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Abstract
We present a new Curry-Howard correspondence for HA + EM1, constructive Heyting Arithmetic
with the excluded middle on Σ0

1-formulas. We add to the lambda calculus an operator ‖a which
represents, from the viewpoint of programming, an exception operator with a delimited scope,
and from the viewpoint of logic, a restricted version of the excluded middle. We motivate the
restriction of the excluded middle by its use in proof mining; we introduce new techniques to prove
strong normalization for HA + EM1 and the witness property for simply existential statements.
One may consider our results as an application of the ideas of Interactive realizability, which we
have adapted to the new setting and used to prove our main theorems.
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1 Introduction

From the beginning of proof theory many results have been obtained which clearly show
that classical proofs have a constructive content. The seminal results are Hilbert’s epsilon
substitution method (see e.g [23]) and Gentzen’s cut elimination [12]. Then, several other
techniques have been introduced: among them, Gödel’s double negation translation followed
either by the Gödel functional interpretation [11] or Kreisel’s modified realizability [18] and
Friedman’s translation [10]; the Curry-Howard correspondence between natural deduction
and programming languages (see e.g. [27]).

In this paper we follow the Curry-Howard line of research. But what does it mean to
extract constructive content from a natural deduction proof? Essentially, it means interpreting
the positive connectives ∨,∃ as positively as possible, that is, recovering information about
truth as much as possible. The problem is that, even in intuitionistic Arithmetic, a disjunction
A ∨ B can be proven without explicitly proving A or proving B; a proof of an existential
statement ∃αNA may be accepted even if it does not directly provide a witness, i.e. a number
n and a proof that A[n/α] holds. It is the very shape of the natural deduction rules that
allows that: there are not only inference rules for direct arguments – introduction rules – but
also indirect elimination rules. One can then prove a disjunction by an elimination rule, for
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example as a consequence of a general inductive argument for a formula ∀αN. A(α) ∨B(α)
and then conclude A(0) ∨B(0). It is a remarkable result of proof theory that it is possible
to give a complete simple classification of the detours that can occur in an intuitionistic
arithmetical proof, which are small pieces of indirect reasoning that can be readily eliminated
through a simple proof transformation. Once this detours are eliminated, one obtains direct
proofs of disjunctions or existential statements (see Prawitz [26]).

For classical Arithmetic, the situation may appear desperate: the double negation
elimination rule ¬¬A → A is a so indirect way of arguing, that seems impossible to be
eliminated; the excluded middle A ∨ ¬A allows a disjunction to be asserted without having
the slightest idea of which side holds. Indeed, for a long time, there has not been a set of
reduction rules, nor a notion of classical detour, that worked for proofs containing all the
logical connectives. It was Griffin [15] who gave a very elegant reduction rule for eliminating
the double negation elimination. If A is concluded from ¬¬A and then used to prove ⊥, then
one can capture the part of the proof that surrounds A to obtain a proof of ¬A and give it
to the premiss ¬¬A in order to get a more direct proof of ⊥. While this idea was initially
applied only to negative fragments of Arithmetic, it became clear that it could be adapted
even to a full set of connectives.

It was in that way that control operators entered the scene. The proof reductions
for classical Arithmetic can be implemented by a Curry-Howard correspondence between
proofs and functional languages enriched with operators that can capture the computational
context. Several languages have been put forward for that aim. Griffin proposed the lambda
calculus plus call/cc, solution that has been developed and extended by Krivine [21, 22] with
remarkable success. Parigot [25] put forward the λµ-calculus, which enjoys many of the nice
properties of the lambda calculus that are instead lost when using call/cc; de Groote [14]
extended the λµ-calculus in order to interpret primitively all the logical connectives.

After these works, it became evident that enriching functional languages with other "less
pure" computational constructs would allow to implement reduction rules for many mathem-
atical axioms. For example, Krivine used the instruction quote to provide computational
content to the axiom of dependent choice. Recently, Herbelin [16] has used the mechanism
of delimited exceptions to give special reduction rules for Markov’s principle.

The goal of this paper is to use a new combination of known computational constructs in
order to interpret Heyting Arithmetic HA with the excluded middle schema EM1, ∀αNP ∨
∃αNP⊥, where P is any atomic decidable predicate (see [1]) and P⊥ denotes the atomic
decidable predicate which is its complement. We shall give new reduction rules for HA + EM1,
and introduce a realizability semantics in order to investigate, describe and prove properties of
their behavior. We shall use delimited exceptions, and permutative conversions for disjunction
elimination. Permutative rules were introduced by Prawitz (see [26]) to obtain the subformula
property in first-order natural deductions: in our framework, they will naturally express
control operators. Delimited exceptions were used by de Groote [13] in order to interpret the
excluded middle in classical propositional logic with implication; by Herbelin [16], in order to
pass witnesses to some existential formula when a falsification of its negation is encountered.
We shall use exceptions in a similar way, and our work may be seen as a modification and
extension of some of de Groote’s and Herbelin’s techniques. Our reduction rules for the
classical principle EM1 are inspired by Interactive realizability [2, 3] for HA + EM1, which
describes classical programs as programs that make hypotheses, test them and learn by
refuting the incorrect ones. The interest of EM1 lies in the fact that this classical principle is
logically simple, yet it may formalize many classical proofs: for instance, proofs of Euclidean
geometry (like Sylvester conjecture, see J. von Plato [28]), of Algebra (like Dickson’s Lemma,
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see S. Berardi [7]) and of Analysis (those using Koenig’s Lemma, see Kohlenbach [17]).
We now give an high level explanation of our contributions and of how they compare to

other interpretations of classical proofs.

1.1 Excluded Middle versus Double Negation Elimination
As we have said, control operators have been mainly used to interpret primitively double
negation elimination, or some related principle (as the Pierce law: (¬A → A) → A). To
interpret the excluded middle with this approach, one first proves intuitionistically ⊥ (and
thus EM) from ¬EM and then applies the rules of double negation elimination or Pierce
law to obtain a proof term for EM. In this way, however, one does not address directly the
excluded middle and sticks to an implicit negative translation which eliminates it. But what
is classical logic if not the conception that formulas speak about models, and a formula is
either true or false? It is also evident that the real idea behind the constructivization of
classical logic is concealed in the proof of ¬¬EM: it is there that it is really determined what
is the use of the continuations produced by control operators and why it is needed.

In this paper, we give direct reduction rules for the excluded middle EM1. We treat it as
an elimination rule, as in [13] and in the actual mathematical practice:

Γ, a : ∀αNP ` u : C Γ, a : ∃αNP⊥ ` v : C
Γ ` u ‖a v : C

This inference is nothing but a familiar disjunction elimination rule, where the main premise
EM1 has been cut, since, being a classical axiom, it has no computational content in itself.
The proof terms u, v are both kept as possible alternatives, since one is not able to decide
which branch is going to be executed at the end. A problem thus arises when C is employed
as the main premise of an elimination rule to obtain some new conclusion. For example,
when C = A → B, and Γ ` w : A, one may form the proof term (u ‖a v)w of type B. In
this case, one may not be able to solve the dilemma of choosing between u and v, and the
computation may not evolve further: one is stuck.

1.2 Permutation Rules for EM1

We solve the problem as in [13] by adding permutation rules, as usual with disjunction. For
example, (u ‖a v)w reduces to uw ‖a vw. In this way, one obtains two important results:
first, one may explore both the possibilities, ∀αNP is true or ∃αNP⊥ is true, and evaluate uw
and vw; second, one duplicates the applicative context [ ]w, which will be needed in case
of backtracking from the branch uw to vw. If C = A ∧ B, one may form the proof term
π0(u ‖a v), which reduces to π0u ‖a π0v, and has the effect of duplicating the context π0[ ].
Similar standard considerations hold for the other connectives. Thus permutation rules act
similarly to the rules for µ in the λµ-calculus, but are only used to duplicate step-by-step
the context and produce implicitly the continuation. Anyway, ‖ behaves like a control-like
operator.

1.3 Delimited Exceptions
The reductions that we put forward for the new proof terms u ‖a v are inspired by the
informal idea of learning by making falsifiable hypotheses. When normalizing a term u ‖a v,
we shall consider u as the active branch. The reason is that the hypothesis ∀αNP has
no computational content, and it is only a certificate serving to guarantee the correctness
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of u. Therefore, one can “run” u making the hypothesis ∀αNP without the risk that the
computation will be blocked; on the contrary, the branch v cannot a priori be executed
without that risk, because the hypothesis ∃αNP⊥ has a computational content (a witness)
that may be requested in order to go on with the computation. That does not mean that
one is not free to first perform reductions inside v, but rather that one may not expect to
necessarily get useful results in that branch.

The informal idea expressed by our reductions is thus to assume ∀αNP and try to produce
some proof of C out of u by reducing inside u. The crucial intuition – recurring again
and again in proof theory – is that when C is a concrete statement, for example a simple
existential formula, one actually needs only a finite number of instances of ∀αNP to prove
it. Whenever u needs the truth of an instance P[n/α] of the assumption ∀αNP, it checks
it, and if it is true, it replaces it by its canonical proof which is just a computation. If all
instances P[n/α] of ∀αNP being checked are true, and no assumption ∀αNP is left (this is the
non-trivial part), then the normal form u′ of u is independent from ∀αNP and we found some
u′ : C. Remark that, in this case, we do not know whether ∀αNP is true or false, because u
only checked finitely many instances of it: all we do know is that the full hypothesis ∀αNP
is unnecessary in proving C. If instead some assumption of ∀αNP is left in u we are stuck.
There is only one way out of this impasse and can occur at any moment: u may find some
instance P[n/α] which is false, and thus refute the assumption ∀αNP. In this case the attempt
of proving C from ∀αNP fails, we obtain P⊥[n/α] and u raises the exception n; from the
knowledge that P⊥[n/α] holds, a canonical proof term ∃αNP⊥ is formed and passed to v: a
proof term for C has now been obtained and it can be executed.

In order to implement those reductions we shall use constant terms of the form H∀αP,
whose task is to take a numeral n and reduce to True if P[n/α] holds, otherwise raise an
exception. We shall also use a constant W∃αP⊥ denoting some unknown proof term for ∃αNP⊥,
whose task is to catch the exception raised by H∀αP. Actually, these terms will occur only
through typing rules of the form

Γ, a : ∀αNP ` [a]H∀αP : ∀αNP Γ, a : ∃αNP⊥ ` [a]W∃αP⊥ : ∃αNP⊥

where a is used just as a name of a communication channel for exceptions: if in u occurs a
subterm of the form [a]H∀αPn, where the closed expression P[n/α] is false, then u ‖a v reduces
to v[a := n], which denotes the result of the replacement of [a]W∃αP⊥ in v with the proof term
(n, True). From the viewpoint of programming, that is a delimited exception mechanism (see
de Groote [13] and Herbelin [16] for a comparison). The scope of an exception has the form
u ‖a v : C, with u the “ordinary” part of the computation and v the “exceptional” part. As
pointed out to us by H. Herbelin, the whole term u ‖a v can also be expressed in a standard
way by the constructs raise and try . . .with . . . in the CAML programming language.

1.4 Realizability and Prawitz Validity
We now have a set of detour conversions for HA + EM1: which notion of construction does
it determine? The normalization process, even in intuitionistic logic, tends to be obscure:
while the local meaning of reduction steps is clear, the global behaviour of the procedure is
harder to grasp. This is the reason why it is important to define proof-theoretic semantics,
in particular those who have the task of explaining what is a construction in intuitionistic
or classical sense. Realizability is one of those semantics. In analogy with the discussion in
Prawitz [26] about validity, one may classify realizabilities in two groups: those who give
priority to introduction rules and those who rather privilege elimination rules in order to
give meaning to logical connectives.
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Realizabilities based on introduction rules. In this case, one explains a logical constant
in term of the construction given by an introduction rule for that constant. For example,
a realizer of A ∧ B is a pair made by a realizer of A and a realizer B; a realizer of A ∨ B
contains either a realizer of A or a realizer of B together with an indication of which formula
is realized. Of course, this approach tends to work with constructive logics, which have
the disjunction and numerical existence properties. Prawitz’s notion of validity and Kreisel
modified realizability are witness to that. There is one exception: Interactive realizability
[3, 4], which explains positive classical connectives with introduction rules thanks to the use
of the concept of state of knowledge.

Realizability based on elimination rules. In this case, one describes the meaning of a logical
constant in terms of “performability of operations” or in terms of what can be obtained by the
elimination rules for that constant. This approach works very well for negative connectives,
and in fact is not very different from the one given by introduction rules: but since it has
a semantical flavor, it is usually the preferred one. At the time of Prawitz [26], it seemed
impossible that this approach could work also for positive connectives, given the circularity
involved in the elimination rules (in terms of logical complexity). It was only after Girard’s
reducibility [9], and the work of Krivine [19, 21], that the second order definition of A ∨B
as ∀X. (A → X) → (B → X) → X has been exploited for defining a realizability based
on elimination rules. While remarkable, this result makes classical realizabilities based on
elimination rules equivalent to some negative translation, re-proposing at the semantical
level the issue which is eliminated on the syntactical one. Indeed, all realizabilities proposed
for languages based on control operators are equivalent to some negative translation [24]
(not surprisingly, since these operators were originally devised to interpret directly double
negation elimination).

In this paper, we shall present a classical realizability borrowing ideas from both groups.
The treatment of negative logical constants will be à la Kreisel, while the positive ones will
be treated à la Prawitz. In particular the set of realizers of A ∨ B and of ∃αNA will be
constructed by an inductive definition whose base case is an introduction rule; the atomic
realizers will represent proofs in “extended” Post systems. This gives, first, an adaptation
of Interactive realizability to a language with exceptions and control operators; second, an
extension of Prawitz’s notion of validity to a system with classical principles. We find these
achievements interesting in their own right, because of the semantical meaning of validity
given by Prawitz [26]. It seems also that our approach is not equivalent in any straightforward
sense to a negative translation, in line with our desire of interpreting positive connectives as
positively as possible.

1.5 Witness Extraction and Strong Normalization
Thanks to realizability, we shall provide a new semantical proof of a normal form result
syntactically proven by Birolo [8], expressing that any closed normal proof term whose type is
a simply existential formula ∃αNP provides a witness through the process sketched above (that
is, one never gets stuck with simply existential formulas); and a new strong normalization
result, proving that all reduction paths terminate into a normal form. We anticipate that in
our calculus all the reduction strategies are allowed, therefore strong normalization is not
the same thing as weak normalization, as for example in Krivine’s realizability [19]. This
freedom is desirable, because it avoids artificial programming constraints which complicate
the writing of realizers.

We remark that we cannot prove the witness property for all existential statements of
HA+EM1. Indeed, using EM1 we may prove paradoxical statements like the drinker principle
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∃αN ∀βN.P(α)→ P(β), for P primitive recursive, but for some P there is no map computable
in the parameters of P providing some n such that ∀βN.P(n) → P(β). However we prove
the witness property for all Π0

2-statements of HA + EM1, which include all statements about
convergence of algorithms, therefore all statements more interesting for Computer Science.
The witness property we prove is a particular case of the witness property which holds for
the entire classical arithmetic by the results of Gödel: the interest of our results lies in the
new reduction set we provide and in their semantics.

1.6 Non-Determinism
We anticipate that our set of reductions is non-deterministic, i.e. non-confluent. Whenever
there are two false instances P[n/α], P[m/α] of an hypothesis ∀αNP in some EM1-rule u ‖a v,
in u it may be raised either the exception n related to P[n/α], or the exception m related to
P[m/α]. The computation is converging in both cases, and the witness we get for a simple
existential conclusion C is correct in both cases: however, we may obtain a different witness
in the two cases. The interest of the non-deterministic approach is that it does not impose
arbitrary restrictions ruling out potentially interesting computations: there are classical
proofs whose non-deterministic interpretation is in a sense canonical (see [6], p. 40-50 for
examples). Alternatively, with techniques introduced in [2], we may provide in a simple
and natural way confluent evaluation rules. It is an interesting aspect of our framework
that non-determinism arises just because one may generate during computation different
refutations of EM1-hypotheses, so any strategy for choosing between them re-establishes
confluence. For reason of space, we shall not address this matter in the present paper.

1.7 Plan of the Paper
This is the plan of the paper. In §2 we introduce a type theoretical version of intuitionistic
arithmetic HA extended with EM1. In §3 we introduce a realizability semantics for HA+EM1.
Then in §4, 5 we prove that this semantics is sound for HA + EM1. As a corollary, we deduce
that HA + EM1 is strongly normalizing and that any proof of a simply existential Σ0

1-formula
provides a witness.

2 The System HA + EM1

In this section we formalize intuitionistic Arithmetic HA, and we add an operator ‖ formalizing
EM1. We start with the language of formulas.

I Definition 1 (Language of HA + EM1). The language L of HA + EM1 is defined as follows.
1. The terms of L are inductively defined as either variables α, β, . . . or 0 or S(t) with t ∈ L.

A numeral is a term of the form S . . . S0.
2. There is one symbol P for every primitive recursive relation over N; with P⊥ we denote

the symbol for the complement of the relation denoted by P. The atomic formulas of L
are all the expressions of the form P(t1, . . . , tn) such that t1, . . . , tn are terms of L and n
is the arity of P. Atomic formulas will also be denoted as P,Q,Pi, . . ..

3. The formulas of L are built from atomic formulas of L by the connectives ∨,∧,→,∀,∃ as
usual, with quantifiers ranging over numeric variables αN, βN, . . ..

From now on, if P is any closed atomic formula, we will write P ≡ True (P ≡ False) if
the formula is true (false) in the standard interpretation, that is, if P = R(n1, . . . , nk) and
the sequence of numerals (n1, . . . , nk) belongs (does not belong) to the primitive recursive
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relation denoted by R. We now define in figure 1 a set of untyped proof terms, then a type
assignment for them.

It is a standard natural deduction system with introduction and elimination rules for
each connective and induction rules for integers, together with a term assignment in the
spirit of Curry-Howard correspondence (see [27], for example).

Grammar of Untyped Proof Terms

t, u, v ::= x | tu | tm | λxu | λαu | 〈t, u〉 | π0u | π1u | ι0(u) | ι1(u) | t[x.u, y.v] | (m, t) | t[(α, x).u]

| u ‖a v | [a]H∀αP | [a]W∃αP⊥
| True | Ruvm | rt1 . . . tn

where m ranges over terms of L, x over proof terms variables and a over hypothesis variables. We
also assume that in the term u ‖a v, there is some atomic formula P, such that a occurs free in u only
in subterms of the form [a]H∀αP and a occurs free in v only in subterms of the form [a]W∃αP⊥

, and the
occurrences of the variables in P different from α are free in both u and v.

Contexts With Γ we denote contexts of the form e1 : A1, . . . , en : An, where each ei is either a proof-term
variable x, y, z . . . or a EM1 hypothesis variable a, b, . . ., and ei 6= ej for i 6= j.

Axioms Γ, x : A ` x : A Γ, a : ∀αNP ` [a]H∀αP : ∀αNP Γ, a : ∃αNP⊥ ` [a]W∃αP⊥
: ∃αNP⊥

Conjunction Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` π0u : A

Γ ` u : A ∧B
Γ ` π1u : B

Implication Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ, x : A ` u : B
Γ ` λxu : A→ B

Disjunction Intro. Γ ` u : A
Γ ` ι0(u) : A ∨B

Γ ` u : B
Γ ` ι1(u) : A ∨B

Disjunction Elimination Γ ` u : A ∨B Γ, x : A ` w1 : C Γ, x : B ` w2 : C
Γ ` u[x.w1, x.w2] : C

Universal Quantification Γ ` u : ∀αNA
Γ ` um : A[m/α]

Γ ` u : A
Γ ` λαu : ∀αNA

where m is any term of the language L and α does not occur free in any formula B occurring in Γ.

Existential Quantification Γ ` u : A[m/α]
Γ ` (m,u) : ∃αN.A

Γ ` u : ∃αNA Γ, x : A ` t : C
Γ ` u[(α, x).t] : C

where α is not free in C nor in any formula B occurring in Γ.

Induction Γ ` u : A(0) Γ ` v : ∀αN. A(α)→ A(S(α))
Γ ` Ruvt : A(t)

where t is any term of the language L.

Post Rules Γ ` u1 : P1 Γ ` u2 : P2 · · · Γ ` un : Pn
Γ ` u : P

where P1,P2, . . . ,Pn,P are atomic formulas and the rule is a Post rule for equality, for a Peano axiom
or a primitive recursive relation and if n > 0, u is ru1 . . . un, otherwise u is True.

EM1 Γ, a : ∀αNP ` w1 : C Γ, a : ∃αNP⊥ ` w2 : C
Γ ` w1 ‖a w2 : C

Figure 1 Term Assignment Rules for HA + EM1.
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We replace purely universal axioms (i.e., Π0
1-axioms) with Post rules (as in Prawitz [26]),

which are inferences of the form

Γ ` P1 Γ ` P2 · · · Γ ` Pn
Γ ` P

where P1, . . . ,Pn,P are atomic formulas of L such that for every substitution
σ = [t1/α1, . . . , tk/αk] of closed terms t1, . . . , tk of L, P1σ = . . . = Pnσ ≡ True implies
Pσ ≡ True. Let now eq be the symbol for the binary relation of equality between natural
numbers (“=” will also be used). Among the Post rules, we have the Peano axioms

Γ ` eq(St1,St2)
Γ ` eq(t1, t2)

Γ ` eq(0, St)
Γ ` ⊥

and axioms of equality

Γ ` eq(t, t)
Γ ` eq(t1, t2) Γ ` eq(t2, t3)

Γ ` eq(t1, t3)
Γ ` P[t1/α] Γ ` eq(t1, t2)

Γ ` P[t2/α]

We also have a Post rule for the defining axioms of each primitive recursive relation, for
example the false relation ⊥, addition, multiplication:

Γ ` ⊥
Γ ` P Γ ` add(t, 0, t)

Γ ` add(t1, t2, t3)
Γ ` add(t1, St2,St3)

Γ ` mult(t, 0, 0)
Γ ` mult(t1, t2, t3) Γ ` add(t3, t1, t4)

Γ ` mult(t1, St2, t4)

For simplifying the representation of proofs, we assume also to have a Post rule for each true
closed atomic formula P:

Γ ` P

From the ⊥-rule for atomic formulas we may derive the ⊥-rule for all formulas. We assume
that in the proof terms three distinct classes of variables appear: one for proof terms, denoted
usually as x, y, . . .; one for quantified variables of the formula language L of HA + EM1,
denoted usually as α, β, . . .; one for the pair of hypotheses bound by EM1, denoted usually
as a, b, . . .. In the term u ‖a v, any free occurrence of a in u occurs in an expression [a]H∀αP,
and denotes an assumption ∀αNP. Any free occurrence of a in v occurs in an expression
[a]W∃αP⊥ , and denotes an assumption ∃αNP⊥. All the occurrences of a in u and v are bound,
and we assume the usual renaming rules and alpha equivalences to avoid capture of variables
in the reduction rules that we shall give. Alternatively, [a]H∀αP is the thrower of an exception
a and [a]W∃αP⊥ is the catcher of the same exception a. With u ‖ v we denote a generic term
of the form u ‖a v; we shall use this notation whenever our considerations will not depend
on which is exactly the variable a. Terms of the form ((u ‖ v1) ‖ v2) . . .) ‖ vn for any n ≥ 0
will be denoted as u ‖ v1 ‖ . . . ‖ vn or as EM[u]. In the terms [a]H∀αP and [a]W∃αP⊥ the free
variables are a and those of P minus α.

Assume that Γ is a context, t an untyped proof term and A a formula, and Γ ` t : A:
then t is said to be a typed proof term. Typing assignment satisfies Weakening, Exchange
and Thinning, as usual. SN is the set of strongly normalizing untyped proof terms and
NF is the set of normal untyped proof terms, as usual in lambda calculus ([27]). PNF is
the inductively defined set of the Post normal forms (intuitively, normal terms representing
closed proof trees made only of Post rules whose leaves are universal hypothesis followed by
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Reduction Rules for HA

(λx.u)t 7→ u[t/x] (λα.u)t 7→ u[t/α]

πi〈u0, u1〉 7→ ui, for i=0,1
ιi(u)[x1.t1, x2.t2] 7→ ti[u/xi], for i=0,1
(n, u)[(α, x).v] 7→ v[n/α][u/x], for each numeral n
Ruv0 7→ u

Ruv(Sn) 7→ vn(Ruvn), for each numeral n
Permutation Rules for EM1

(u ‖a v)w 7→ uw ‖a vw, if a does not occur free in w

πi(u ‖a v) 7→ πiu ‖a πiv
(u ‖a v)[x.w1, y.w2] 7→ u[x.w1, y.w2] ‖a v[x.w1, y.w2], if a does not occur free in w1, w2

(u ‖a v)[(α, x).w] 7→ u[(α, x).w] ‖a v[(α, x).w], if a does not occur free in w1, w2

Reduction Rules for EM1

([a]H∀αP)n 7→ True, if P[n/α] is closed and P[n/α] ≡ True

u ‖a v 7→ u, if a does not occur free in u
u ‖a v 7→ v[a := n], if [a]H∀αPn occurs in u, P[n/α] is closed and P[n/α] ≡ False

Figure 2 Reduction Rules for HA + EM1.

an elimination rule), that is: True ∈ PNF; for every closed term n of L, if [a]H∀αPn ∈ NF,
then [a]H∀αPn ∈ PNF; if t1, . . . , tn ∈ PNF, then rt1 . . . tn ∈ PNF.

We are now going to explain the reduction rules for the proof terms of HA+EM1, which are
given in figure 2 (with 7→∗ we shall denote the reflexive and transitive closure of the one-step
reduction 7→). We find among them the ordinary reductions of Intuitionistic Arithmetic
for the logical connectives and induction. Permutation Rules for EM1 are an instance of
Prawitz’s permutation rules for ∨-elimination, as explained in the introduction. Raising an
exception n in u ‖a v removes all occurrences of assumptions [a]W∃αP⊥ in v; we define first
an operation removing them, and denoted v[a := n].

I Definition 2 (Witness Substitution). Suppose v is any term and n a closed term of L. We
define

v[a := n]

as the term obtained from v by replacing each subterm [a]W∃αP⊥ corresponding to a free
occurrence of a in v by (n, True), if P[n/α] ≡ False, and by (n, [a]H∀αα=0S0), otherwise.

I Remark. An exception is raised only when P[n/α] ≡ False. Therefore the substitution of
[a]W∃αP⊥ by (n, [a]H∀αα=0S0) will never occur in the reductions rules that we have defined.
However, the general case of the substitution will be needed to define realizability, and
namely because we want it to be suitable to prove strong normalization.

The rules for EM1 translate the informal idea of learning by trial and error we sketched
in the introduction, that is:

1. The first EM1-reduction: ([a]H∀αP)n 7→ True if P[n/α] ≡ True, says that whenever we
use a closed instance P[n/α] of the assumption ∀αNP, we check it, and if the instance is
true we replace it with its canonical proof.

2. The second EM1-reduction: u ‖a v 7→ u, says that if, using the first reduction, we are able
to remove all the instances of the assumption [a]H∀αP : ∀αNP in u, then the assumption is
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unnecessary and the proof term u ‖a v may be simplified to u. In this case the exceptional
part v of u ‖a v is never used.

3. The third EM1-reduction: u ‖a v 7→ v[a := n], if [a]H∀αPn occurs in u and
P[n/α] ≡ False, says that if we check a closed instance [a]H∀αPn : P[n/α] of the as-
sumption ∀αNP, and we find that the assumption is wrong, then we raise in u the
exception n and we start the exceptional part v[a := n] of u ‖a v. Raising an exception is
a non-deterministic operation (we may have two or more exceptions to choose) and has
no effect outside u ‖a v.

We claim that the reductions satisfy subject reduction: if Γ ` t : A and t 7→ u then
Γ ` t : A. The proof is by induction over t. For the reduction rule u ‖a v 7→ u we use the
fact that a is not free in u and the Thinning rule. For the reduction rule u ‖a v 7→ v[a := n]
we use the fact that a is not free in v[a := n] and Thinning rule again.

As usual, neutral terms are terms that are not “values”, and need to be further computed.
We also introduce the important concept of quasi-closed term, which intuitively is a term
behaving as a closed one, in the sense that it can be executed, but that contains some free
hypotheses on which its correctness depends.

I Definition 3 (Neutrality, Quasi-Closed terms).
1. An untyped proof term is neutral if it is not of the form λxu or λαu or 〈u, t〉 or ιi(u) or

(t, u) or [a]H∀aP or u ‖a v.
2. If t is an untyped proof term which contains as free variables only EM1-hypothesis

variables a1, . . . , an, such that each occurrence of them is of the form [ai]H∀αPi for some
Pi, then t is said to be quasi-closed.

3 A Realizability interpretation for HA + EM1

In this section we define a realizability semantics for HA + EM1, in which realizers may
be interpreted as algorithms learning by trial and error a correct value. With respect to
the Interactive realizability semantics in [2], the main difference is that we have no formal
notion of knowledge state here. Informally, the counterpart of a knowledge state here would
be the set of the free EM1 hypothesis variables occurring in a term and the collection of
all assignments [a := n] produced by some reduction u ‖a v 7→ v[a := n] performed in the
computation of the term.

Realizers will be deduced to be strongly normalizing terms, and the soundness of this
realizability semantics will have strong normalization as a corollary. As in [21], realizers may
be untyped terms, and also quasi-closed. With respect to the usual notion of intuitionistic
realizability, there is a special case for atomic formulas, and one special case t = u ‖a v for
the connectives ∨,∃.

I Definition 4 (Realizability for HA + EM1). Assume t is a quasi-closed term in the grammar
of untyped proof terms of HA + EM1 and C is a closed formula. We define the relation t  C

by induction on C and for each fixed formula by a generalized inductive definition.
1. t  P if and only if one of the following holds:

i) t ∈ PNF and P ≡ False implies t contains a subterm [a]H∀αQn with Q[n/α] ≡ False;
ii) t /∈ NF and for all t′, t 7→ t′ implies t′  P

2. t  A ∧B if and only if π0t  A and π1t  B

3. t  A→ B if and only if for all u, if u  A, then tu  B
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4. t  A ∨B if and only if one of the following holds:
i) t = ι0(u) and u  A or t = ι1(u) and u  B;
ii) t = u ‖a v and u  A ∨B and v[a := m]  A ∨B for every numeral m;
iii) t /∈ NF is neutral and for all t′, t 7→ t′ implies t′  A ∨B.

5. t  ∀αNA if and only if for every closed term n of L, tn  A[n/α]
6. t  ∃αNA if and only if one of the following holds:

i) t = (n, u) for some numeral n and u  A[n/α];
ii) t = u ‖a v and u  ∃αNA and v[a := m]  ∃αNA for every numeral m;
iii) t /∈ NF is neutral and for all t′, t 7→ t′ implies t′  ∃αNA.

I Remark. A realizer is a quasi-closed term, which is interpreted as a program which has
made hypotheses in order to decide some instances of EM1. Its free EM1 hypothesis variables
do not influence the evolution of the term; they represent the assumptions on which the
correctness of the computation depend, and they may raise an exception when the term is
placed in a context of the form u ‖a v.

The definition of the realizability relation for the negative connectives ∧,→,∀ is standard
and it determines the notion of test, that is, the kind of input that must be provided to the
realizer.

The definition of the realizability relation for the positive connectives ∨,∃ determines
the notion of answer. We shall see in the crucial Proposition 2 that indeed every realizer
does provide an answer, under the form of prediction (a possibly unsafe answer): a realizer
of A ∨B normalizes to a term containing a realizer of A or a realizer of B and a realizer of
∃αNA normalizes to a term containing a realizer of A[n/α]. However, these realizers are only
quasi-closed, therefore their correctness depends on extra hypotheses and is not guaranteed:
only in the case of closed realizers and of Σ0

1-formulas we will prove a true disjunction
property and a true witness property. The style of the definition of realizability for A ∨B,
∃αNA is inspired from Prawitz strong validity [26] and its main feature is that it depends not
only on the formula, but also on the shape of the term; since it is an inductive definition, a
term is a realizer if one can deduce it by means of a finite number of applications of the three
subclauses i), ii), iii) of the definition. We observe that the base case i) of the definition is the
one of intuitionistic realizability, even if we are in a classical setting: the deep reason of this
phenomenon is that in the definition of u ‖a v  A∨B, even if u may contain an hypothesis
term [a]H∀αP that becomes free, this term does not “stop” the computation inside u, and u
can nevertheless realize A∨B, i.e. reach eventually a form ιi(w), after steps of normalization
(applications of iii)) or at the end of whatever paths one has followed by applications of ii).

In the case of an atomic formula Q, the definition is analogous to the one of Interactive
realizability (see [3] for many intuitions): a proof-term should represent a proof made only of
Post-rules (a calculation), possibly with the aid of some hypothesis ∀αNP; if the formula Q is
false, than a counterexample to some hypothesis should be contained in the realizer.

I Example 5 (Realizer of the Excluded Middle). Any closed instance

∀αNP ∨ ∃αNP⊥

of EM1 is provable in HA + EM1 by a straightforward application of the EM1-rule. It shall
then be a consequence of the Adequacy Theorem 7 that any instance of EM1 is realizable. It
is however instructive to construct and examine right now a realizer. We define:

EP := ι0([a]H∀αP) ‖a ι1([a]W∃αP⊥
)
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This realizer first tries with ∀αNP, and if some exception is raised, switches to ∃NαP⊥. In
order to show that

EP  ∀αNP ∨ ∃αNP⊥

by definition 4 of realizability, we have to prove:

1. [a]H∀αP  ∀αNP, that is, for all numerals n, [a]H∀αPn  P[n/α]. P[n/α] is closed because
we assumed ∀αNP closed. If P[n/α] ≡ True then [a]H∀αPn 7→ True, and True  P[n/α]
by definition 4.1.(i), therefore [a]H∀αPn  P[n/α] by definition 4.1.(ii). If P[n/α] ≡ False
then [a]H∀αPn  P[n/α] by definition 4.1.(i).

2. for all numerals n, [a]W∃αP⊥ [a := n]  ∃αNP⊥. By definition 2, this amounts to show
that (n, True)  ∃αNP⊥, when P[n/α] ≡ False, that is True  P⊥[n/α], and that
(n, [a]H∀αα=0S0)  ∃αNP⊥ otherwise, that is [a]H∀αα=0S0  P⊥[n/α]. In the first
case we have P⊥[n/α] ≡ True, in the second one the realizer contains an occurrence of
[a]H∀αα=0S0, having (α = 0)[α/S0] ≡ False. In both case we apply definition 4.1.(i).

4 Basic Properties of Realizers

In this section we prove that the set of realizers of a given formula C satisfies the usual
properties for a Girard’s reducibility candidate.

I Definition 6. Extending the approach of [9], we define four properties (CR1), (CR2),
(CR3), (CR4) of realizers t of a formula A plus an inhabitation property (CR5) for A:

(CR1) If t  A, then t ∈ SN.
(CR2) If t  A and t 7→∗ t′, then t′  A.
(CR3) If t /∈ NF is neutral and for every t′, t 7→ t′ implies t′  A, then t  A.
(CR4) If t = u ‖a v, u  A and v[a := m]  A for every numeral m, then t  A.
(CR5) There is a u such that u  A.

All properties listed above hold.
I Proposition 1. Every term t has the properties (CR1), (CR2), (CR3), (CR4) and the
inhabitation property (CR5) holds.

As we pointed out in the introduction, we cannot prove that any realizer of a disjunction
or an existential contains a correct witness, but we may prove some weakening of this property:
in some sense, surprisingly, also classical logic enjoys the disjunction and numerical existence
properties. Namely, a realizer of A ∨ B contains a realizer of A or a realizer of B and a
realizer of ∃αNA contains a realizer of A[n/α]. The point is that n is not necessarily a true
witness, but rather a prediction based on the universal assumptions contained in the realizer.
I Proposition 2 (Weak Disjunction and Numerical Existence Properties).
1. Suppose t  A ∨ B. Then either t 7→∗ EM[ι0(u)] and u  A or t 7→∗ EM[ι1(u)] and

u  B.
2. Suppose t  ∃αNA. Then t 7→∗ EM[(n, u)] for some numeral n such that u  A[n/α].

Proof.
1. Since t ∈ SN by (CR1), let t′ be such that t 7→∗ t′ ∈ NF. By (CR2), t′  A ∨ B. If

t′ = ι0(u), we are done. The only possibility left is that t′ = v ‖ v1 ‖ v2 . . . ‖ vn, with v
not of the form w0 ‖ w1. By definition 4.4.(ii) we have v  A ∨B, and since v is normal
and not of the form w0 ‖ w1, by definition 4.4.(i) we have either v = ι0(u), with u  A,
or v = ι1(u), with u  B.

2. Similar to 1. J
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We observe that in a realizer v ‖a1 v1 ‖a2 v2 . . . ‖an vn of A ∨B, the further we move on the
left, the larger is the set of hypotheses becoming free. This is indeed the price payed to
construct a realizer of A or B, which is contained in v: hypotheses have to be made.

The next task is to prove that all introduction and elimination rules of HA + EM1 define
a realizer from a list of realizers for all premises. In some case this is true by definition of
realizer, we list below some non-trivial cases we have to prove.
I Proposition 3.
1. If for every t  A, u[t/x]  B, then λxu  A→ B.
2. If for every closed term m of L, u[m/α]  B[m/α], then λαu  ∀αNB.
3. If u  A0 and v  A1, then πi〈u, v〉  Ai.
4. If w0[x0.u0, x1.u1]  C and for all numerals n, w1[x0.u0, x1.u1][a := n]  C, then

(w0 ‖a w1)[x0.u0, x1.u1]  C.
5. If t  A0 ∨A1 and for every ti  Ai it holds ui[ti/xi]  C, then t[x0.u0, x1.u1]  C.
6. If t  ∃αNA and for every term n of L and v  A[n/α] it holds u[n/α][v/x]  C, then

t[(α, x).u]  C.

5 The Adequacy Theorem

In this section we prove that the realizability semantics we defined in §3 is sound for HA+EM1,
and we derive strong normalization as a corollary. The witness property for Σ0

1-formulas,
instead, may be derived directly from the basic properties of realizers (§4).

I Theorem 7 (Adequacy Theorem). Suppose that Γ ` w : A in the system HA + EM1, with

Γ = x1 : A1, . . . , xn : An, a1 : ∃αN
1¬P1, . . . , am : ∃αN

m¬Pm, b1 : ∀αN
1Q1, . . . , bl : ∀αN

lQl

and that the free variables of the formulas occurring in Γ and A are among α1, . . . , αk. For
all closed terms r1, . . . , rk of L, if there are terms t1, . . . , tn such that

for i = 1, . . . , n, ti  Ai[r1/α1 · · · rk/αk]

then

w[t1/x1 · · · tn/xn r1/α1 · · · rk/αk a1 := i1 · · · am := im]  A[r1/α1 · · · rk/αk]

for every numerals i1, . . . , im.

I Corollary 8 (Strong Normalization of HA+EM1). All terms of HA + EM1 are strongly
normalizing.

Proof. From Theorem 7 and (CR5) we derive that for all proof-terms t : A we have some
substitution t′ such that t′  A. From (CR1) we conclude that t′ is strongly normalizing:
as a corollary, t itself is strongly normalizing. J

Our last task is to prove that all proofs of simply existential statements include a witness.

I Theorem 9 (Normal Form Property and Existential Witness Extraction). Suppose t is closed,
t  ∃αNP and t 7→∗ t′ ∈ NF. Then t′ = (n, u) for some numeral n such that P[n/α] ≡ True.

Proof. By proposition 2, there is some numeral n such that t′ = EM[(n, u)] and u  P[n/α].
So

t′ = (n, u) ‖a1 v1 ‖a2 v2 . . . ‖am
vm
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Since t′ is closed, u is quasi-closed and all its free variables are among a1, a2, . . . , am. We
observe that u must be closed. Otherwise, by definition 4.1.(i) and u  P[n/α] we deduce
that u ∈ PNF, and thus u should contain a subterm [ai]H∀αQn; moreover, Q[n/α] ≡ False
otherwise u would not be normal; but then we would have either m 6= 0 and t′ /∈ NF because
t′ 7→ v1[a1 := n] ‖a2 v2 . . . ‖am

vm, or m = 0 and t′ non-closed. Since u is closed, we obtain
t′ = (n, u), for otherwise t′ 7→ (n, u) ‖a2 v2 . . . ‖am vm and t′ /∈ NF. Since u  P[n/α], by
definition 4.1.(i) it must be P[n/α] ≡ True. J

By the Adequacy Theorem 7 and Theorem 9, whenever HA + EM1 proves a closed formula
of the shape ∀αN

1 . . . ∀αN
k ∃βN P, one can extract a realizer t with the property that, for

every numerals n1, . . . , nk, there is some numeral n such that tn1 . . . nk 7→∗ (n, True) and
P[n1/α1 · · ·nk/αk n/β] ≡ True. For example, from a proof of ∀αN

1 ∀αN
2 ∃βN add(α1, α2, β), one

can extract a term computing the sum of natural numbers, even if the proposition has been
proved classically.

6 Conclusions

From the point of view of classical Curry-Howard correspondence, the main contribution of
this paper is a new decomposition of the EM1 reduction rules in terms of delimited exceptions
and permutation rules. The expert may at this point have noticed that some deterministic
restriction of our conversions may be quite directly simulated in λµ-calculus and, less directly,
in Krivine’s λc-calculus. However, as it is quite often the case in proof theory, a variation in
the rules of a system may be crucial to gain better results and understanding. In our case,
with our approach we obtain several new results.

Markov’s Principle and Restricted EM1. The mechanism of delimited exceptions allows to
obtain quite refined results about systems containing Markov’s principle, showing directly
that its addition on top of intuitionistic logic preserves the disjunction and numerical
existence properties [16]. Of course, Markov’s principle is provable in HA + EM1, by the
most restricted version of the EM1 rules, where the conclusion of the rule must be a
Σ1

0-formula. We shall show in a future paper that also our system enjoys the disjunction
and numerical existence properties, when it is only allowed to use the restricted excluded
middle sufficient to prove Markov’s principle.
Extension of Prawitz validity to classical proofs. The double negation is in some sense
hardwired in the λµ and in the λc calculi. As the cognoscenti know, this forces Krivine’s
realizability of a formula A for these calculi to have the form ¬A→ ⊥, where ¬A is the
type of stacks and ⊥ is interpreted by ⊥⊥. Loosely speaking, in this way double negation
elimination becomes a tautology: (¬¬A) → ¬A → ⊥. Our priority is instead given to
EM1, and our reduction rules allow to extend an introductions-based Prawitz validity to
a classical system. Such a result would not have been possible in the context of λµ or λc.
Weak disjunction and existence properties for realizability. Thanks to the essentially
positive flavor of our realizability definition for positive connectives, we have shown
(Proposition 2) that our notion of realizability satisfies a remarkable property: a realizer
of a disjunction contains a realizer of one of the disjuncts, and a realizer of an existential
statement contains a realizer of an instance of it. Similar insights seem not possible to be
easily expressed in the framework of λµ-calculus or Krivine’s realizability (or at least,
similar properties have never been noticed). It is instead the explanation of classical
programs as making hypotheses, testing them and learning, that has led to our results:
our realizers behave like they do precisely because they want to achieve the disjunction
and numerical existence properties during computations.
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