labelled conclusion, so ∆ = α : B. We use λ to abstract
over assumption variables and µ to abstract over conclusion variables. Each free variable of t
is declared in Γ or ∆. Each proof term consists of two parts (separated by ·). Conclusion
variables only occur as left part of a (nested) proof term and assumption variables only as
right part.

▶ Definition 17. Let C be a set of connectives with their associated truth tables and let Γ
be an assumption context and ∆ a conclusion context for formulas over C. We consider the
following derivation rules for terms, where the syntactic class of terms is as follows.

t ::= α · x | (µα : A.t) · [µβ : B.t′ ; λz : C.t′′]r
| (λx : A.t) · {µβ : B.t′;λz : C.t′′}r | γ · {µβ : B.t′;λz : C.t′′}r

(axiom)
α · x : (Γ, x : A ⊢ α : A,∆)

t : (Γ ⊢ β : Φ,∆0) . . . pk : (Γ ⊢ αk : Ak,∆k) . . . . . . qℓ : (Γ, yℓ : Aℓ ⊢ ∆ℓ)
(el)∗

(µβ : Φ.t) · [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ : (Γ ⊢ ∆)

. . . pi : (Γ ⊢ αi : Ai,∆i) . . . . . . qj : (Γ, yj : Aj ⊢ γ : Φ,∆j) . . .
(in-int)∗∗

γ · {µαi : Ai.pi;λyj : Aj .qj}r : (Γ ⊢ γ : Φ,∆)

t : (Γ, x : Φ ⊢ ∆0) . . . pi : (Γ ⊢ αi : Ai,∆i) . . . . . . qj : (Γ, yj : Aj ⊢ ∆j) . . .
(in-class)∗∗∗

(λx : Φ.t) · {µαi : Ai.pi;λyj : Aj .qj}r : (Γ ⊢ ∆)

In each rule, Φ = c(A1, . . . , An) for some connective c. Each r is a 1-row for connective c,
where Ai ranges over the entries of r with ri = 1 and Aj ranges over the entries with rj = 0.
Each r′ is a 0-row for c and Ak ranges over the entries of r′ with r′

i = 1 and Aℓ ranges over
the entries with r′

ℓ = 0.
Just as in the definition of the logics (Definition 15), each term rule has the same side

condition on the ∆ in the conclusion: it should be a superset of the ∆’s in the hypotheses. In
particular, this means that ∗ represents ∆ ⊇ ∆0,∆k,∆ℓ where k and ℓ range over a number
of ∆’s, ∗∗ represents ∆ ⊇ ∆i,∆j where i and j range over a number of ∆’s, ∗∗∗ represents
∆ ⊇ ∆0,∆i,∆j where i and j range over a number of ∆’s. We define the multi-conclusion
term calculi by having the rules (axiom) and (el) and one introduction rule:
1. Int-mc, intuitionistic multi-conclusion calculus, has introduction rule (in-int).
2. Class-mc, classical multi-conclusion calculus, has introduction rule (in-class).

Each rule for terms can be restricted to judgments t : (Γ ⊢ ∆) in which ∆ is a singleton,
just like the corresponding derivation rule for sequents in Definition 15. We define the
single-conclusion term calculi by having the rules (axiom-sc) and (el-sc) and one introduction
rule:
1. Int, intuitionistic single-conclusion calculus, has introduction rule (in-int-sc).
2. Class, classical single-conclusion calculus, has introduction rule (in-class-sc).
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We want to single out specific sub-term patterns that occur in the elimination rule and
the introduction rule.

▶ Definition 18. An intro pattern is a sub-term of the form {µαi : Ai.pi;λyj : Aj .qj}r. An
elim pattern is a sub-term of the form [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ .

We say that the intro pattern {µαi : Ai.pi;λyj : Aj .qj}r is well-typed in Γ ⊢ ∆, if for
all i, pi : (Γ ⊢ αi : Ai,∆i) for some ∆i and for all j, qj : (Γ, yj : Aj ⊢ γ : Φ,∆j) for some
∆j and all ∆i,∆j ⊆ ∆. (And all this is relative to line r in the truth table for c, where
Φ = c(A1, . . . , An).)

We say that the elim pattern [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ is well-typed in Γ ⊢ ∆, if for
all k, pk : (Γ ⊢ αk : Ak,∆k) for some ∆k and for all ℓ, qℓ : (Γ, yℓ : Aℓ ⊢ ∆ℓ) for some ∆k

and all ∆k,∆ℓ ⊆ ∆. (And all this is relative to line r′ in the truth table for some c.)

▶ Example 19. The derivation rules for negation are as follows in the classical multi-conclusion
logic. We omit the Γ and ∆.

t : (x : ¬B ⊢ α : D) q : (y : B ⊢ α : D)
in¬

(λx : ¬B.t) · {;λy : B.q}r : (⊢ α : D)
t : (⊢ α : ¬B) q : (⊢ β : B)

el¬
(µα : ¬B.t) · [µβ : B.q ; ]r′ : (⊢)

As logics, the relation between these calculi has been given in Proposition 16. We can
also give the relation between the term calculi.

▶ Lemma 20. The calculus Int is a subsystem of Int-mc and the calculi Class and Int-mc are
subsystems of Class-mc:

Int ⊆ Int-mc ⊆ Class-mc
Class ⊆ Class-mc

where Int ⊆ Int-mc and Class ⊆ Class-mc are by the identity on terms and Int-mc ⊆ Class-mc
is by interpreting

[[γ · {µαi : Ai.pi;λyj : Aj .qj}r]] := (λx : Φ.γ · x) · {µαi : Ai.[[pi]];λyj : Aj .[[qj ]]}r

Proof. The proof is by a straightforward induction on the derivation, using the fact that all
systems have weakening: if t : (Γ ⊢ ∆) and Γ ⊆ Γ′, ∆ ⊆ ∆′, then t : (Γ′ ⊢ ∆′). ◀

▶ Example 21. We consider a proof of the double negation law in classical multi-conclusion
calculus, given by the proof term t : (z : ¬¬A ⊢ α : A), where

t := (µγ : ¬¬A.γ · z) · [µβ : ¬A.(λy : ¬A.β · y) · {;λx : A.α · x}r ; ]r′

Observe that t contains a sub-term (λy : ¬A.β · y) · {;λx : A.α ·x}r, of type (⊢ β : ¬A,α : A),
with two different free conclusion variables. Such proof terms, having multiple free conclusion
variables, can only occur in multiple-conclusion calculus.

We give the derivation of t, using the rules given in Example 19. Except for the last line,
we omit the declarations z : ¬¬A and α : A from the context.

γ · z : (⊢ γ : ¬¬A)
β · y : (y : ¬A ⊢ β : ¬A) α · x : (x : A ⊢ β : ¬A)

in¬
(λy : ¬A.β · y) · {;λx : A.α · x}r : (⊢ β : ¬A)

el¬
(µγ : ¬¬A.γ · z) · [µβ : ¬A.(λy : ¬A.β · y) · {;λx : A.α · x}r ; ]r′ : (z : ¬¬A ⊢ α : A)

In the right branch of this derivation, we have as conclusion context α : A, β : ¬A.
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. . . . . .
intro-Φ

⊢ Φ . . .
elim-Φ

⊢ D

⊢ Ψ
. . . . . .

intro-Φ
⊢ Φ . . .

elim-Ψ
⊢ Φ . . .

elim-Φ
⊢ D

Figure 1 Detour and Permutation.

5.2 Proof terms and reductions: the intuitionistic case
We now describe the term reduction rules. For Int these should correspond to what we
have defined and studied in [7] and [8]. There we have defined a proof term calculus for
intuitionistic TT-ND (but without conclusion variables), and we have detour elimination and
permutation rules to normalize proofs and to obtain a proof in normal form that satisfies the
sub-formula property.

A detour in intuitionistic logic is a pattern of an introduction of a formula Φ immediately
followed by an elimination of Φ. Such a step can be eliminated by not using Φ at all. This is
depicted on the left in Figure 1. A permutation is necessary when a detour for Φ is blocked
by the elimination of another formula Ψ. Then we first have to permute the two elimination
rules, for Φ and Ψ, to make the detour of Φ explicit. See Figure 1 on the right.

It turns out that in our new setting, the conclusion variables nicely take care of the
permutation rules. We use the following shorthand notation to improve readability:

p represents µαk : Ak.pk,
q represents λyℓ : Aℓ.qℓ.
r represents µαi : Ai.ri,
s represents λyj : Aj .sj .

▶ Definition 22. The reduction rule for Int is as follows, for t ̸= β · x.

(µβ : Φ.t) · [p ; q]r′ −→ t[β := [p ; q]r′ ]

Here the substitution t[β := [p ; q]r′ ] is defined by, inside t,

replacing β · x by (µα : Φ.α · x) · [p ; q]r′ for a fresh α
replacing β · {r; s}r by qℓ[yℓ := µαi : Ai.ri] if i = ℓ

or by sj [yj := µαk : Ak.pk] if j = k.

Here qℓ[yℓ := µαi : Ai.ri] is defined by replacing γ · yℓ by ri[αi := γ].

Note that all free occurrences of β in t should be replaced, including those in sj . We will see
an example in Example 27. Since Int is a single-conclusion calculus, the (only) conclusion
variable β of t does not occur in µαi : Ai.ri.

▶ Lemma 23 (Subject Reduction). If t : (Γ ⊢ γ : D) and t −→ t′, then t′ : (Γ ⊢ γ : D).

Proof. By induction on the derivation of t : (Γ ⊢ γ : D), which treats the cases where the
reduction takes place deeper inside t. The only interesting case is when t is itself a redex.
For that we have to prove an auxiliary Substitution Lemma 24, which we give below and
from which the case of t itself being a redex follows immediately. ◀

▶ Lemma 24 (Substitution Property). Let Φ = c(A1, . . . , An) and t : (Γ ⊢ β : Φ). If the elim
pattern [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ is well-typed in Γ ⊢ γ : D, where r′ is a line in the truth
table for c that gives an elimination rule, then t[β := [p ; q]r′ ] : (Γ ⊢ γ : D).
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Proof. The proof is by induction on t, using the definition of the substitution given in
Definition 22. ◀

The role of the side condition t ̸= β · x in Definition 22 should be clear: without it
we create an infinite reduction sequence right away. As a matter of fact, (µβ : Φ.β · x) ·
[µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ is not a redex as it is an elimination of an assumption, which is
exactly what we want from a proof in normal form in Int: that all occurrences of elimination
rules eliminate a hypothesis. It is convenient to syntactically characterize the normal forms
of Int, NFInt.

▶ Definition 25. We define NFInt, the normal forms of Int, as follows.

NFInt ::= α ·x | (µβ : Φ.β ·x) · [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ | γ · {µαk : Ak.pk;λyℓ : Aℓ.qℓ}r′

where all sub-terms are again in NFInt.

We give the main properties of normal forms and reduction.

▶ Lemma 26. NFInt captures precisely the normal forms of Int.
The normal forms of Int satisfy the Sub-formula Property: If t : (Γ ⊢ γ : D), t ∈ NFInt,
then for each bound variable, α : A or x : A, occurring in t, A is a sub-type of a type in Γ
or D.
The reduction is strongly normalizing.

Proof. The proof of the first is immediate: terms in NFInt cannot reduce and all terms
that cannot reduce are in NFInt. The second follows by induction on the derivation of
t : (Γ ⊢ γ : D), where we analyze t based on the cases that arise from t ∈ NFInt. The strong
normalization property follows from the strong normalization proofs for intuitionistic TT-ND
that have been given in [8] and [1]. It also follows from strong normalization of Truth Table
Logic (using (2) of Lemma 41) which we prove in Theorem 46. ◀

The term reduction rules of Definition 22 indeed correspond to the ones of [7] and [8].
The interpretation is straightforward, but we do not give it here, because we would have to
introduce the definitions of [7] first. To be more precise: every reduction step of the Definition
corresponds to a combination of multiple detour elimination/permutation steps from[7]. So
the reduction of Definition 22 covers both the detour elimination and the permutation rules.
We illustrate this in an example.

▶ Example 27. The following deduction has a hidden detour which can be made explicit
using a permutation elimination step. (The · · · are auxiliary parts of the deduction.) The
→ -el and → -in are separated by an ∨-el, so the detour arising from an → -in followed by an
→ -el is blocked. The detour can be made explicit using a permutation step. (Note that in
TT-ND, the “normal” →-introduction proceeds in two steps, first introducing the →-formula
C → D, then abstracting over the hypothesis C.)

· · ·

⊢ A ∨B

· · ·

A,C ⊢ D
→ -in

A,C ⊢ C → D
→ -in

C → D

· · ·

B ⊢ C → D
∨-el

C → D

· · ·

⊢ C D ⊢ D
→ -el

D
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Using the proof terms of [6], this derivation looks like this.

⊢ t:A ∨ B

x:A, z:C ⊢ q:D
→ -in

x:A, z:C ⊢ {q ; −}:C → D
→ -in

x:A ⊢ {− ; λz:C.{q ; −}}:C → D y:B ⊢ r:C → D
∨-el

⊢ t · [− ; λx:A.{− ; λz:C.{q ; −}}, λy:B.r]:C → D ⊢ p:C u:D ⊢ u:D
→ -el

⊢ t · [− ; λx:A.{− ; λz:C.{q ; −}}, λy:B.r] · [p ; λu:D.u]:D

The permutation step for this proof term

t · [− ; λx:A.{− ; λz:C.{q ; −}}, λy:B.r] · [p ; λu:D.u]

allows one elimination to move into another, in this case to permute the → -el into the ∨-el,
leading to

t · [− ; λx:A.{− ; λz:C.{q ; −}} · [p ; λu:D.u], λy:B.r · [p ; λu:D.u]]

Here is the same proof in Int of Definition 17.

t:(⊢ α:A ∨B)

q:(x:A, z:C ⊢ β:D)
γ · {µβ:D.q ; −}:(x:A, z:C ⊢ γ:C → D)

γ · {− ; λz:C.γ · {µβ:D.q ; −}}:(x:A ⊢ γ:C → D) r:(y:B ⊢ γ:C → D)
(µα:A ∨B.t) · [− ; λx:A.γ · {− ; λz:C.γ · {µβ:D.q ; −}}, λy:B.r]:(⊢ γ:C → D)

Abbreviating M := (µα:A ∨B.t) · [− ; λx:A.γ · {− ; λz:C.γ · {µβ:D.q ; −}}, λy:B.r] we
then have

M :(⊢ γ:C → D) p:(⊢ η:C) δ · u:(u:D ⊢ δ:D)
(µγ:C → D.M) · [µη:C.p ; λu:D.δ · u]:(⊢ δ : D)

So the final proof-term is

(µγ:C → D.(µα:A ∨ B.t) · [− ; λx:A.γ · {− ; λz:C.γ · {µβ:D.q ; −}}, λy:B.r]) · [µη:C.p ; λu:D.δ · u]

and the “hidden detour” is directly accessible via the conclusion variable γ. We have
underlined the places where a substitution for γ can take place (following Definition 22). It
is noteworthy that also the first → -in is contracted with the → -el. If we reduce the term
according to Definition 22, we obtain, writing N := [µη:C.p ; λu:D.δ · u]

(µα:A ∨B.t) · [− ; λx:A.q[β := δ, z := µη:C.p], λy:B.r[γ := N ]]

5.3 Proof terms and reductions: the classical multi-conclusion case

We now define reduction for Class-mc. We again use the following shorthand notation to
improve readability:

p represents µαk : Ak.pk,
q represents λyℓ : Aℓ.qℓ.
r represents µαi : Ai.ri,
s represents λyj : Aj .sj .
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▶ Definition 28. The reduction rules for Class-mc are as follows.

(λx : Φ.t) · {r; s}r −→ t if x /∈ t

(µβ : Φ.t) · [p ; q]r′ −→ t if β /∈ t

(λx : Φ. . . . (µβ : Φ. . . . β · x . . .) · [p ; q]r′ . . .) · {r; s}r −→
(λx : Φ. . . . (µβ : Φ. . . .M . . .) · [p ; q]r′ . . .) · {r; s}r

(µβ : Φ. . . . (λx : Φ. . . . β · x . . .) · {r; s}r . . .) · [p ; q]r′ −→
(µβ : Φ. . . . (λx : Φ. . . .M . . .) · {r; s}r . . .) · [p ; q]r′

where for M we can choose

M = qℓ[yℓ := µαi : Ai.ri] if i = ℓ

= sj [yj := µαk : Ak.pk] if j = k.

Here qℓ[yℓ := µαi : Ai.ri] is defined by replacing γ · yℓ by ri[αi := γ].

Similar to the intuitionistic case (Lemma 23), we have Subject Reduction, which is (again)
based on the type soundness of the substitution that is involved.

▶ Lemma 29 (Subject Reduction). If t : (Γ ⊢ ∆) and t −→ t′, then t′ : (Γ ⊢ ∆).

Proof. By induction on the derivation of t : (Γ ⊢ ∆), which treats the cases where the
reduction takes place deeper inside t. The only interesting case is when t is itself a redex.
For that we have to verify that the substitution, of M for β · x (and the substitutions that
are part of the definition of M) are type correct. That is the case, as we always apply goal
variables to assumption variables of the right type, and we substitute expressions under a
binder, which avoids the risk of variables being no longer in scope. (And the usual variable
hygiene, with renaming of bound variables, avoids capture of free variables by a binder.) ◀

Just as for the single conclusion intuitionistic case, we give an explicit syntax for the
normal forms, and give the basic properties for reduction and normal forms, as in Definitions
25 and Lemma 26 for the intuitionistic case.

▶ Definition 30. We define NFClass-mc, the normal forms of Class-mc, as follows.

NFClass-mc ::= α · x | (µβ : Φ.t) · [p ; q]r′ | (λx : Φ.q) · {p; q}r′

where all sub-terms are again in NFClass-mc and
x occurs in q only as α · x with α free in q, and x occurs at least once.
β occurs in t only as β · z with z free in t, and β occurs at least once.

We give the main properties of normal forms and reduction.

▶ Lemma 31. NFClass-mc captures precisely the normal forms of Class-mc.
The normal forms of Class-mc satisfy the Sub-formula Property: If t : (Γ ⊢ ∆), t ∈
NFClass-mc, then for each bound variable, α : A or x : A, occurring in t, A is a sub-type
of a type in Γ or ∆.
The calculus is normalizing, in the sense that, if t : (Γ ⊢ ∆), then there is a term in
normal form q, such that q : (Γ ⊢ ∆).
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Proof. The proof of the first is immediate: terms in NFClass-mc cannot reduce and all terms
that cannot reduce are in NFClass-mc. The second follows by induction on the derivation
of t : (Γ ⊢ ∆), where we analyze t based on the cases that arise from t ∈ NFClass-mc. The
normalization property follows from the strong normalization proof for Truth Table Logic
(Theorem 46), which is a generalization of all these systems, and the fact that normal
forms in Truth Table Logic can be reflected back to normal forms in Class-mc (Lemma 41
part (3)). ◀

5.4 Proof terms and reductions: the classical single-conclusion case
The reductions for proof-terms in the classical single-conclusion case are a bit less well-
behaved than the ones for the multi-conclusion case, because in the classical single conclusion
case, there should always be at most one free conclusion variable in a proof term. This means
that if t is a proof-term in classical single conclusion logic, then

a sub-expression λy : A.q of t should have at most one free conclusion variable,
in a sub-expression µα : A.q of t, q should have only α as free conclusion variable.

If one starts from a proof-term t having these properties, and one performs the reductions
of Definition 28, one easily ends up in a proof term t′ that violates them. Then t′ is still
valid in multi-conclusion logic, but not in the single conclusion system. The way to prevent
this is to first reduce a term to a lemma-normal form, which is a term where all Lemmas
are assumptions (variables). Those can then be reduced safely in the “standard” way of
Definition 28.

This means that reduction for proof terms in single conclusion classical logic proceeds as
follows.

First perform permutation reductions to obtain a lemma-normal form.
Then perform detour reductions, where a detour is an elimination of Φ followed by an
introduction of Φ.

This is similar to the constructive case, except for now a term is in “permutation normal
form” if all lemmas are axioms.

▶ Definition 32. This is the abstract syntax NFlemma for lemma-normal forms:

α · x | (λx:A.t) · {µαk:Ak.αk · zk;λyℓ:Aℓ.qℓ} | (µβ:A.β · y) · [µαk:Ak.αk · zk ; λyℓ:Aℓ.qℓ],

where x, y, z range over variables and t and the q are again in NFlemma.

We can obtain a proof term in lemma-normal form by moving applications of an elimination
or introduction rule that have a non-trivial Lemma upwards, until all Lemmas become trivial:
the proof terms are variables. (Note that µβ:A.β · y is basically the assumption y : A.)
This only works in classical logic. If one tries this for intuitionistic proofs, which –from
the point of view of classical logic– are proofs with a trivial main premise in the classical
introduction rule, one immediately ends up with a proof that has a non-trivial main premise
in the classical introduction rule.

We can now specialize Definition 28 to the single-conclusion case by considering only
terms in lemma-normal form. We use a similar abbreviation style as before:

z represents µαk : Ak.αk · zk,
q represents λyℓ : Aℓ.qℓ.
v represents µαi : Ai.αi · vi,
s represents λyj : Aj .sj .
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▶ Definition 33. In Class, the notion of detour and the reduction rules are modified as
follows.
1. A detour is a pattern of the following shape.

(λx : Φ. . . . (µβ : Φ.β · x) · [z ; q] . . .) · {v; s}

2. The reduction rules are
(λx : Φ.t) · {r; s}r −→ t if x /∈ t

(λx : Φ. . . . (µβ : Φ.β · x) · [z ; q] . . .) · {v; s} −→ (λx : Φ. . . .M . . .) · {v; s}
where for M we can choose

M = qℓ[yℓ := vi] if i = ℓ

= sj [yj := zk] if j = k.

Again we have Subject Reduction, which basically follows from the classical multi-
conclusion case (Lemma 29). The only thing to verify is that we don’t go “out of” the single
conclusion fragment.

▶ Lemma 34 (Subject Reduction). If t : (Γ ⊢ γ : D) in Class, t ∈ NFlemma and t −→ t′,
then t′ : (Γ ⊢ γ : D) in Class and t′ ∈ NFlemma.

Proof. We don’t have to verify the type of t, as its correctness follows from Lemma 29. To
verify that t′ is a single-conclusion proof term and t′ ∈ NFlemma follows from the fact that
we never substitute a term under a µ-binder and for assumption variables, we just substitute
other assumption variables. ◀

Again, we give an explicit syntax for the normal forms, and the basic properties for
reduction and normal forms, as in Definitions 30 and Lemma 31 for the multi-conclusion
classical case.

▶ Definition 35. We define NFClass-sc, the normal forms of Class, as follows.

α · x | (λx:A.t) · {µαk:Ak.αk · zk;λyℓ:Aℓ.qℓ} | (µβ:A.β · y) · [µαk:Ak.αk · zk ; λyℓ:Aℓ.qℓ],

where t and the qℓ are again in NFClass-sc and
x occurs in t only as α · x with α free in t, and x occurs at least once.

We give the main properties of normal forms and reduction.

▶ Lemma 36.
NFClass-sc captures precisely the normal forms of Class-sc.
The normal forms of Class-sc satisfy the Sub-formula Property: If t : (Γ ⊢ γ : D),
t ∈ NFClass-sc, then for each bound variable, α : A or x : A, occurring in t, A is a sub-type
of a type in Γ or D.
The calculus is normalizing, in the sense that, if t : (Γ ⊢ D), then there is a term in
normal form q, such that q : (Γ ⊢ D).

Proof. The proof is the same as for Lemma 31. For the second second we analyze t based
on the cases that arise from t ∈ NFClass-sc. The normalization property follows from the
normalization of Class-mc and the fact that, from a normal form in Class-mc we can construct
a normal form in Class-sc by taking the lemma-normal form. ◀
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6 Truth Table Logic

We now define Truth Table Logic as a unifying logic and proof term calculus for the various
logics we have seen before. The idea of Truth Table Logic is that, for Φ = c(A1, . . . , An), we
decompose an elimination rule for Φ in two parts:
1. the part to be eliminated, µβ : Φ.t, which is the proof of Φ,
2. the elim pattern, [µαk : Ak.tk ; λyℓ : Aℓ.tℓ]r′ , consisting of the Lemmas and Casuses that

we eliminate Φ with, which are the proofs of Ak (in case Ak is a Lemma) or the proofs
from assumption Aℓ (in case Aℓ is a Casus).

These elim patterns have already been introduced in Definition 18, but in Truth Table Logic
they will get a “first class status”, as expressions that have their own type. Similarly we
decompose a classical introduction rule in two parts (and give intro patterns a first class
status):
1. the part to be introduced, λy : Φ.t, which is the proof from assumption Φ,
2. the intro pattern, {µαi : Ai.ti;λyj : Aj .tj}r, consisting of the Lemmas and Casuses that

we intro Φ with, which are the proofs of Ai (in case Ai is a Lemma) or the proofs from
assumption Aj (in case Aj is a Casus).

For conciseness, we again adopt the earlier abbreviations, where we let p and r represent
series of µ-abstractions, while q and s represent series of λ-abstractions:

a and b typically represent µαk : Ak.tk,
f and g typicallty represent λyℓ : Aℓ.tℓ.

We will be able to combine intro patterns and elim patterns directly into a proof, without
explicit “interference” of an elimination or introduction rule, so we will e.g. have the following
as a proof term:

{b; g} · [a ; f ].

To make this work, we introduce a new type o, that can informally be read as the type of
proofs. It is the only type in Truth Table Logic that is not related to a specific formula. In
Truth Table Logic, each proof term t will be of the form f · a, where the parts f and a have
one of the following syntactical forms:

a variable x or α
an abstraction λx.t or µα.t
an elim pattern [a ; f ] or an intro pattern {b; g}.

These parts will be treated as typed terms on their own and proof terms are just applications
f · a that result in type o. Which applications are allowed depends on the variant of Truth
Table Logic: we have three variants, where one can choose for intuitionistic or classical logic
and for classical logic the single-conclusion or multiple-conclusion variant.

When we consider the “application” f · a, we treat f as function and a as argument, not
the other way around. If a is of type T , then f should be of type T → o. We abbreviate the
function type T → o to ∼T . The type T can be a formula Φ, but it can also be ∼Φ, and
then we would have a : ∼Φ and f : ∼∼Φ to make f · a : o. So every type T is related to
some formula: it can be Φ itself, or ∼Φ, or ∼∼Φ or ∼∼∼Φ.

The typing of the µ-abstractions and λ-abstractions is determined by the typing of the
variables: if t : o and v is an assumption or conclusion variable of type T , then µv:T.t : ∼T
and λv:T.t : ∼T .

There are three variants of Truth Table Logic, but we first give the generic definition.
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▶ Definition 37 (Truth Table Logic). Given a set of connectives C with their truth tables
and the propositional formulas generated from C, we define the following classes of types and
pre-terms:

T ::= Φ | ∼T
t ::= f · a | a · f
f ::= α | λx : T.t | [a ; f ]r
a ::= x | µα : T.t | {a; f}r

where Φ ranges over formulas, α ranges over conclusion variables, x ranges over assumption
variables, and r ranges over the rules of the connectives.

Contexts are of the form Γ; ∆, where Γ consists of declarations of assumption variables,
typically Γ = x1 : T1, . . . , xn : Tn, and ∆ consists of declarations of conclusion variables,
typically ∆ = α1 : T1, . . . , αm : Tm.

A typing judgment is of the respective forms Γ; ∆ ⊢ t : o, Γ; ∆ ⊢ f : T , Γ; ∆ ⊢ a : T , for
some type T . We have the derivation rules below for deriving a typing judgment.

The allowed form of the type T in each of the rules depends on the variant of Truth Table
Logic, and will be specified in Definition 38. In the rules (in-pat) and (el-pat), each Ti and Tk

is the type of µ-abstractions and each Tj and Tℓ is the type of λ-abstractions in the specific
variant of Truth Table Logic.

(hyp), if x : T ∈ Γ
Γ; ∆ ⊢ x : T

(conc), if α : T ∈ ∆
Γ; ∆ ⊢ α : T

Γ, x : T ; ∆ ⊢ t : o
(λ)

Γ; ∆ ⊢ λx : T.t : ∼T

Γ; ∆, α : T ⊢ t : o
(µ)

Γ; ∆ ⊢ µα : T.t : ∼T

Γ; ∆ ⊢ f : ∼T Γ; ∆ ⊢ a : T
(app1)

Γ; ∆ ⊢ f · a : o
Γ; ∆ ⊢ a : ∼T Γ; ∆ ⊢ f : T

(app2)
Γ; ∆ ⊢ a · f : o

. . .Γ; ∆ ⊢ ai : Ti . . . . . .Γ; ∆ ⊢ fj : Tj . . .
(in-pat)

Γ; ∆ ⊢ {ai; fj}r : T

. . .Γ; ∆ ⊢ ak : Tk . . . . . .Γ; ∆ ⊢ fℓ : Tℓ . . .
(el-pat)

Γ; ∆ ⊢ [ak ; fℓ]r : T

Here, Φ = c(A1, . . . , An) and if r is a 1-row for connective c we have the rule (in-pat),
where the Ti are related to the Ai for which ri = 1 and the Tj are related to the Aj for which
rj = 0. If r is a 0-row for c we have the rule (el-pat), where the Tk are related to the Ak for
which rk = 1 and the Tℓ are related to the Aℓ for which rℓ = 0.

We now define how the various logics arise from the definition by specifying what is
allowed for T in the various derivation rules. In each variant of Truth Table Logic, conclusion
variables α for Φ and elim patterns [a ; f ]r for Φ are of type ∼Φ. This implies that µ-
abstractions for Φ, µα : ∼Φ.t, are of type ∼∼Φ and substituting an elim pattern for a
conclusion variable in a proof term is well-typed.
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▶ Definition 38. Classical multi-conclusion calculus Class-mc is specified by

∼∼Φ ∼Φ Φ
µα.t λx.t

α x

[f ; g]r {f ; g}r

Intuitionistic single-conclusion calculus Int is specified by

∼∼∼Φ ∼∼Φ ∼Φ Φ
λx.t µα.t

x α

[f ; g]r {f ; g}r

Classical single-conclusion calculus, Class-sc is specified by

∼∼Φ ∼Φ Φ
µα.t λx.t

α x

{f ; g}r [f ; g]r

In the Class-mc variant of Truth Table Logic, all proof-terms of the forms (µα.t) · [f ; g]r
and (λx.t) · {f ; g}r are permitted. Note that we have reversed some of the applications, and
some proof terms can be reduced further than in the original Class-mc.

▶ Example 39. We revisit Example 21, where we saw a classical multi-conclusion proof term
of type z : ¬¬A ⊢ α : A. We can recast that term in Class-mc in Truth Table Logic, and
then we have the following term t of type o in the context z : ¬¬A;α : ∼A.

t := (µγ : ∼¬¬A.γ · z) · [µβ : ∼¬A.(λy : ¬A.β · y) · {;λx : A.α · x}r ; ]r′

But there is a simpler term, because we can normalize t further. (See below for the reduction
rules.) Then we get z : ¬¬A;α : ∼A ⊢ t′ : o with

t′ := [µβ : ∼¬A.β · {;λx : A.α · x}r ; ]r′ · z.

The derivation in Truth Table Logicis as follows, where we omit z : ¬¬A and α : ∼A
from the context, except for the conclusion.

β : ∼¬A ⊢ β : ∼¬A

x : A. ⊢ α · x : o
⊢ λx : A.α · x : ∼A

⊢ {;λx : A.α · x}r : ¬A

β : ∼¬A ⊢ β · {;λx : A.α · x}r : o
⊢ [µβ : ∼¬A.β · {;λx : A.α · x}r ; ]r′ : ∼¬¬A ⊢ z : ¬¬A

z : ¬¬A;α : ∼A ⊢ [µβ : ∼¬A.β · {;λx : A.α · x}r ; ]r′ · z : o

In Int, we have reversed the application α ·x, but that is merely a syntactic reformulation.
The main point of Int is that we do not have (λx.t) ·{f ; g}r, to avoid the classical introduction
rule. In Int we only have γ · {f ; g}r, which is exactly the term we had for the intuitionistic
introduction rule in Definition17.

The system Class-sc is a subsystem of Class-mc, but we avoid the redex (λx.t) · {f ; g}r,
by reversing the order of application to {f ; g}r · (λx.t). See below for the reduction rules,
where we will enforce that only an abstraction on the left of an application gives a redex.
This avoids the possibility of having multiple free conclusion variables in a proof term.



H. Geuvers and T. Hurkens 2:23

▶ Definition 40 (Reduction of proof terms in Truth Table Logic). In the (intuitionistic)
variant in which patterns are applied in the order [. . .] · {. . .} and abstractions in the order
(λx.s) · (µα.t), proof terms are reduced to proof terms as follows:

(λx : T.t) · a −→ t[x := a]
(µα : T.t) · f −→ t[α := f ]

[bk ; gℓ]r · {ai; fj}r′ −→ gℓ · ai

if i = ℓ as indexes in 1, . . . , n, where Φ = c(A1, . . . , An)
and r, r′ are rules for Φ

[bk ; gℓ]r · {ai; fj}r′ −→ fj · bk

if j = k as indexes in 1, . . . , n, where Φ = c(A1, . . . , An)
and r, r′ are rules for Φ

In the classical variants, the order of the patterns in the redex and/or the order of the parts
in the reduct is reversed.

That Truth Table Logic is a unification of the logics (actually the calculi) that we have
seen in the previous section can be stated and proven precisely.

▶ Lemma 41. For each of the calculi of the previous section, Int, Class and Class-mc, the
obvious interpretation [[−]] of proof terms of the logic as proof terms of Truth Table Logic has
the following properties.
1. If t : (Γ ⊢ ∆) in Int, Class or Class-mc, then Γ; ∆ ⊢ [[t]] : o in Truth Table Logic.
2. If t −→ q in Int, then [[t]] −→+ [[q]], where −→+ is the transitive closure of −→.
3. If Γ; ∆ ⊢ q : o in the classical multi-conclusion variant of Truth Table Logic, and q is

in normal form, we can reconstruct a proof term t in Class-mc such that [[t]] = q and
t : (Γ ⊢ ∆) in Class-mc

Proof. The interpretation is the obvious one, and the proof is a direct check of all the
cases. ◀

A proof term f · a is a redex if f is an abstraction or both f and a are patterns. In most
variants, for each proof term f · a in normal form, at least one of the parts is a variable. In
such a calculus, each normal proof has the sub-formula property: except for the assumptions,
conclusions and sub-formulas, no other formulas are used.

The normal forms of type o of the intuitionistic variant of our term calculus are of the
following shape:

x · α | α · {f ; g}r | x · [f ; g]r

In the other variants, the order of the parts of some of these normal forms are reversed.
There are no variants with proof terms f · a in which f is a variable and a an abstraction.
But the single-conclusion classical variant has proof terms of the form {. . .} · (λx.t). In this
calculus, more proof term reductions are needed to get the sub-formula property.

We now prove Strong normalization of reduction for each variant of Truth Table Logic,
showing that every reduction sequence leads to a proof term in normal form. We will define,
with induction on the type T of terms t the property “t is hereditarily strong normalizing”.
Then we prove, by induction on the structure of a term t, that each substitution of hereditarily
strong normalizing terms for the free variables of t results in a (hereditarily) strongly
normalizing term.
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For the rest of this section, the variant of Truth Table Logic is fixed. So the types of the
conclusion and assumption variables, λ- and µ-abstractions, elim and intro patterns for a
formula Φ are specific choices from ∼∼∼Φ, ∼∼Φ, ∼Φ, and Φ.

To prove strong normalization we need the notion of “hereditarily strongly normalizing”.

▶ Definition 42. We say that a term t is HSN (hereditarily strongly normalizing) if
1. t is SN,
2. if t is an abstraction λx : T.e or µα : T.e, then t · a is SN for each HSN a : T ,
3. if t is a pattern {a; f}r or [a ; f ]r, then all a, f are HSN.
Note that this definition is by induction on the type of term t.

Also note that if t is HSN and t −→ t′, then t′ is HSN. This follows from the fact that
each redex and each reduct is a proof term:

if t′ is an abstraction λx.e′ or µα.e′, then t must be of the form λx.e or µα.e where
e −→ e′,
if t′ is a pattern {a′; f ′}r or [a′ ; f ′]r, then t must be a pattern {a; f}r or [a ; f ]r that is
the same as t′ except that for a single i or j, ai −→ a′

i or fj −→ f ′
j .

▶ Definition 43. We consider substitutions σ that assign terms to variables in a well-typed
way:

for each assumption variable x of type T , σ(x) : T ,
for each conclusion variable α of type T , σ(α) : T .

Substitution for variables extends in a straightforward way to all terms, so we write σ(t) for
the result of substituting σ(v) for each free occurrence of v in a term t (after having renamed
bound variables in t if needed to avoid capturing of free variables of σ(v)). Note that t and
σ(t) are terms of the same type.

A substitution σ is HSN if term σ(v) is HSN for each variable v.
A term t is strongly HSN if term σ(t) is HSN for each HSN substitution σ.

Since each variable x or α is HSN, the identity substitution is HSN and so each strongly HSN
term is HSN.

As usual, reduction rules are closed under substitution: if t −→ t′ then σ(t) −→ σ(t′).
By definition, t −→ t′ if and only if t has a subterm s (possibly s = t itself) that is a redex
with reduct s′ and t′ is the result of replacing s in t by s′. Since, as usual, each free variable
of s′ is a free variable of s, there is no danger of unintended capturing of a free variable of s′

by a surrounding abstraction inside t. Let σ′ be the substitution that is like σ, except that
σ′(v) = v for each variable v that is bound by an abstraction surrounding the subterm s of t.
Then for the corresponding reduction σ(t) −→ σ(t′), the subterm σ′(s) of σ(t) is replaced by
σ′(s).

The usually β-reduction (λx.t) · a −→ t[x := a] has the special property that for each
substitution σ, σ((λx.t) · a) −→ σ′(t), where the substitution σ′ is like σ except that
σ′(x) = σ(a).

▶ Lemma 44. If proof term e is strongly HSN, then the abstractions λx.e and µα.e are
strongly HSN.

Proof. Let e be a strongly HSN proof term and σ an HSN substitution. We do the case
for λx : T.e. We have to show that σ(λx.e) is HSN. Note that σ(λx.e) = λx.σ′(e) where
substitution σ′ is like σ, except that σ′(x) = x. For (1), we need that λx.σ′(e) is SN, which
follows from the fact that substitution σ′ is HSN and term e is strongly HSN. For (2), let
a : T be HSN. We have to show that (λx.σ′(e)) · a is SN. Since λx.σ′(e) and a are SN, an
infinite path from (λx.σ′(e)) · a must contract a redex (λx.e′) · a′ where σ′(e) −→∗ e′ and
a −→∗ a′.
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In Truth Table Logic, this reduct is e′[x := a′]. Note that σ′(e)[x := a′] −→∗ e′[x := a′].
Let σ′′ be the substitution that is like σ and σ′ except that σ′′(x) = a′. Substitution σ′′ is
HSN since term a′ : T is HSN. So proof term σ′′(e) is SN. Now σ′′(e) = σ′(e)[x := a′] −→∗

e′[x := a′], so the reduct e′[x := a′] is SN and cannot create an infinite path either. ◀

Note that the situation is different if we add reduction rules like those for Class-mc in
which redex (λx.e′) · a′ can have reducts of the form (λx.e′′) · a′ where e′ ̸−→∗ e′′ but
e′[x := a′] −→+ e′′[x := a′]. Then σ′′(e) −→+ e′′[x := a′], so e′′[x := a′] is SN. This implies
that e′′ is SN, so an infinite path from (λx.e′′) · a must contract a redex again. This cannot
happen infinitely often: an infinite path (λx.e′) · a −→ (λx.e′′) · a −→ (λx.e′′′) · a −→ . . .

would result in an infinite path e′[x := a′] −→+ e′′[x := a′] −→+ e′′′[x := a′] −→ . . ..

▶ Lemma 45. Each term t is strongly HSN.

Proof. We prove this by induction on t.
If t is a variable α or x, then for each HSN substitution σ, σ(t) is HSN by definition.
If t is an abstraction λx.e or µα.e, then the proof term e is strongly HSN by induction,
so t is strongly HSN by Lemma 44.
If t is a pattern {a; f}r or [a ; f ]r, then all terms a, f are strongly HSN by induction. Let
σ be an HSN substitution. We have to show that σ(t) is an HSN term. For (1), we need
that σ(t) is SN, which follows from the fact that all terms σ(ai) and σ(fj) are SN. For
(3), we need that all all terms σ(ai) and σ(fj) are HSN, which holds by induction.
If t is a proof term f · a, then the terms f and a are strongly HSN by induction. Let σ be
an HSN substitution. We have to show that σ(t) is an HSN term. Since σ(t) = σ(f) ·σ(a),
we only need to show (1): proof term σ(f) · σ(a) is SN. Both σ(f) and σ(a) are HSN and
thus SN. An infinite path from σ(f) ·σ(a) must contract a redex f ′ ·a′ where σ(f) −→∗ f ′

and σ(a) −→∗ a′. Now both f ′ and a′ are HSN terms. Since f ′ · a′ is a redex in Truth
Table Logic, either f ′ is an abstraction or both f ′ and a′ are patterns. If f ′ is an HSN
abstraction, then by (1), since a′ is HSN, f ′ · a′ is SN. If both f ′ and a′ are HSN patterns
for some formula Φ = c(A1, . . . , An) and the reduct is f ′′ · a′′, then f ′′ and a′′ are HSN
terms for some subformulas Ai, so f ′′ and a′′ are SN. So an infinite path from f ′′ · a′′

must contract a redex f ′′′ · a′′′ again, where f ′′ −→∗ f ′′′ and a′′ −→∗ a′′′. Since f ′′′ has
the same type as f ′′ (and a′′′ has the same type as a′′), related to formula Ai, this cannot
happen infinitely often. ◀

▶ Theorem 46. All proof terms in Truth Table Logic are SN.

Proof. By Lemma 45, each (proof) term is strongly HSN, so HSN, so SN. ◀

7 Conclusion

We have shown a couple of basic results for general classical logic derived from truth tables.
Most surprisingly maybe is that one classical connective makes the whole logic classical: it
is not possible to combine e.g. a classical implication with a constructive negation, as the
negation becomes classical due to the fact that implication is classical. Truth Table Natural
Deduction, TT-ND, provides the good setting for studying these properties as it gives generic
deduction rules for connectives “in isolation”, i.e. without explaining one connective in terms
of the other.

Then we have studied the proof theory of classical TT-ND, and we have introduced
proof terms for classical deductions that use both assumption variables (hypotheses) and
conclusion variables. This has enabled us to study proof normalization, with the aim that
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proofs in normal form satisfy the sub-formula property. The use of conclusion variables turns
out to be useful in general, also for the intuitionistic case, where it enables a reduction rule
that unifies detour steps and permutation steps. Conclusion variables also naturally enable
multi-conclusion natural deduction. Classical multi-conclusion TT-ND is the most general of
these systems, where other systems can be embedded into. For this system we prove strong
normalization. Classical multi-conclusion TT-ND also emphasizes that there are basically
four term-formers: λ-abstraction, µ-abstraction, intro patterns and elim patterns, where the
latter two are derived from the truth table. Based on this we define Truth Table Logic as a
unifying system.

8 Future and Related Research

For future work, we see the further study of Truth Table Logic as unifying framework for
TT-ND. Truth Table Logic also emphasizes the interpretation of proofs of a negated formula
as a continuation, where ∼Φ denotes the type of continuations over Φ. This relates to the
general question of the computational interpretation of classical proofs, which has been
studied in various research works, like [13, 2, 4], and it is to be studied how our generic
computation rules relate to the concrete ones studied in these papers for implication.

Also, the system TT-ND derives rules from a truth table, but that doesn’t cover all
possible connectives. E.g. if one defines a constructive connective in terms of other, the truth
table one obtains generates constructive rules that are sometimes stronger and sometimes
weaker than the constructive formula. For example, if we consider the truth table for
c(A,B) := ¬A → B, the constructive rules we derive for c are exactly the ones for A ∨ B,
which is stronger than ¬A → B. On the other hand, if we consider the truth table for
d(A,B) := ¬A ∨B, the constructive rules we derive for c are exactly the ones for A → B,
which is weaker than ¬A ∨B.

Olkhovikov and Schroeder-Heister [12] also show examples of this, e.g. for A ∨ (B → C)
one can write down the truth table and derive constructive rules, but they are weaker than
the constructive formula A ∨ (B → C) (because one basically obtains B → (A ∨ C)). The
TT-ND derived rules give so called “flat elimination” rules [15], and it is likely that it defines
exactly the connectives with flat elimination rules. We conjecture that if c(A1, . . . , An) is a
formula defined in terms of the standard connectives, and we derive constructive rules form
the truth table for c, then we get a formula equivalent to c(A1, . . . , An) if in every subformula
(of c(A1, . . . , An)) of the shape P ∨Q, Q ∨ P , P → Q or ¬P , P does not contain negation
or implication. Or put differently: in P we only have monotone connectives.

This is related to the general study of elimination rules [11, 19], the notion of higher
level rules [16] and “harmony” in logic [15, 5]. It would be interesting to see which class of
connectives can be defined using TT-ND, and whether the generic approach can be extended
to more connectives, e.g. with higher level elimination rules.

Also, based on generalizing λµ of Parigot [13], and with a semantic view on dualizing
implication Crolard [3] has defined the − connective, which has a constructive interpretation
that is different from what we would get from a truth table. The interpretation in Kripke
models “looks downward”, which our interpretation doesn’t do. It would be interesting
whether the ideas of Crolard can be generalized to other connectives. The relation between
Crolard’s work and the work on generalized elimination rules and harmony in logic is also
unclear.

Finally, there is the obvious question of how these results extend to predicate logic. We
are working on extending the TT-ND ideas to predicate logic and define general rules, both
classical and constructive for quantifiers, “in isolation”, that is without explaining them in
terms of other quantifiers.
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