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—— Abstract

Linear temporal logic (LTL) is commonly used in model checking tasks; moreover, it is well-suited
for the formalization of technical requirements. However, the correct specification and interpretation
of temporal logic formulas require a strong mathematical background and can hardly be done by
domain experts, who, instead, tend to rely on a natural language description of the intended system
behaviour. In such situations, a system that is able to automatically translate English sentences into
LTL formulas, and vice versa, would be of great help. While the task of rendering an LTL formula
into a more readable English sentence may be carried out in a relatively easy way by properly parsing
the formula, the converse is still an open problem, due to the inherent difficulty of interpreting
free, natural language texts. Although several partial solutions have been proposed in the past,
the literature still lacks a critical assessment of the work done. We address such a shortcoming,
presenting the current state of the art for what concerns the English-to-LTL translation problem,
and outlining some possible research directions.
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1 Introduction

Linear temporal logic (LTL) is a formalism which is widely used in model checking (see, for
instance, [40, 45]); moreover, LTL formulas make it possible to unambiguously describe the
relationships among occurrences of events over time, a capability which turns out to be quite
important in many automated reasoning fields. For these reasons, LTL can be considered
as a preferred means to formalize and then reason upon natural language texts, which is
most useful in tasks such as requirement specification and, more generally, the analysis of
temporally-declined semantic content in texts [90].

Despite of their usefulness, the correct specification and interpretation of temporal logic
formulas typically requires a strong mathematical background, and this severely limits
their applicability by untrained domain experts. In such contexts, a system capable of
automatically translating between English and temporal logic would be of great help.
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Concerning the LTL-to-English translation, it may be achieved in a relatively easy way,
by simply parsing the logical formula by means of an attribute grammar and applying some
heuristics to make the English translation sound as natural as possible [81]. As for the
opposite direction, several issues have to be dealt with, such as the inherent ambiguity of
natural language, the possible lack of an explicit context in the sentences, or reference to
background knowledge which may not be included in the utterance. For all these reasons,
the task of translating a free, unconstrained English text into a free, unbounded LTL formula
is still an open problem, although several partial solutions have been proposed over the years
(see Section 3).

In this paper, we give an overall assessment of the state of the art for what concerns
English-to-LTL translation. In addition, we make a critical evaluation of some of the currently
available tools which may be adapted and combined for such a task, and we outline some
possible future research directions.

The paper is organized as follows. In Section 2, we introduce the problem of English-to-
LTL translation. Then, in Section 3, we provide a short state of the art. Next, in Section
4, we outline possible future research directions. Finally, in Section 5, the outcomes of an
experimental evaluation of some of the most significant tools proposed in the literature
that may be used to develop and English-to-LTL translation architecture are reported.
Conclusions summarize the main contributions of the work done.

2  Problem definition

The problem of extracting temporal logic formulas from a natural language utterance may
be considered as an instance of the Semantic Parsing task, that is, the process of mapping a
natural-language sentence into a formal, typically machine-understandable representation of
its meaning [95].

It must be observed that such a problem differs from the one of inferring logical formulas
from examples. In the latter, a dataset of logs, or traces, resulting from the execution of a
given system is considered, with the goal of determining which formulas characterize and
distinguish between examples that describe a good behaviour of the system from those that
do not (see, for instance, [70]).

In the present work, we focus on Linear-Time Temporal Logic (LTL for short) [79].
An LTL formula is built from a finite set of proposition letters by making use of Boolean
connectives and the temporal modalities X (next) and U (until). Formally, LTL formulas
can be defined as follows:

if p € AP, then p is an LTL formula;
if ¢ and ¢ are LTL formulas, then =, ¢ V ¥, X1, and ¢Uv are LTL formulas.

On the basis of these temporal operators, additional modalities can be defined, most commonly
the Boolean connectives A (and), — (imply), true, and false, and the temporal modalities
G (globally) and F (eventually).

As for the semantics, let w = ag,a1,a9,... (a; € 2“47)) be an infinite sequence of truth
evaluations for proposition letters in AP, and let w(7) denote the truth evaluation at position
i. The satisfaction relation = between w and an LTL formula can be defined as follows:

w = pif p e w(0);

w =~y if w E P

wEeVYifwlE¢or w1y,

w e X¢ if w(l) F o
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The semantics of the derived modalities is then defined as follows:

true = pV —p;
false = —true;

PAY = (= V p);

¢ ==V
Fiy = trueUy;
Gd) = —|F—\’l/).

As an example, consider the following statement:

“After the button is pressed, the light will turn red until the elevator arrives at the
floor and the doors open.”

Such a situation can be captured by the following LTL formula:
p—=>X(qgU(sAv))

where p, q, s, and v are proposition letters corresponding to the button being pressed, the
light turning red, the elevator arriving, and the doors opening, respectively.

3 A short state of the art

Over the years, several authors have devised methodologies to translate English sentences into
LTL formulas. However, they typically do not deal with the most general case of translating
natural, unbounded, English sentences into general, unbounded LTL formulas: assumptions
are made that either reduce the generality of the input text or the output formula.

In [29], the authors present a pattern-based approach to the encoding of property
specifications for finite-state system verification. Among other contributions, they provide a
set of 55 LTL-based formulas that should capture typical patterns that come into play in the
design of concurrent and reactive systems, such as the existence of a specific condition or the
conditional response to a stimulus. A detailed description of such patterns, together with a
repository of examples, are available on the SAnToS laboratory website [5]. Such a set of
patterns has been later extended to deal with more advanced scenarios, such as, for instance,
timed property specifications [42] and real-time systems [49].

In [72], the authors start from the LTL repository available in [5], identifying the
8 patterns that, according to their analysis, are the most frequently used in temporal
requirement specification, covering over 80% of the cases they encountered, that all lie in the
aerospace domain. Then, they develop a set of shallow classifiers (such as Random Forests
[22] and Support Vector Machines [25]) that are capable of detecting the presence of such
patterns in textual technical specifications. As for the predictor attributes, they make use
of a bag-of-words approach, enriched with information derived from Part of Speech (PoS)
tagging. It should be observed that no solution is given to the problem of instantiating a
detected pattern on the specific textual data. Thus, such an approach is not able of deriving
a complete translation from English to the restricted set of LTL formulas they consider.

In [100], an algorithm is presented to translate a property, which is specified by making use
of predefined subset of English (referred to as controlled English), to LTL. The approach relies
on syntactical properties only, being based on text processing techniques like grammatical
dependency parsing.

In [59], LTL is used as a formalization technique within an integrated system for generating,
managing, and executing controllers for autonomous robots. The idea is that a user should be
capable of instructing a robot by means of natural language, so no assumption is made on the
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form of English text that is given as input to the system. A textual instruction is processed
making use of tools for speech tagging, dependency parsing, and null element restoration
(see, for instance, [36]). Then, all verbs are identified, together with their arguments. Finally,
each verb is mapped into a set of senses in VerbNet [84]. Although in principle no restriction
is made on the kind of input phrases that a user may submit to the system, in practice the
translation is based on a mapping between senses and LTL formulas, that is in turn based
on different, manually specified, combinations of so-called macros.

In [96], a framework for requirement consistency management is presented. In order to
formalize requirements, the system automatically translates natural language descriptions
of functionalities into a logic representation. However, a restricted English grammar is
considered, to avoid problems such as semantic ambiguity and to make the overall translation
process easier.

In [41], the ARSENAL framework for translating natural language requirements into
analyzable formal representations is discussed. Given an input sentence, the first step exploits
both domain-specific and domain-independent knowledge to identify entity n-grams, such as,
for instance, “Lower Desired Temperature”, which are then converted into single terms like,
e.g., Lower_Desired_Temperature. In addition, common expressions, such as “is greater
than or equal to”, are converted into simple terms, like dominates, in an attempt to regularize
the input text and reduce its complexity. Next, a dependency parsing step is performed to
extract grammatical relationships between phrase elements. These pieces of information,
together with PoS tags, are then fed to a so-called semantic processor, that guides the
translation from English to an internal, intermediate representation. It should be observed
that such a module relies on a set of hand-made rules, that inevitably are domain-specific
and can only work for restricted scenarios. Finally, the intermediate representation can be
converted into several formalisms, including LTL.

Last but not least, a controlled natural language is defined in [83], which can be used
to specify restrictions on how a system model interacts with its environment. Sentences
formulated in such a constrained language are then automatically translated to LTL by
means of hard-coded rules.

Broadening the attention scope to other kinds of (temporal) logical formalisms, the
following contributions are worth mentioning.

In [32], the authors present a tool for the automatic translation of natural language
sentences into formulas of the action-based temporal logic ACTL, in the context of the
formalization of reactive systems requirements. A corpus of sentences is analyzed and,
starting from it, a context-free grammar is manually built that allows one to parse the
considered instances. Such a grammar is augmented with attributes, that allow one to
generate the target ACTL formula during the parsing process.

In [71], a translation method is discussed that converts constrained English utterances
into a representation level based on Kamp’s Discourse Representation Theory [46]. Such an
intermediate representation is then translated into an ACTL temporal logic formula.

In [30], the authors present a methodology to translate natural language instructions into
a formal logical description of goals, that can then be issued to and followed by robots. The
target formalisms are CTL* and first-order dynamic logic (FDL). The translation process is
carried out by means of a hand-made combinatory categorial grammar [87].

In [43], hand-made attribute grammars are employed to generate Computation Tree
Logic (CTL) formulas from Hardware Description Language (HDL) code comments written
in English.
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Finally, in [89], a two-phase approach to parsing natural language into formal logic is
presented. The first phase aims at extracting the generic structure of the logical expression
associated with a given natural language utterance. The general idea is that of building
a dependency parse of the input utterance, and then attaching to its nodes A-expressions
chosen from a pre-specified finite set, by means of a specifically trained model. The node
assignment to A\-expressions is then evaluated to a generic logical form structure. The second
phase instantiates the discovered pattern on the specific utterance data. Some considerations
are made about the possibility of adopting LTL as a target formalism in future work.

Overall, the typical approach followed by these studies can be summarized as follows:
given an input English utterance, preprocess it to extract syntactical information, which may
include part of speech tagging, dependency parsing, semantic role labelling, and so on. Then,
enrich the input with these pieces of information. Finally, run an attribute grammar-based

parser, or rely on some hand-made rules, to derive a translation into a target logical format.
A notable exception is the work of [89], where a fully-supervised learning setting is considered.

4  Possible future research directions

In the following, on the basis of the analysis of related work done in the previous section, we
outline some possible approaches to the problem of translating open English utterances into
general LTL formulas. For each of them, we identify existing tools and solutions from the
literature that can possibly be exploited.

4.1 LTL synthesis via classical semantic parsing

Classical approaches to semantic parsing involve the definition of a suitable grammar, which

it is possible to rely on to parse a given phrase, and to contextually generate a desired output.

Typically, attribute grammars or combinatory categorial grammars have been considered in
the literature for this task (see Section 3), although specifically developed grammars have
also been proposed [69].

As already pointed out, the problem of generating LTL formulas from English texts can
be viewed as an instance of semantic parsing. Some frameworks that allow one to develop
semantic parsers are available in the literature, most notably KRISP [47], SEMPRE [19],
Cornell Semantic Parsing Framework [18], SippyCup [11], and WASP [15].

However, the main difficulty remains that of defining a suitable grammar, a task that for
real-world applications cannot be performed by hand, especially when, instead of restricting
to a specific domain, we refer to a general translation scenario. In an attempt to facilitate
this task, several approaches to grammar induction have been proposed over the years. Some
of them are specifically oriented to natural language processing, like, for instance, those
presented in [28, 44, 86, 101]; others are more general, e.g., [53, 77]. Nevertheless, they all
require a quite large amount of training data, a problem that is shared also by the (more
promising) strategy presented in Section 4.2.

4.2 LTL synthesis as a translation problem

Machine translation can be viewed as the use of software to translate text or speech from one
language to another. Several approaches to translation have been proposed over the years.

The first proposed one was the so-called rule-based paradigm, in which explicit rules
are given that guide the translation. The translation can be done in two different ways:
either directly mapping the source language into the target one, or relying on some sort
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of interlingual representation. Of course, the richness and complexity of natural language
imply that such handcrafted approaches are only suitable for very constrained domains.
Nevertheless, some platforms for rule-based translation are available, such as, for instance,
Apertium [35].

Subsequently, statistical machine methods have gained in popularity. In such a case,
translations are not generated by ad-hoc developed rules anymore, but are, instead, generated
on the basis of statistical models, whose parameters are trained on bilingual text corpora.

At the moment, the most popular approach is the one based on neural machine translation,
where a large artificial neural network is used to predict, given an utterance in the source
language, the likelihood of a sequence of words in the target language. Several frameworks
have been proposed in the literature to develop general-purpose neural networks, such as,
for instance, PyTorch [9], Tensorflow [13], and Keras [6]. Recently, OpenNMT [48] has been
presented as an open source toolkit specifically oriented to neural machine translation. The
system prioritizes efficiency, modularity, and extensibility, and it allows one to develop state-
of-the-art solutions, based on Convolutional Neural Networks, LSTM, attention mechanisms,
and word- as well as character-based embeddings, through a simple general-purpose interface,
that in principle requires only source and target files to be provided. Besides language
translation, the framework also supports other sequence generation tasks, such as, for
example, summarization, image-to-text and speech recognition?.

It is worth pointing out that most of the translation models from the literature are
based on a sequence-to-sequence architecture [91]. Nevertheless, since a logic formula can be
represented by a tree-like structure, it might be better to opt for a sequence-to-tree approach
[64], or for other constrained decoding techniques (see, for instance, [10]).

Since the English-to-LTL mapping can be viewed as a language translation problem,
it makes sense to think of training a neural network model to perform such a task. The
best candidate framework for doing that seems to be, to date, the previously-discussed
OpenNMT. Unfortunately, a major problem has to be solved in order to actually pursue
this approach, that is, the lack of a large training dataset in which English utterances are
paired with the corresponding LTL formulas. The University of Kansas provides an online
repository of temporal logic formulas that represent the content of technical specifications
[5]. However, just about a hundred of English-to-LTL pairings are available. LTLStore? is
an online repository of around one thousand LTL formulas, collected from previous studies.
Although they lack an English counterpart, they may still be useful as monolingual data [85].

Various approaches can be followed to address the problem of the scarcity of training
data. We would like to outline three of them.

The first, most trivial one consists of randomly generating a large set of LTL formulas by
means of a suitable grammar. Then, rules may be derived to translate each formula into
an English utterance. Also, some post-processing techniques can be applied to make the
resulting text more realistic, such as replacing proposition letters by a set of words that
represent them (e.g., button_pressed might be mapped to “the button is pressed”). Of
course, the generated sentences would still make use of a very constrained kind of English.
Nevertheless, such an artificial training dataset may be used as a starting point to determine
which are the most promising translation techniques.

The second approach consists of finding a kind of “bridging dataset”, i.e., a tranining
dataset that maps each English utterance in a formal representation that, in turn, can be
more or less easily converted into LTL by means of hardcoded rules. As an example, it may

2 Additional details can be found on OpenNMT website: http://opennmt.net/.
3 LTLStore project website: https://gitlab.1lrz.de/i7/1tlstore.
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be worth investigating the data used in semantic parsing competitions, such as, for instance,
SemEval?, that over the years included some tracks concerned with the evaluation of temporal
content in natural language phrases (this is the case with TempEval). Other possibly useful
resources are the TimeML [80] annotated corpora TimeBank [82] and AQUAINT [2], and
the ACE (Automatic Content Extraction) [1] and WikiWars [66] corpora, that all provide
texts manually labeled with events, temporal expressions, and relationships.

A third recent research line has managed to train both neural machine and statistical
machine translation systems using monolingual corpora only [16, 17, 51, 52]. Although
accuracy results are still far from those guaranteed by state of the art, bilingual data-based
models, such approaches are worth some further investigation.

4.3 LTL synthesis through evolutionary computation

Both LTL synthesis via semantic parsing and LTL synthesis via machine translation follow
consolidated paths in the field. Now, we work out an alternative path that makes use of
evolutionary computation.

Evolutionary Algorithms (EAs) are adaptive meta-heuristic search algorithms, inspired
by the process of natural selection, biology, and genetics. Unlike blind random search, they
are capable of exploiting historical information to direct the search into the most promising
regions of the search space and, in order to achieve that, their basic characteristics are
designed to mimic the processes that, in natural systems, lead to adaptive evolution [31].

In nature, a population of individuals tends to evolve, in order to adapt to the environment;
in EAs, each individual represents a possible solution for the optimization problem, and its
degree of “adaptation” to the problem is evaluated by means of a fitness function, which
can be single- or multi-objective. In the first case, at the end of the optimization process,
the single, best solution is returned. In the second case, the algorithm searches for multiple
optimal solutions in parallel, that are returned in the form of a so-called Pareto-front.
Multi-objective approaches are particularly suitable for multi-objective optimization. In
both cases, the elements of the population tend to iteratively evolve toward better solutions,
going through a series of generations in which the crossover (hybridization of two solutions
to generate a solution offspring) and mutation (random changes performed to a solution)
operators are applied to selected individuals. At each generation, the individuals that are
considered best by the fitness function are given a higher probability of being transmitted to
the following one.

The English-to-LTL mapping problem may be thought of as an optimization one (that in
turn can be solved via evolutionary computation): given an input utterance, the task is that
of finding the temporal formula that best matches the content of the text.

In the following, the main issues concerning the exploitation of an evolutionary algorithm
for the English-to-LTL mapping problem are discussed. They can be summarized as follows:
(¢) how the single solutions are represented; (i¢) how the population is initialized; (#i7) which

evolutionary operators (crossover, mutation) are employed; (iv) which fitness function is used.

4.3.1 Solution representation and population

Each instance in the population represents an LTL formula, which may be conveniently
coded by means of a tree-based data structure. As for the initialization of the population,
one may proceed as follows. In the first step, all proposition letters are extracted from the

4 SemEval 2019 website: http://alt.qcri.org/semeval2019/.
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given utterance. This can be done by means of a suitable predicate extraction process, that
can rely on available tools, such as, for instance, PredPatt [7, 97], or on custom-tailored
solutions based on Semantic Role Labeling or Open Information Extraction, making use of
natural language processing frameworks such as Stanford CoreNLP [65], the SpaCy-based [12]
AllenNLP [39], and TextPro [78]. Once all proposition letters have been extracted, candidate
LTL formulas may be randomly generated, ensuring both to use all of the propositional
letters (since the goal is that of fully encoding what is happening in the utterance), and to
respect LTL syntactical correctness constraints.

4.3.2 Evolutionary operators

The representation of LTL formulas by means of tree-like structures makes it quite straight-
forward to implement the crossover and mutation operators. Both of them can, indeed,
modify or generate a solution by acting on subtrees, e.g., by adding, removing, raising, or
swapping them, always making sure that each proposition letter is appearing at least one
time in the resulting formula.

4.3.3 Fitness function

In order to establish how good a given formula is, it is necessary to determine how well
it captures the pieces of information contained in the utterance. This is the most difficult
step, since a properly designed fitness function should be capable of capturing a semantic
parallelism between the logical formula and the natural language text, with an accuracy well
beyond the one that can be provided, for instance, by commonly used techniques such as
Latent Dirichlet Allocation (LDA) [21].

A possible solution can be that of extracting a suitable model from the text, capable of
capturing all pieces of information that are relevant for the evaluation of the LTL formula. In
order to do that, an initial step, as already discussed in the case of population initialization,
can be the extraction of all proposition letters from the utterance. Then, these letters can
be arranged in a Kripke structure [50], that is, a model that keeps track of how and when
they hold. To generate such a model, the best approach seems to be the one pursued in [94],
where a deep learning solution is developed that is capable of assigning time intervals to the
verbs in a given text® (a similar work is discussed in [58]). Once such time intervals have
been determined, the structure can be derived in a fairly straightforward way and, based
on it, the (still non trivial) question now becomes “how much and how well the given LTL
formula is describing what is happening in the Kripke model?”. Finally, a second objective
must be considered, that is, generating easy to read, and thus understandable, formulas.
Such a condition can be enforced by using fairly natural metrics such as the nesting degree
of the formula, the number of Boolean and/or temporal operators employed, and so on.

4.4 LTL synthesis through event identification and ordering

Finally, the English-to-LTL translation problem can be addressed with an approach which
turns out to be somehow more hardwired than the ones discussed before, but, nevertheless,
makes use of some advanced machine learning methodologies.

The idea is that of first determining the syntactic structure of the utterance and the
events it refers to, then identifying the main agent and action of each of them, and finally
establishing an ordering over them. Based on such pieces of information, it should be easier

5 A working implementation can be found at: https://hub.docker.com/r/sidvash/temporal.
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to derive a set of rules for the generation of the corresponding LTL formula, at least up to
a fixed, maximum degree of nesting. Of course, the translated utterances could be fed in
as training data to any other solution developed according to the approaches described in
Section 4.1 and Section 4.2. In the following, we give a more detailed account of these phases.

As for the syntactic analysis, several frameworks can be found in the literature, most
notably SpaCy [12], AllenNLP [39], which is based on SpaCy, Stanford CoreNLP [65], NLTK
[63], and TextPro [78]. All of them allow one to perform the following syntactic analysis
tasks, that are necessary to carry out the translation:

part of speech tagging, by which components such nouns, verbs, and adjectives are

identified;

construction of the dependency tree, that establishes the relationships between “head”

words and words which modify such heads;

coreference resolution, that is, the identification of all the expressions that refer to the

same entity in the text;

recognition of noun/prepositional/verb phrases, that may help in the later identification

of proposition letters (for instance, “the big blue ocean” should be considered as a single

entity).

Then, proposition letters are to be extracted, relying on tools like, e.g., PredPatt [7, 97],

or on custom solutions, based on the previously-introduced frameworks, making use of either:
semantic role labeling, that is, the process that assigns labels to words or phrases in a
sentence that indicate their semantic role, such as, for instance, agent or action, or
open information extraction, that generates a structured, machine-readable representation
of the relevant data in the text, typically in the form of n-ary propositions.

The next step is that of correlating proposition letters by making use of Boolean connect-
ives and temporal modalities. To this end, other than relying on the dependency tree and on
specific keyword extraction, it is possible to consider:

temporal expression recognition and normalization, that is, the task of identifying sequences

of tokens in a given text that denote a point in time, a duration, or a frequency, and of

interpreting them. A lot of work has been done in this respect (see, e.g., [27, 54, 61, 98]),

including a number tools that can be used for the task: PTime [8], SUTIME [23],

UWTIME [56], ClearTK’s TimeML module [4], HeidelTime [88], cogCompTime [76],

SynTime [99], and TextPro’s TimePro module [78]. In addition, AllenNLP and Stanford

coreNLP contain some modules that can be used as well. The typical performance is

higher than 80% precision and recall on benchmark data such as the Platinum dataset

from the TempEval3 workshop [93].

temporal relation identification, i.e., the task of determining a partial or total ordering

of events (e.g., identified by verbs) happening in an utterance. While this can still be

considered an open problem [26], a lot of work has already been done in the literature

[20, 37, 60, 67, 73, 74, 75], also driven by important domain requirements, such as those

in the medical field [34, 55, 92]. Some tools are available that either (7) encode temporal

relationships by means of graphs, as it happens with CATENA [68], ClearTK’s TimeML
module [4], TextPro’s TempRelPro module [78], cogCompTime [76], CAEVO [3], and

TIPsem [14, 62], or, perhaps more naturally, (#¢) assign a time interval to each event, like

in [94] (we already refer to it in Section 4.3) and [58].

Other resources that can be successfully exploited are WordNet [33], a well-known
lexical database for the English language that groups words into sets of synonyms and
records a number of relations among them, VerbNet [84], which is the largest on-line verb
lexicon currently available for English, PPDB [38], a database containing hundreds of million
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paraphrase pairs, which capture many meaning-preserving syntactic transformations, and
VerbOcean, a repository that encompasses the semantic relationships that in English language
typically hold between verbs, including a happens-before relation [24].

5 An experimental evaluation of existing tools

This section is devoted to a critical experimental evaluation of some of the tools that have
been previously discussed. For such a purpose, two datasets have been considered.

The first one is the US Government’s Accident Injuries collection®, that contains inform-
ation on all accidents, injuries, and illnesses reported by mine operators and contractors
beginning with 1/1/2000. Each instance corresponds to an accident and is characterized,
among all other pieces of information, by a free-text narrative describing the event.

The second dataset has been provided by Main Roads Western Australia”, and it includes
information on fatal, serious, and medical car crashes recorded between 2013 and 2017 in
Western Australia. As it happens with the previous collection, each instance is characterized
by a narrative describing how the incident occurred.

The two datasets are representative of two different kinds of narratives: in the mining case,
the textual description is typically short, and involves a single participant. On the contrary,
the car crash narratives are longer and more articulated, may involve several participants,
and tend to thoroughly describe the event.

For reference, the following representative utterance from the mining accidents dataset is
taken into account:

Employee was cleaning up at the Primary Crusher with the Dingo skid steer. The
employee slipped and fell while operating the skid steer and the machine pinned him
against the cement retaining wall.

As for the car crashes dataset, the following representative instance is considered:

B drove east on Gibbins Road, Coolup. It appears B has stopped at the intersection of
Maryfield Road and allowed a vehicle to pass before proceeding into the intersection.
B2 was driving north on Maryfield Road, has observed B’s vehicle at the intersection
noticing that B appeared to be looking straight ahead. As B has proceeded into the
intersection, B2 has applied the brakes on his vehicle, however he was unable to avoid
B’s vehicle and has ‘t-boned’ it, colliding with the drivers side of B’s vehicle. B has
died at the scene from injuries sustained. A preliminary test conducted on B2 returned
a negative reading.

The remainder of this section considers two main tasks that, according to Section 4.4,
have to be carried out in order to synthesize an LTL formula that correctly formalizes an
utterance, that is, the extraction of the proposition letter candidates, and the identification
of the temporal relationships among them.

Concerning the extraction of proposition letter, we may identify two distinct steps:
first, coreference resolution, by which all references to the same entity are identified and
normalized®; second, the extraction of predicates, i.e., tuples composed of an agent, the action
that is being carried out, and possible other arguments.

5 https://catalog.data.gov/dataset/accident-injuries

" https://www.mainroads.wa.gov.au/Pages/default.aspx

8 Observe that coreference resolution implies entity identification which, nevertheless, is a much easier
task, that in general can be reliably solved by investigating the dependency tree and the PoS tags of
the given utterance.
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Table 1 Predicates extracted by PredPatt on the mining accidents dataset instance. Results
have been reworked for the ease of reading.

Agent Action
Employee was cleaning up
Employee slipped
Employee fell

the Dingo skid  steer
the Dingo skid pinned Employee

As for coreference resolution, AllenNLP [39] relies on the state-of-the-art algorithm
presented in [57]. Tested on the mining accidents dataset instance, it identifies two entities
with coreferences, highlighted in red and blue colours:

Employee was cleaning up at the Primary Crusher with the Dingo skid steer. The
employee slipped and fell while operating the skid steer and the machine pinned
him against the cement retaining wall.

Although the result is fairly accurate, the algorithm fails to detect the the machine
reference to the blue entity. Turning to a more challenging example, this is the result of its
execution on the second text?:

B drove east on Gibbins Road, Coolup. It appears B has stopped at the intersection
of Maryfield Road and allowed a vehicle to pass before proceeding into the intersection.
B2 was driving north on Maryfield Road, has observed B’s vehicle at the intersection
noticing that B appeared to be looking straight ahead. As B has proceeded into the
intersection, B2 has applied the brakes on his vehicle, however he was unable to
avoid B’s wvehicle and has ‘t-boned’ it, colliding with the drivers side of B’s vehicle.
B has died at the scene from injuries sustained. A preliminary test conducted on B2
returned a negative reading.

Focusing on just two entities, it is immediately clear that the algorithm has erroneously
associated Coolup with B2. Even worse, judging from the result it seems that B2 has been
applying the brakes on B’s vehicle, and that B was unable to avoid himself. These two errors
are enough to totally misinterpret the semantic content of the utterance.

Once the entities have been found and normalized, it is possible to look for the candidate
proposition letter. In this respect, we investigated the use of PredPatt [7, 97], since it is still
a major component in many recent, state-of-the-art NLP tools (see, for instance, [94]). To
do that, we relied on two versions of the chosen instances in which coreference resolution has
been already correctly solved by hand.

The predicates extracted by PredPatt on the mining data utterance are reported in
Table 1. As it can be seen, the algorithm outputs 5 candidates. Again, with the exception of
the fourth candidate, the result is quite natural and intuitive, except perhaps for the fact
that the fourth and fifth candidates refer to the the Dingo skid entity instead of the Dingo
skid steer, considering steer as a verb.

9 Note that the coreference resolution process extracted more than two entities. However, for the sake of
clarity, we concentrate here on the two main ones, that are, B and B2.
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Table 2 Predicates extracted by PredPatt on the car crashes dataset instance. Results have been
reworked for the ease of reading.

Agent Action

B drove east

It appears

A vehicle allowed to pass

[UNK] was driving north

B appeared to be looking straight ahead
B has proceeded into the intersection
B2 has applied the brakes on B2’s vehicle
[UNK] avoid B’s vehicle

[UNK] ‘t-boned’ it

[UNK] has died at the scene from injuries

A preliminary test returned negative reading

Table 2 reports the predicates extracted by PredPatt algorithm on the car crash dataset
instance. Here, there are some spurious candidates as, for example, the one with It as the
main agent. Moreover, for several results, the agent is not clear (UNK), or simply wrong (A
vehicle allowed to pass). Finally, some predicates are entirely missed, like in the case of B
has stopped at the intersection.

Finally, let us consider the task of extracting the temporal relationships that hold between
each pair of predicates. Our original intention was that of evaluating cogCompTime [76] as
the tool for generating an ordering graph over the set of events, and the approach presented
in [94] as the tool for assigning time intervals to events, since they are two recently proposed
solutions. Unfortunately, since various weeks cogCompTime is experiencing some server
problems (http://groupspaceuiuc.com/temporal/#), that do not allow us to experiment
with it. Thus, in the following, just the time interval approach presented in [94] is evaluated
with respect to the two selected utterances.

Figure 1 shows its results when applied on the mining dataset instance. As it can be seen,
the two occurrences of steer are still erroneously recognized as actions. Moreover, while the
interval assigned to operating seems to be an appropriate choice, the tool fails in identifying
its overlap with the interval related to cleaning. Furthermore, the events fell and slipped
appear to be swapped.

Considering the car crashes instance, as depicted in Figure 2, the outcomes are unfortu-
nately quite poor, and do not seem to follow any reasonable pattern.

At this point, by looking at the underwhelming results obtained by the tools we tested,
we decided not to proceed with the LTL formula synthesis task any further.

6 Conclusions

Linear-time temporal logic (LTL) is a logical formalism which is commonly adopted in formal
verification, in particular in consistency and model checking, and it can be a very useful
tool for capturing the temporal content of natural language utterances. Such capabilities
can be exploited in many important applications, including disambiguation of technical
requirements, log analysis, and automated reasoning over temporal data.

Unfortunately, as it emerges from our comprehensive analysis of the literature and of
existing tools, a general enough solution, that is capable of translating free, natural English
texts into unbounded, general LTL formulas is still missing.
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Figure 1 Events timeline in the mining dataset instance.

returned

conducted

sustained

died

colliding

t-boned

proceeded

avoid

was unable
I

applied

observed

looking

driving

appeared

noticing

stopped

proceeding

pass

allowed

appears

drove

Figure 2 Events timeline in the car crashes dataset instance.

TIME 2019



17:14

Synthesis of LTL Formulas from Natural Language Texts

In this paper, we provided a comprehensive review of the state of the art, as defined by
the relevant literature; moreover, an empirical evaluation has been conducted on some of

the currently available NLP tools, based on two real world instances. Results show that

further research work is needed on methods and tools for various crucial tasks, such as

coreference resolution, predicate extraction, and temporal relation identification, in order to

achieve a performance which is good enough to allow for the synthesis of LTL formulas from

unconstrained, natural language texts. We highlighted some possible research directions that

can be followed to tackle such a complex problem.
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